

Contribution ID: 8 Type: Talk

Pion masses in 2-flavor QCD with Yeta condensation

Wednesday, 25 June 2014 10:00 (20 minutes)

We investigate some aspects of 2-flavor QCD with $m_u \Psi not = m_d$ at low-energy, using the leading order chiral perturbation theory including anomaly effects. While nothing special happens at $m_u = 0$ for the fixed $m_d \Psi not = 0$, the neutral pion mass becomes zero at two critical values of m_u , between which the neutral pion field

condenses, leading to a spontaneously CP broken phase, the so-called Dashen phase. We also show that the "topological susceptibility" in the ChPT diverges at these two critical points. We briefly discuss a possibility that $m_u=0$ can be defined by the vanishing the "topological susceptibility. We finally analyze the case of $m_u=m_d=m$ with $\Re theta=\Re pi$, which is equivalent to $m_u=-m_d=-m$ with $\Re theta=0$ by the chiral rotation. In this case, the $\Re ta$ condensation occurs at small m, violating the CP symmetry spontaneously. Deep in the $\Re ta$ condensation phase, three pions become Nambu-Goldstone bosons, but they show unorthodox behavior at

small m that $m_{\mathbb{Y}}pi^2=O(m^2)$, which, however, is shown to be consistent with the chiral Ward-Takahashi identities.

Primary author: Prof. AOKI, Sinya (Kyoto University)

Co-author: Dr CREUTZ, Michael (Brookhaven National Laboratory)

Presenter: Prof. AOKI, Sinya (Kyoto University)

Session Classification: Theoretical Developments

Track Classification: Theoretical Developments