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Introduction Update Scheme

In order to obey the constraints imposed by the Kronecker deltas, we update the
p- and [-fields with the following ergodic procedure:

e Studying 6-vacua on the lattice is difficult due to the notorious sign prob-
lem, similar to lattice simulations at non-zero chemical potential.

e By now, it is well known that such problems — at least in abelian theories —
can be solved by mapping the system to a dual representation.

e In this exploratory study we investigate the 6-vacuum structure of 2 dimen-
sional scalar QED, i. e. the scalar version of the Schwinger model.

e The aim of this study is

— first, to find a suitable expression for the topological charge on the
lattice that allows for dualization,

— second, to obtain a real, non-negative representation of the parti-
tion sum, in order to make Monte Carlo simulations feasible and

— third, to study the dependence of observables on the 8-angle.

Scalar Quantum Electrodynamics with a 6-Term

We study the system given by
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The (integer-valued) topological charge is given in the continuum by
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On the (2 dimensional) lattice one can derive the following expression
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Dual Representation

The sign problem is basis dependent, this means for most systems it is — at
least in principle — possible to express the partition function in terms of new de-
grees of freedom, where the partition sum consists of real, non-negative terms

only and each term can be assigned a probability weight.

We follow [1], where the matter part was treated and obtain
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Four new Integer-valued fields are introduced, which replace the original
complex-valued fields. The [- and [-variables are associated with the matter fields
¢ and live on the links of the lattice, the p- and p-variables are associated with the
gauge fields U and are attached to the lattice sites. They assume the following

values

lw,l/y Pz ~ Z, l_x,l/y ﬁaz - NO .

Due to the Kronecker deltas (from the U(1) integration) the - and p-fields are

constrained and have to be updated accordingly.

Local mixed plaquette update:

Global pure gauge update:
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Numerical Results

As one would expect from a topological quantity, the topological charge shows a
very sensitive dependence on the lattice spacing and the continuum limit has

to be taken with care. Here this amounts to
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Development towards the continuum limit
B=1.6, No=N;=4 B=3.6, Nc=N{=6
0.8 0.875 I I I I I I ,
0.75 + - - |
0.7 | 0.87 % g%
0:65 1 i 0.865 F = _ N E
0.55 |- - 0.86 % F = i = E I
0.5 K=10 ——— K=4 +——+ K=2 | gjzi § I}Ii § % §
= = = 0.855 - % . i E L
0.45 K=5 K=3 — % ;;%%E %it %
0-4 il 0.85 - £ F .
0.35 | - e
0.3 [ | | | | | e 0.845 | | | 1 | | |
4n -3n -2n -1m on I 21 31 4n -4n -3m 21 1 om In 21 31 4n
B=6.4, Noc=N;=8 B=10, Ng=N{=10
0926 | | | | | | | 0952 | | | | | | |
0.925 - . 0.9515 |- .
0.924 - i 0.951 | -
0.923
0.9505 + —
0.922 = = :
- 0.95
0921 & 7
0.92 0.9495
0.919 0.949
0.9485

0.918

Topological Charge: Development towards the continuum limit
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