Introduction

- Studying θ-vacua on the lattice is difficult due to the notorious sign problem, similar to lattice simulations at non-zero chemical potential.
- By now, it is well known that such problems - at least in abelian theories can be solved by mapping the system to a dual representation.
- In this exploratory study we investigate the θ-vacuum structure of 2 dimensional scalar QED, i. e. the scalar version of the Schwinger model.
- The aim of this study is
- first, to find a suitable expression for the topological charge on the lattice that allows for dualization,
- second, to obtain a real, non-negative representation of the partition sum, in order to make Monte Carlo simulations feasible and
- third, to study the dependence of observables on the θ-angle

Scalar Quantum Electrodynamics with a θ-Term

We study the system given by

$$
Z(\kappa, \lambda, \beta, \theta)=\int \mathcal{D}[U] \mathcal{D}[\phi] e^{-S_{G}[U]-S_{M}[U, \phi]-i \theta Q[U]}
$$

With the gauge part

$$
S_{G}[U]=-\frac{\beta}{2} \sum_{x}\left[U_{p}(x)+U_{p}^{*}(x)\right],
$$

and matter part

$$
S_{M}[U, \phi]=\sum_{x}\left[\kappa\left|\phi_{x}\right|^{2}+\lambda\left|\phi_{x}\right|^{4}-\sum_{\nu}\left(\phi_{x}^{*} U_{x, \nu} \phi_{x+\hat{\nu}}+\phi_{x} U_{x, \nu}^{*} \phi_{x+\hat{\nu}}^{*}\right)\right]
$$

The (integer-valued) topological charge is given in the continuum by

$$
Q=\frac{1}{4 \pi} \int d^{2} x \epsilon_{\mu \nu} F_{\mu \nu}(x)=\frac{1}{2 \pi} \int d^{2} x F_{12}(x) .
$$

On the (2 dimensional) lattice one can derive the following expression

$$
Q[U]=\frac{1}{4 \pi i} \sum_{x}\left[U_{p}(x)-U_{p}^{*}(x)\right],
$$

since $U_{p}(x)=e^{i\left(A_{1}(x)+A_{2}(x+\hat{1})-A_{1}(x+\hat{2})-A_{2}(x)\right)}=1+i F_{12}(x)+$.

Dual Representation

The sign problem is basis dependent, this means for most systems it is - at least in principle - possible to express the partition function in terms of new degrees of freedom, where the partition sum consists of real, non-negative terms only and each term can be assigned a probability weight.

We follow [1], where the matter part was treated and obtain

$$
\begin{aligned}
Z(\kappa, \lambda, \beta, \theta)=\sum_{\{l, \bar{l}, p, \bar{p}\}} & \prod_{x, \nu} \frac{1}{\left(\left|l_{x, \nu}\right|+\bar{l}_{x, \nu}\right)!\bar{l}_{x, \nu}!} \prod_{x} P\left(n_{x}\right) \delta\left(\sum_{\nu}\left[l_{x, \nu}-l_{x-\hat{\nu}, \nu}\right]\right) \\
& \prod_{x} \frac{\eta^{\left(\left|p_{x}\right|+p_{x}\right) / 2+\bar{p}_{x}} \bar{\eta}^{\left(\left|p_{x}\right|+p_{x}\right) / 2-\bar{p}_{x}}}{\left(\left|p_{x}\right|+\bar{p}_{x}\right)!\bar{p}_{x}!} \\
& \prod_{x} \delta\left(p_{x}-p_{x-\hat{2}}+l_{x, 1}\right) \delta\left(p_{x-\hat{1}}-p_{x}+l_{x, 2}\right) .
\end{aligned}
$$

$$
\eta \equiv \frac{\beta}{2}-\frac{\theta}{4 \pi}, \quad \bar{\eta} \equiv \frac{\beta}{2}+\frac{\theta}{4 \pi}, \quad P\left(n_{x}\right) \equiv \int_{0}^{\infty} d r r^{n_{x}+1} e^{-\kappa r^{2}-\lambda r^{4}}
$$

Four new integer-valued fields are introduced, which replace the original complex-valued fields. The l - and \bar{l}-variables are associated with the matter fields ϕ and live on the links of the lattice, the p - and \bar{p}-variables are associated with the gauge fields U and are attached to the lattice sites. They assume the following values

$$
l_{x, \nu}, p_{x} \in \mathbb{Z}, \quad \bar{l}_{x, \nu}, \bar{p}_{x} \in \mathbb{N}_{0}
$$

Due to the Kronecker deltas (from the $\mathbf{U}(\mathbf{1})$ integration) the l - and p-fields are constrained and have to be updated accordingly.

Update Scheme

In order to obey the constraints imposed by the Kronecker deltas, we update the p - and l-fields with the following ergodic procedure:

Local mixed plaquette update:

Global pure gauge update:

$$
\Delta= \pm 1
$$

$\forall x$

Numerical Results (preliminary)

As one would expect from a topological quantity, the topological charge shows a very sensitive dependence on the lattice spacing and the continuum limit has to be taken with care. Here this amounts to

$$
\beta \rightarrow \infty \quad V \rightarrow \infty \quad \text { with } \quad \frac{\beta}{V}=\text { const. }
$$

Plaquette: Development towards the continuum limit

Topological Charge: Development towards the continuum limit

References

