Lattice study of $\pi\pi$ scattering using Nf=2+1 Wilson improved quarks with masses down to their physical values

Thibaut METIVET for the Budapest-Marseille-Wuppertal collaboration

CEA Saclay

June 23rd, 2013

In practice

Introduction

Introduction	Scattering in finite volume	In practice	Results	Conclusion
ho				
•	Resonance in the $L=1,~I=$	1, $\pi\pi$ scatter	ring channel	

- $M_{
 ho} = 775.5$ MeV
- $\Gamma_{
 ho} = 150$ MeV

J.P. Lees et al. (BABAR Collaboration) arXiv:1205.2228

Measured cross-section for $e^+e^- \rightarrow \pi^+\pi^-$ over the full mass range.

Scattering in finite volume

In finite volume, $\pi\pi$ states have discrete energy levels E_L .

Lüscher's method

Energy levels in finite volume

$$\longleftrightarrow$$

Scattering phase-shift in infinite volume

$$\cot \delta(q) = \frac{Z_{00}(1; q^2)}{q \pi^{3/2}}$$
$$q = \frac{L}{2\pi} \frac{1}{2} \sqrt{E^2 - 2m_\pi^2}$$

Introduction	Scattering in finite volume	In practice	Results	Conclusion
$\cot \delta (E)$				

 \implies strong coupling between ho and **excited** 2π states at low m_{π}

Introduction	Scattering in finite volume	In practice	Results	Conclusion
Excited s	tates extraction			

• Compute on the lattice the matrix of correlators

$$C_{ij}(t) = \langle \mathcal{O}_i(t) \, \bar{\mathcal{O}}_j(0) \rangle$$

with $\{O_i\}$ a set of independent appropriate interpolators.

• Solve the generalized eigenvalue problem

$$C(t)\psi = \lambda(t, t_0) C(t_0)\psi$$

• Then $\lambda^{(n)}(t, t_0) \sim e^{-E_n(t-t_0)}$ at large t determines the energies

Intro du ction	Scattering in finite volume	In practice	Results	Conclusion
Phase shift				

Phase-shift extraction

In practice

Lattice actions

- Gauge action: tree-level $O(a^2)$ -improved Symanzik action
- Fermion action: tree-level O (a)-improved Wilson fermions, $N_f = 2 + 1$, 2 steps of HEX gauge links smearing

Gauge configurations

- 5 independent gauge ensembles from the BMW-c:
 - m_{π} from 135 MeV to 300 MeV
 - 3 volumes from $(3.7 \text{ fm})^3$ to $(5.6 \text{ fm})^3$
 - 2 lattice spacings (0.12 fm and 0.08 fm)
 - $m_{\pi}L\gtrsim4$

Interpolating operators

Work in the center-of-mass frame.

2 to 5 independent operators with ho quantum numbers:

•
$$\mathcal{O}_{
ho} = ar{u} \, \gamma_i \, u - ar{d} \, \gamma_i \, d$$

• $\mathcal{O}_{\pi\pi}(ec{p})$: back-to-back π with up to 4 lattice momenta

Inversions and contractions

- stochastic sources
- generalized propagators

 \rightarrow high cpu cost (between 2M and 10M core-h per ensemble on BG/Q)

Results

Thibaut METIVET Lattice study of $\pi\pi$ scattering

Thibaut METIVET Lattice study of $\pi\pi$ scattering

Results

Parametrization of the ho resonance

Breit-Wigner resonance

Assume **narrow** resonance dominating $\pi\pi$ scattering. Then

$$\sin^2 \delta \simeq rac{\Gamma_
ho^2}{4(E-M_
ho^2)^2+\Gamma_
ho^2}$$

Effective interaction Lagrangian

Provides a convenient parametrization of the resonance

$$\mathcal{L}_{int} = g_{
ho\pi\pi} \ \epsilon_{abc} \ \rho^a_\mu \ \pi^b \partial^\mu \pi^c$$

 $\implies \sin^2 \delta \ (g_{
ho\pi\pi}, \ M_{
ho})$

Conclusion

Intro du ction	Scattering in finite volume	In practice	Results	Conclusion
Conclusion				

Results

- first lattice computation of the ρ resonance parameters at the physical π mass
- good agreement with experiment
- confirmation of the **very weak** dependence of $g_{\rho\pi\pi}$ on the pion mass

Current investigations

- continuum extrapolation
- analysis of the pion mass dependence of $M_
 ho$
- systematic error analysis
- improve statistics ? (computationally expensive)

Thank you

We thank GENCI-IDRIS and FZ Juelich for access to their super-computing resources.

Gauge ensembles

β	L ³ ×T	a[fm]	$m_{\pi}[{ m MeV}]$	# confs
3.31	48 ³ x48	0.12	135	483
3.31	32 ³ x48	0.12	210	225
3.31	32 ³ x48	0.12	300	451
3.61	48 ³ x48	0.08	220	200
3.61	48 ³ x48	80.0	255	210

Plateaus

