Composite (Goldstone) Higgs Dynamics on the Lattice: Spectrum of SU(2) $N_f = 2$

Ari Hietanen

with R. Arthur, V. Drach, R. Lewis, C. Pica, and F. Sannino

Lattice 2014

June 23th, 2014

<u>CP³Origins</u>

(日) (周) (日) (日) (日)

Ari Hietanen SU(2) with two fermions

Introduction: Unified Composite Higgs

- Common Technicolor and Composite Higgs framework:
 G. Cacciapaglia and F. Sannino JHEP, [arXiv:1402.0233].
- SU(2) gauge theory with N_f = 2 (SU_f(2)) has chiral symmetry breaking pattern: SU(4) → SP(4).
- Five Goldstones.
- The breaking direction with respect to standard model parametrized by an angle θ.

Two limits for θ

Technicolor

- $\bullet \ \theta = \frac{\pi}{2}$
- Breaks electroweak
- Higgs is a lightest scalar from SU_f(2)
- GB complex doublet
- Dark matter candidates

Goldstone Higgs

- θ = 0
- Does not break EW
- One Higgs-like doublet (massless)
- The remaining GB is SM neutral

イロト 不得 とくほと くほとう ほ

- $SU_f(2)$ dynamics does not care about the value of θ .
- Effects induced by top corrections favor $\theta = \frac{\pi}{2}$
- EW gauge bosons interaction favors $\theta = 0$
- Explicit breaking of SU(4) from extended theories can pick any direction.

◆□▶ ◆□▶ ★ 臣▶ ★ 臣▶ 三臣 - のへで

Mixed case $0 < \theta < \frac{\pi}{2}$

- The composite GB and technicolor Higgs (σ) mix.
- Lightest scalar state is Higgs.
- The scale of the theory $f_{\Pi} \sin \theta = 246 GeV$.
- The scalar meson masses are sensitive to EW corrections whereas the (axial)vector meson masses are determined by the SU_f(2).

Ari Hietanen

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Lattice simulations

Based on AH, R. Lewis, C. Pica, F. Sannino, accepted to JHEP, arXiv:1404.2794

Simulation parameters:

β	Volume	<i>m</i> 0	Therm.	Conf.
2.0	$16^3 imes 32$	-0.85, -0.9, -0.94, -0.945 -0.947,-0.949	320	680
2.0	32 ⁴	-0.947	500	2000
2.2	$16^3 imes 32$	-0.60, -0.65, -0.68, -0.70, -0.72, -0.75	320	680
2.2	$24^3 imes 32$	-0.75	500	~ 2000
2.2	32 ⁴	-0.72,-0.735, -0.75	500	~ 2000

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Ari Hietanen

Finite volume effects, $\beta = 2.2$ and $m_0 = -0.75$

э

Ari Hietanen

Chiral fits:

• The chiral perturbation theory has the form:

$$rac{m_{
m II}^2}{m_{
m q}} = 2B\left[1+\mathit{Cx}\log x+\mathit{Dx}+\mathcal{O}(m_{
m q}^2)
ight] \;,$$

and

$$f_{\Pi} = F\left[1 + C' x \log x + D' x + \mathcal{O}(m_{q}^{2})
ight]$$

•

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○

Ari Hietanen

Chiral extrapolations: m_{Π} and f_{Π} at $\beta = 2.2$

2

Ari Hietanen

$m_{ ho}$ and m_A

Ari Hietanen

 m_{ρ} and m_A in physical units

æ

Ari Hietanen

Continuum extrapolation

Ari Hietanen

Results

	β	Method 1 (GeV)	Method 2 (GeV)
$m_{ ho} \sin \theta$	∞	2840(330)(560)(360)	2520(100)(240)(310)
$m_A \sin \theta$	∞	4000(1800)(200)(430)	3300(400)(510)(340)

Table: Errors: from statistics, from continuum extrapolation, and from perturbative Z_a .

We used perturbative value for the renormalization constant Z_a

$$Z_a = 1 - \frac{g_0^2}{16\pi^2} \frac{N^2 - 1}{2N} 15.7 \stackrel{N=2}{=} 1 - 0.2983/\beta.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Ari Hietanen

Scalar mass (preliminary)

- Increased statistics with factor of 10.
- Preliminary results with quite heavy masses.
- Results still noisy.
- We have tried different methods. Results from diluted Z₁ volume sources (by Rudy Arthur).

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 ののの

Scalar mass (preliminary)

3

Ari Hietanen

Scalar mass in units of $f_{\Pi} \sin \theta$ (preliminary)

3

Ari Hietanen

Conclusions

We studied a unified model of TC and composite GB Higgs

- The vector meson mass $m_{\rho} \sin \theta = 2.5 \pm 0.5$ TeV above current exclusion limits set by LHC.
- It is possible that the lightest new state is a scalar.
- Need to improve chiral and continuum limit, and obtain more statistics for scalar measurements.
- Scattering lengths. Talk by Vincent Drach: Friday 27th 15:15.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 うの()

Ari Hietanen SU(2) with two fermions