Glue Helicity ΔG in The Nucleon

Raza Sabbir Sufian

in collaboration with - **Michael Glatzmaier, Yi-Bo Yang, Keh-Fei Liu, Mingyang Sun** χ_{QCD} Collaboration University of Kentucky

<u>OVERVIEW</u>

- •Motivation for Calculating Glue Helicity in Nucleon
- •Gauge invariant ΔG operator
- •Lattice Setup for Calculation of Glue Helicity in Longitudinally Polarized Nucleon

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

•Numerical Results

Motivation for Calculating Glue Helicity in Nucleon

 \oplus 'Nucleon Spin Puzzle' raised by EMC Collaboration in 1987, recent experiments by COMPASS [Alexakhin et al., PLB (2007)], HEREMES [Airapetian et al., PRD (2007)] found portion of nucleon spin coming from intrinsic quark spin $\approx \frac{1}{3}$

 \oplus What carries rest $\frac{2}{3}$ of the proton spin?

 \oplus Lattice calculation [Deka et al. χ_{QCD} Collaboration)] (in quench approximation with Wilson fermions) based on Ji's nucleon spin decomposition finds quark spin constitutes 25%, glue angular momentum 28% and quark orbital angular momentum contribute 47% of proton spin

Experimental Results for Nonzero Gluon Polarization

• Recent(2009 RHIC) experimental data show evidence of nonzero polarization of gluon in the proton [Florian et. al, arXiv:1404.4293]

• STAR Collaboration [arXiv: 1405.5134] indicates preference for positive gluon helicity contribution in the region x > 0.05

Gauge invariant ΔG operator

•Total gluon helicity, $\Delta G = \int_0^1 \Delta g(x) dx$

• $\Delta g(x)$ is polarized gluon parton helicity disctribution Definition of ΔG operator from QCD factorization theorem [Manohar, PRL. (1991)]:

$$\Delta G = \int dx \frac{i}{2xP^+} \int \frac{d\xi^-}{2\pi} e^{-ixP^+\xi^-} \langle PS|F_a^{+\alpha}(\xi^-)\mathcal{L}^{ab}(\xi^-,0)\tilde{F}_{\alpha,b}^{+}(0)|PS\rangle$$

$$egin{aligned} \mathcal{L}(\xi^{-}) &= \mathcal{P} \exp[-ig \int_{0}^{\xi^{-}}]\mathcal{A}^{+}(\eta^{-}, 0_{\perp})d\eta^{-}] \ \mathcal{A}^{+} &\equiv T^{c} \mathcal{A}^{+}_{c}, \ \xi^{\pm} &= (\xi^{t} \pm \xi^{z})\sqrt{2} \ , \ ilde{\mathcal{F}}^{lphaeta} &\sim rac{1}{2} \epsilon^{lphaeta\mu
u} \mathcal{F}_{\mu
u} \end{aligned}$$

 \oplus Gauge invariant but partonic interpretation only in LCG \oplus Does not look like gluon helicity operator •Carrying out integration of longitudinal momentum reduces to gauge invariant gluon spin operator [Ji, Zhang, Zhao, PRL(2013)]:

$$\hat{S}_{g}^{\mathrm{inv}}(0) = \left[\vec{E}^{a}(0) \times \left(\vec{A}^{a}(0) - \frac{1}{\nabla^{+}}(\vec{\nabla}A^{+,b})\mathcal{L}^{ba}(\xi^{-},0)\right)\right]^{3},$$

- Similiar structure to $\vec{E} \times \vec{A}$
- How does it transform under gauge transformation?
- •Chen, L*ü*, Sun, Wang, Goldman [PRL. (2008), PRL. (2009)]: Decomposed **A** as:

$$\mathbf{A}(\mathbf{x}) = \mathbf{A}_{\mathbf{phys}}(\mathbf{x}) + \mathbf{A}_{\mathbf{pure}}(\mathbf{x})$$

and proposed complete decomposition of nucleon spin

• Motivated by EM, one would like to have \vec{A}_{\perp} transform covariantly:

$$\vec{A}_{\perp}
ightarrow U(x) \vec{A}_{\perp} U^{\dagger}(x)$$

• A^i_{\perp} satisfies a generalized Coulomb condition,

$$\partial^i A^i_\perp = ig[A^i, A^i_\perp]$$

In large momentum frame, $\vec{A_{\parallel}}$ required to produce null magnetic field:

$$\partial^i A^{j,a}_{\parallel} - \partial^j A^{i,a}_{\parallel} - g f^{abc} A^{i,b}_{\parallel} A^{j,c}_{\parallel} \ = \ 0$$

• Solving for A_{\parallel} :

$$A^{i,a}_{\parallel}(\xi^{-}) = \frac{1}{\nabla^{+}} \Big((\partial^{i} A^{+,b}) \mathcal{L}^{ba}(\xi^{\prime-},\xi^{-}) \Big)$$

• Using the fact that, $A_{\perp} = A - A_{\parallel}$ In the IMF:

$$\mathbf{A}_{\perp} \rightarrow \left(\mathbf{A}^{\mathbf{a}}(0) - \frac{1}{\nabla^{+}} (\nabla A^{+,b}) \mathcal{L}^{ba}(\xi^{-},0) \right)$$
$$(\Delta G)_{z} \rightarrow (\vec{E}^{a} \times \vec{A}_{\perp}^{a})_{z}$$

•The previous results rely on solving, order-by-order in the coupling, for the perp and parallel components of the gauge-field.

• At zeroth order of coupling:

$$\partial^{i}A_{\perp}^{i} = ig\left[A^{i}, A_{\perp}^{i}\right] \longrightarrow \partial^{i}A_{\perp}^{i} = 0$$

• Also according to X. Chen:

$$\vec{\nabla}.\vec{A}_{phys}=0$$

• Up-to 1-loop order, Coulomb gauge is a good choice

•Dynamically depends on the momentum of the external particle

Lattice Calculation of Glue Helicity in Longitudinaaly Polarized Proton

•IR physics on lattice and in continuum similar but due to lattice cut off $\sim \frac{1}{a}$, lattice UV result different from continuum UV result

•Therefore LPT required for renormalization which will presented by Michael J. Glatzmaier in his talk (Parallel 9E)

 $\bullet \Delta {\cal G} \rightarrow \vec{{\cal E}} \times \vec{{\cal A}}_{\perp}$ function of external momentum

Construction of $F_{\mu\nu}$ from $D^{o\nu}$ operator

Liu, Alexandru, Horváth [PLB(2008)]:

$$\operatorname{tr}_{s} \sigma_{\mu\nu} D_{0,0}^{ov} \big(U(a) \big) \; = \; c^{T} \, a^{2} \, F_{\mu\nu}(0) \; + \; \mathcal{O}(a^{3})$$

• $c^T = c^T(\rho) = 0.11157$ independent of $A_\mu(x)$, $\kappa = 0.19$

•Non-untralocal behavior of D^{ov} serves as efficient filter of UV fluctuations through chiral smearing

• QCD vacuum structure with topological charge density defined from D^{ov} has been observed to produce good signals with only a handful configurations

$$E_i = -F_{4i}$$

 $A_{\mu}(x)$ in Coulomb gauge calculated from gauge links:

$$A^{c}_{\mu}(x) = \left[\frac{U^{c}_{\mu}(x) - U^{c^{\dagger}}_{\mu}(x)}{2iag_{0}}\right]_{traceless}$$
(1)

$$(\vec{E} \times \vec{A})_i = tr\left(\epsilon_{ijk}E_jA_k\right)$$

Simulation Details

•Valence overlap fermion on (2 + 1) flavor RBC/UKQCDC DWF 200 gauge configurations (24 $^3\times$ 64 lattice)

•Sea quark mass $am_l = 0.005$, $am_s = 0.04$ (pion mass 331 MeV), $a^{-1} = 1.77 GeV$

•2-pt function constructed from grid-8 smeared source with Z_3 noise and with source time slices at t = 0 and t = 32

•2-pt function with low-mode substitution (Talk given by Keh-Fei Liu, Mingyang Sun)

• Sink momenta used p = 0, p = 1, p = 2

•Loop data $L_i(t_1) \equiv (\vec{E} \times \vec{A_c})_i(t_1)$, t_1 insertion time, *i*-configuration index

•2-pt function $C_i^2(t_2)$, t_2 sink time

Disconnected 3-pt function

$$C_i^3(t_2,t_1) = \left(C_i^2(t_2))(L_i(t_1)) - <(C^2(t_2)> < L(t_1)>
ight)$$

•Jackknife both C^2 and C^3 and use sum method [L. Maiani et al., Nucl. Phys. B293,420 (1987)]:

$$egin{aligned} &R_j(t_2,t_1)=rac{\langle ilde{C}_j^3(t_2,t_1)
angle}{\langle ilde{C}_j^2(t_2)
angle}\ &S_j(t_2)=\sum_{t_1}R_j(t_2,t_1) \end{aligned}$$

Numerical Results

 $m_{q} = 0.0203 \mid m_{\pi} = 380 \text{ MeV}$

m_q in Lattice Units	p = 0	p = 1	p = 2
0.0203	0.03489162 ± 0.0289	0.11445934 ± 0.0496	0.19448887 ± 0.1286
0.0576	0.056713 ± 0.0209	0.079707 ± 0.0357	0.136807 ± 0.0594

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Future Developments

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Shifting source in time construct 2-pt function to increase statistics.... expected to reduce errorbar by $\frac{1}{2}$

- Obtain correct renormalization factor
- \bullet Use $32^3 \times 64$ RBC/UKQCD Lattice
- Calculation with other gauge fixing choices
- Plan to construct A_{phys} on lattice

Thank You!

Backup

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Numerical Results

 $m_q = 0.0576 \mid m_\pi = 640 \; {
m MeV}$

◆□> ◆□> ◆三> ◆三> ● 三 のへの

Effective Mass Plots

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … のへで

$$\Delta \bar{G}(P^z,\mu) = Z_{gg}(P^z/\mu)\Delta G(\mu) + Z_{gq}(P^z/\mu)\Delta\Sigma(\mu) , \qquad (1)$$

where $\Delta\Sigma(\mu)$ is the quark spin, and μ is the renormalization scale. Z_{gg} and Z_{qg} are the matching coefficients calculable in QCD perturbation theory. The operator considered in Ref. [7] was $\vec{E} \times \vec{A}_{\perp}$, where \vec{A}_{\perp} is the transverse part of the gauge field, or $\vec{E} \times \vec{A}$ in the Coulomb gauge.

Jaffe-Manohar Decomposition

Jaffe-Manohar sum rule for proton spin [Nucl. Phys. B (1990)]

$$J^{z} = \int d^{3}\xi \psi^{\dagger} \frac{\Sigma^{3}}{2} \psi + \int d^{3}\xi \psi^{\dagger} \left(\vec{\xi} \times (-i\vec{\nabla})\right)^{3} \psi \\ + \int d^{3}\xi \left(\vec{E}_{a} \times \vec{A}^{a}\right)^{3} + \int d^{3}\xi E^{i}_{a} \left(\vec{\xi} \times \vec{\nabla}\right)^{3} A^{i,a}$$

where $E_a^i = F_a^{+i}$ Each term separately is not gauge-invariant, except for quark spin part

Light-cone coordinates used, i.e. $\xi^{\pm} = (\xi^0 \pm \xi^3)/\sqrt{2}$

Light-cone is not accessible to Lattice QCD calculation which is based on Euclidean path-integral formulation

Chen, Lü, Sun, Wang, Goldman Decomposition

Chen, L*ü*, Sun, Wang, Goldman [PRL. 100, 232002 (2008), PRL. 103, 062001 (2009)]: Decomposed **A** as:

$$\mathbf{A}(\mathbf{x}) = \mathbf{A}_{\mathbf{phys}}(\mathbf{x}) + \mathbf{A}_{\mathbf{pure}}(\mathbf{x})$$

$$J_{QCD} = S'_q + L'_q + S'_G + L'_G,$$

$$\begin{split} \boldsymbol{S}'_{q} &= \int \psi^{\dagger} \frac{1}{2} \boldsymbol{\Sigma} \psi \, d^{3}x, \\ \boldsymbol{L}'_{q} &= \int \psi^{\dagger} \boldsymbol{x} \times \left(\frac{1}{i} \nabla - g \, \boldsymbol{A}_{pure}\right) \psi \, d^{3}x, \\ \boldsymbol{S}'_{G} &= \int \boldsymbol{E}^{a} \times \boldsymbol{A}^{a}_{phys} \, d^{3}x, \\ \boldsymbol{L}'_{G} &= \int E^{aj} \left(\boldsymbol{x} \times \boldsymbol{D}_{pure}\right) A^{aj}_{phys} \, d^{3}x, \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Wakamatsu Decompositon [Phys. Rev. D 81, 114010 (2010)]

- \rightarrow Quark parts same as Ji decompostion
- $\rightarrow \! \mathsf{Q}\mathsf{uark}$ and gluon intrinsic spin parts same Chen decomposition

 \rightarrow Both Chen and Wakamtsu deomposition gauge invariant but in non-covariant forms. Not convenient for connecting with high-energy DIS observables

 \rightarrow Non-covariant treatment makes it hard to check out the Lorentz-frame dependence or independence of the nucleon spin sum rule derived on the basis of them

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Wakamatsu then proposed another generalization with condition [Mechanical decomposition]:

$$F^{\mu
u}_{pure}~\equiv~\partial^{\mu}\,A^{
u}_{pure}-\partial^{
u}\,A^{\mu}_{pure}-i\,g\left[A^{\mu}_{pure},A^{
u}_{pure}
ight]~=~0,$$

$$\begin{split} A^{\mu}_{phys}(x) &\to U(x) \, A^{\mu}_{phys}(x) \, U^{-1}(x), \\ A^{\mu}_{pure}(x) &\to U(x) \, \left(\, A^{\mu}_{pure}(x) - \frac{i}{g} \, \partial^{\mu} \, \right) \, U^{-1}(x). \end{split}$$

 \rightarrow Shown [M. Wakamatsu, Phys. Rev. D 83, 014012 (2011)] that the quark and gluon intrinsic spin parts coincide with the first moments of the polarized distribution functions appearing in the polarized DIS cross-sections.

$$\Delta q = \int \Delta q(x) \, dx, \quad \Delta g = \int \Delta g(x) \, dx.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?