Finite-volume effects and the electromagnetic contributions to kaon and pion masses

Claude Bernard
Washington University
Saint Louis, Missouri, USA

Co-authors: S. Basak, A. Bazavov, C. DeTar, E. Freeland, J. Foley, Steven Gottlieb, U.M. Heller, J. Laiho, L. Levkova, M. Oktay, J. Osborn , R.L. Sugar, A. Torok, D. Toussaint, R.S. Van de Water, R. Zhou

Lattice 2014
Columbia University, June 23-28, 2014

Motivation

\uparrow Disentangling electromagnetic and isospin-violating effects in the pions and kaons is long-standing issue.
\uparrow Crucial for determining light-quark masses.

- Fundamental parameters in Standard Model; important for phenomenology.
- Size of EM contributions is largest uncertainty in determination of $\mathrm{m}_{\mathrm{u}} / \mathrm{m}_{\mathrm{d}}$.

	$\mathrm{m}_{\mathrm{u}}[\mathrm{GeV}]$	$\mathrm{m}_{\mathrm{d}}[\mathrm{GeV}]$	$\mathrm{m}_{\mathrm{u}} / \mathrm{m}_{\mathrm{d}}$
value	1.9	4.6	0.42
statistics	0.0	0.0	0.00
lattice	0.1	0.2	0.01
perturbative	0.1	0.2	--
EM	0.1	0.1	0.04

MILC,
arXiv:0903.3598

- Reduce error by calculating EM effects on the lattice.

Background

- EM error in $\mathrm{m}_{\mathrm{U}} / \mathrm{m}_{\mathrm{d}}$ dominated by error in $\left(M_{K^{+}}^{2}-M_{K^{0}}^{2}\right)^{\gamma}$, where γ indicates the EM contribution.
- Dashen (1960) showed that at leading order EM splittings are mass independent:

$$
\left(M_{K^{+}}^{2}-M_{K^{0}}^{2}\right)^{\gamma}=\left(M_{\pi^{+}}^{2}-M_{\pi^{0}}^{2}\right)^{\gamma}
$$

- Parameterize higher order effects ("corrections to Dashen’s theorem") by

$$
\left(M_{K^{+}}^{2}-M_{K^{0}}^{2}\right)^{\gamma}=(1+\epsilon)\left(M_{\pi^{+}}^{2}-M_{\pi^{0}}^{2}\right)^{\gamma}
$$

- Note: ϵ is not exactly same as quantity defined by FLAG (Colangelo et al., arXiv: 1310.8555), which uses experimental pion splittings. But EM splitting should be \approx experimental splitting, since isospin violations for pions are small. Using the experimental splitting gives an alternative result, which enters systematic error estimate.

Ensembles

\uparrow Table of ensembles used in the analysis:

$\approx a[\mathrm{fm}]$	Volume	β	m_{l} / m_{s}	\# configs.	$L(\mathrm{fm})$	$m_{\pi} L$
0.12	$12^{3} \times 64$	6.76	$0.01 / 0.05$	1000	1.4	2.7
	$16^{3} \times 64$	6.76	$0.01 / 0.05$	1003	1.8	3.6
	$20^{3} \times 64$	6.76	$0.01 / 0.05$	2254	2.3	4.5
	$28^{3} \times 64$	6.76	$0.01 / 0.05$	274	3.2	6.3
	$20^{3} \times 64$	6.76	$0.007 / 0.05$	1261	2.3	3.8
	$24^{3} \times 64$	6.76	$0.005 / 0.05$	2099	2.7	3.8
0.09	$28^{3} \times 96$	7.09	$0.0062 / 0.031$	1930	2.3	4.1
	$40^{3} \times 96$	7.08	$0.0031 / 0.031$	1015	3.3	4.2
0.06	$48^{3} \times 144$	7.47	$0.0036 / 0.018$	670	2.8	4.5

- These are dynamical QCD ($N_{F}=3$, asqtad) ensembles, with quenched, noncompact QED.

Ensembles

\uparrow Table of ensembles used in the analysis:

$\approx a[\mathrm{fm}]$	Volume	β	m_{l} / m_{s}	\# configs.	$L(\mathrm{fm})$	$m_{\pi} L$
0.12	$12^{3} \times 64$	6.76	$0.01 / 0.05$	1000	1.4	2.7
	$16^{3} \times 64$	6.76	$0.01 / 0.05$	1003	1.8	3.6
	$20^{3} \times 64$	6.76	$0.01 / 0.05$	2254	2.3	4.5
	$28^{3} \times 64$	6.76	$0.01 / 0.05$	274	3.2	6.3
	$20^{3} \times 64$	6.76	$0.007 / 0.05$	1261	2.3	3.8
	$24^{3} \times 64$	6.76	$0.005 / 0.05$	2099	2.7	3.8
0.09	$28^{3} \times 96$	7.09	$0.0062 / 0.031$	1930	2.3	4.1
	$40^{3} \times 96$	7.08	$0.0031 / 0.031$	1015	3.3	4.2
0.06	$48^{3} \times 144$	7.47	$0.0036 / 0.018$	670	2.8	4.5

- These are dynamical QCD ($N_{F}=3$, asqtad) ensembles, with quenched, noncompact QED.
- From Bijnens and Daniellson [PRD 75, 104505 ('07)], quenched QED is sufficient for a controlled calculation of ϵ at NLO in $\mathrm{SU}(3) \mathrm{ChPT}$.

Ensembles

\uparrow Table of ensembles used in the analysis:

$\approx a[\mathrm{fm}]$	Volume	β	m_{l} / m_{s}	\# configs.	$L(\mathrm{fm})$	$m_{\pi} L$
0.12	$12^{3} \times 64$	6.76	$0.01 / 0.05$	1000	1.4	2.7
	$16^{3} \times 64$	6.76	$0.01 / 0.05$	1003	1.8	3.6
	$20^{3} \times 64$	6.76	$0.01 / 0.05$	2254	2.3	4.5
	$28^{3} \times 64$	6.76	$0.01 / 0.05$	274	3.2	6.3
	$20^{3} \times 64$	6.76	$0.007 / 0.05$	1261	2.3	3.8
	$24^{3} \times 64$	6.76	$0.005 / 0.05$	2099	2.7	3.8
0.09	$28^{3} \times 96$	7.09	$0.0062 / 0.031$	1930	2.3	4.1
	$40^{3} \times 96$	7.08	$0.0031 / 0.031$	1015	3.3	4.2
0.06	$48^{3} \times 144$	7.47	$0.0036 / 0.018$	670	2.8	4.5

- These are dynamical QCD ($N_{F}=3$, asqtad) ensembles, with quenched, noncompact QED.
- From Bijnens and Daniellson [PRD 75, 104505 ('07)], quenched QED is sufficient for a controlled calculation of ϵ at NLO in SU(3) ChPT.
- Small volumes used only to test our understanding of finite-volume effects, not for final analysis.

Finite-Volume Effects

- Difference between 20^{3} (ㅁ) and $28^{3}(\times)$ ensembles at $a \approx 0.12 \mathrm{fm}$ is small compared to what we expect from BMW [arXiv: 1201.2787], and RM123 [arXiv:1303.4896] results.
- We are not currently able to resolve the differences (consistent with zero).
- Sign of the difference actually varies fairly randomly as quark masses change.
- Our recent work has been focused on understanding the (surprisingly small) FV effects in our data.

Finite-Volume Effects in ChPT

- Hayakawa and Uno [arXiv:0804.2044] calculated the EM finite-volume effects in ChPT.
- Use noncompact realization of QED on the lattice, as we do.
- Found rather large effects.
- But noncompact QED in finite-volume is not uniquely defined:
- It is necessary to drop some zero modes, but dropping others appears to be optional.
- In Coulomb gauge, action for A_{0} is: $\frac{1}{2} \int\left(\partial_{i} A_{0}\right)^{2}$.
- For path integral to be convergent, need to drop A_{0} modes for 3 -momentum $\vec{k}=0$, any ko.
- Action for A_{i} is: $\frac{1}{2} \int\left[\left(\partial_{0} A_{i}\right)^{2}+\left(\partial_{j} A_{i}\right)^{2}\right]$.
-Here, only required to drop mode with 4-momentum $k_{\mu}=0$.
- Hayakawa \& Uno drop all A_{i} modes with $\vec{k}=0$.
- MILC keeps modes with $\vec{k}=0, k_{0} \neq 0$.

Finite-Volume Coulomb-Gauge Propagator

$$
\begin{aligned}
\left\langle A_{0}(k) A_{0}(-k)\right\rangle & = \begin{cases}\frac{1}{\vec{k}^{2}}, & \vec{k} \neq 0 ; \\
0, & \vec{k}=0 .\end{cases} \\
\left\langle A_{i}(k) A_{j}(-k)\right\rangle & =\left\{\begin{array}{ll}
\frac{1}{k^{2}}\left(\delta_{i j}-\frac{k_{i} k_{j}}{\vec{k}^{2}}\right), & \vec{k} \neq 0 ; \\
0, & \vec{k}=0 .
\end{array}\right. \text { Hayakawa-Uno }
\end{aligned}
$$

Finite-Volume Coulomb-Gauge Propagator

$$
\begin{aligned}
\left\langle A_{0}(k) A_{0}(-k)\right\rangle & = \begin{cases}\frac{1}{\vec{k}^{2}}, & \vec{k} \neq 0 ; \\
0, & \vec{k}=0 .\end{cases} \\
\left\langle A_{i}(k) A_{j}(-k)\right\rangle & = \begin{cases}\frac{1}{k^{2}}\left(\delta_{i j}-\frac{k_{i} k_{j}}{\vec{k}^{2}}\right), & \vec{k} \neq 0 ; \\
0, & \vec{k}=0 .\end{cases}
\end{aligned} \text { Hayakawa-Uno }
$$

$$
\left\langle A_{i}(k) A_{j}(-k)\right\rangle= \begin{cases}\frac{1}{k^{2}}\left(\delta_{i j}-\frac{k_{i} k_{j}}{\vec{k}^{2}}\right), & \vec{k} \neq 0 \\ \frac{1}{k^{2}} \delta_{i j}, & \vec{k}=0, k_{0} \neq 0 \\ 0, & \vec{k}=0, k_{0}=0\end{cases}
$$

Finite-Volume Coulomb-Gauge Propagator

- Hayakawa and Uno have an argument for dropping zero modes based on the problem of having a single electric charge on a torus, due to Gauss's law.
- Gauss's law comes from the equation of motion for A_{0}.
- Hayakawa \& Uno and MILC drop the same modes for A_{0} so Gauss's law solution is the same for both.
- Difference is only for $\vec{k}=0$ modes for A_{i}.

Chiral Perturbation Theory

\downarrow Staggered version of NLO SU(3) χ PT [c.B. \& Freeland, arXiv:1011.3994]:

$$
\begin{aligned}
& \Delta M_{x y, 5}^{2}= q_{x y}^{2} \delta_{E M}-\frac{1}{16 \pi^{2}} e^{2} q_{x y}^{2} M_{x y, 5}^{2}\left[3 \ln \left(M_{x y, 5}^{2} / \Lambda_{\chi}^{2}\right)-4\right] \\
& \quad-\frac{2 \delta_{E M}}{16 \pi^{2} f^{2}} \frac{1}{16} \sum_{\sigma, \xi}\left[q_{x \sigma} q_{x y} M_{x \sigma, \xi}^{2} \ln \left(M_{x \sigma, \xi}^{2}\right)-q_{y \sigma} q_{x y} M_{y \sigma, \xi}^{2} \ln \left(M_{y \sigma, \xi}^{2}\right)\right] \\
&+c_{1} q_{x y}^{2} a^{2}+c_{2} q_{x y}^{2}\left(2 m_{\ell}+m_{s}\right)+c_{3}\left(q_{x}^{2}+q_{y}^{2}\right)\left(m_{x}+m_{y}\right)+c_{4} q_{x y}^{2}\left(m_{x}+m_{y}\right)+c_{5}\left(q_{x}^{2} m_{x}+q_{y}^{2} m_{y}\right)
\end{aligned}
$$

- x, y are the valence quarks.
- q_{x}, q_{y} are quark charges; $q_{x y} \equiv q_{x}-q_{y}$ is meson charge.
- $\delta_{E M}$ is the LO LEC; ξ is the staggered taste
- σ runs over sea quarks (m_{u}, m_{d}, m_{s}, with $m_{u}=m_{d} \equiv m_{\ell}$)
- Finite-volume corrections coming from the sunset and photon tadpole graphs are non-trivial.
- (FV corrections to meson tadpole are known from standard ChPT and are quite small).

Chiral Perturbation Theory

\downarrow Staggered version of NLO SU(3) χ PT [c.B. \& Freeland, arXiv:1011.3994]:

$$
\left.\begin{array}{rl}
\Delta M_{x y, 5}^{2}= & q_{x y}^{2} \delta_{E M}-\frac{1}{16 \pi^{2}} e^{2} q_{x y}^{2} M_{x y, 5}^{2}\left[3 \ln \left(M_{x y, 5}^{2} / \Lambda_{\chi}^{2}\right)-4\right]
\end{array} \begin{array}{l}
\text { meson EM tadpole } \\
\text { (from short-distance } \\
\text { photons) }
\end{array}\right] \text { } \begin{aligned}
&-\frac{2 \delta_{E M}}{16 \pi^{2} f^{2}} \frac{1}{16} \sum_{\sigma, \xi} \underbrace{\left.\left[q_{x \sigma} q_{x y} M_{x \sigma, \xi}^{2} \ln \left(M_{x \sigma, \xi}^{2}\right)-q_{y \sigma} q_{x y} M_{y \sigma, \xi}^{2} \ln \left(M_{y \sigma, \xi}^{2}\right)\right]\right)} \\
&+c_{1} q_{x y}^{2} a^{2}+c_{2} q_{x y}^{2}\left(2 m_{\ell}+m_{s}\right)+c_{3}\left(q_{x}^{2}+q_{y}^{2}\right)\left(m_{x}+m_{y}\right)+c_{4} q_{x y}^{2}\left(m_{x}+m_{y}\right)+c_{5}\left(q_{x}^{2} m_{x}+q_{y}^{2} m_{y}\right)
\end{aligned}
$$

- x, y are the valence quarks.
- q_{x}, q_{y} are quark charges; $q_{x y} \equiv q_{x}-q_{y}$ is meson charge.
- $\delta_{E M}$ is the LO LEC; ξ is the staggered taste
- σ runs over sea quarks (m_{u}, m_{d}, m_{s}, with $m_{u}=m_{d} \equiv m_{e}$)
- Finite-volume corrections coming from the sunset and photon tadpole graphs are non-trivial.
- (FV corrections to meson tadpole are known from standard ChPT and are quite small).

Chiral Perturbation Theory

\uparrow Staggered version of NLO SU(3) χ PT [c.B. \& Freeland, arXiv:1011.3994]:

- x, y are the valence quarks.
- q_{x}, q_{y} are quark charges; $q_{x y} \equiv q_{x}-q_{y}$ is meson charge.
- $\delta_{E M}$ is the LO LEC; ξ is the staggered taste
- σ runs over sea quarks (m_{u}, m_{d}, m_{s}, with $m_{u}=m_{d} \equiv m_{\ell}$)
- Finite-volume corrections coming from the sunset and photon tadpole graphs are non-trivial.
-(FV corrections to meson tadpole are known from standard ChPT and are quite small).

Finite-Volume ChPT

- Need to add photon diagrams together in order for Coulombgauge finite-volume difference (FV $-\infty$ V) to be well-defined.

\uparrow Can then perform brute force difference of FV sum (over $2 \pi n_{i} / L$ and $2 \pi n_{0} / T$) from $\omega \mathrm{V}$ integral.

Evaluation of FV difference

\uparrow Evaluate difference of sum and integral by VEGAS.
\uparrow Take VEGAS integrand as difference between ∞ V integrand, and its evaluation at weighted average of the 16 corners of the FV hypercube containing the point.
\uparrow Checked against Hayakawa-Uno result (written in terms of 1-d integral over special functions).

Photon Tadpole Graph

- There is a difference in FV part of photon tadpole between Hayakawa-Uno (HU) and MILC when $\vec{k}=0$:
- $\mathrm{H} \cup$ omits the $\vec{k}=0$ piece entirely.
- For MILC, FV integrand is $\frac{3}{k^{2}}=\frac{3}{k_{0}^{2}}$, as long as $k_{0} \neq 0$.
- Difference (MILC-HU) $=\frac{q^{2}}{L^{3} T} \sum_{n_{0} \neq 0} \frac{3}{\left(2 \pi n_{0} / T\right)^{2}}=\frac{q^{2} T}{4 L^{3}}$.
- Our formulation has subtle T, L dependence.
- Fine if $L \rightarrow \infty$ first, or if both $T, L \rightarrow \infty$ with fixed ratio, but not if $T \rightarrow \infty$ first.

Finite-Volume Corrections

- Comparison of MILC and H-U FV corrections.
- An overall factor of $e^{2} m^{2}$, (where e and m are charge \& mass of the meson) has been taken out.
- T / L values are the ones of our lattices.
- $T / L=4.0,5.33$ are the small lattices ($\sim 1.4 \mathrm{fm}, \sim 1.8 \mathrm{fm}$) used only for investigating FV effects.
- H-U results are insensitive to T in this range. (In their paper, they calculate in the $T=\infty$ limit only.)
- Our FV corrections are a factor of 2-3 less in most of the relevant range!

FV Corrections: Comparison with Data

- 'kaon' and 'pion' points are the ones compared with BMW and RM123 results earlier.
- Each fit has 1 free parameter (overall height); shape is completely determined by ChPT at NLO.
- ChPT gives reasonable description of FV effects.
- Note that FV effect actually changes sign in 'pion' case.
- Can see why it is difficult to observe difference between results on $L=20$ and $L=28$ ensembles.

$a \simeq 0.12 \mathrm{fm}, m_{l} / m_{s}=0.01 / .05$

Chiral Fit and Extrapolation

- Mass-square difference between charge +1 mesons $\left(\pi^{+} \& K^{+}\right)$and ones made from uncharged valence quarks
- Shows unitary points only.
- We have many partially quenched points, for charged and neutral mesons, as well as points with $2 \times$ physical charges.
- ~150 points in typical fit.
- A big part the difference between results from different lattice spacings is from mistuned m_{s}, not discretization effects.

Chiral Fit and Extrapolation

- Points after correction for finite-volume effects.
- Correction is $\sim 7--10 \%$ (pions) and ~10--18\% (kaons).
- Bigger correction at higher mass because of overall factor of m^{2} in 1-loop diagrams, but not at LO (Dashen's theorem).
- Note that $a \simeq 0.12 \mathrm{fm}, m_{l} \simeq 0.2 m_{s}$ points for $L=20(\square)$ and $L=28(\times)$ are consistent.

Chiral Fit and Extrapolation

- Chiral fit to infinite-volume (corrected) points.
- Data has very high correlations for different valence masses or charges on the same ensembles: covariance matrix nearly singular.
- For that reason, and because errors are tiny ($0.4--0.8 \%$), it is difficult to get decent correlated fits.
- This is a uncorrelated fit; has 149 data points, 29 parameters, $\chi^{2} / \mathrm{dof}=127 / 120, \mathrm{p}=0.34$.
- Fits are generally significantly better than earlier ones without FV corrections.

Chiral Fit and Extrapolation

Chiral Fit and Extrapolation

- Set sea quark charges to their physical values, using NLO chiral logs.
- Difference with previous case is very small for kaon; vanishes identically for pion.

Chiral Fit and Extrapolation

- Neutral dत̄-like mesons ($q_{x}=q_{y}=1 / 3$) for same fit.
- Note difference in scale from charged meson plot.
- ~Function of $\left(m_{x}+m_{y}\right)$ only (π and K line up).
- Nearly linear: chiral logs vanish for neutrals.

Chiral Fit and Extrapolation

- Now subtract neutral masses from charged masses to give purple lines.
- We are not including disconnected EM graphs for π^{0}, which is why we call it ${ }^{\prime} \pi^{0}$ '.
- Horizontal dotted line shows experimental value of π splitting; difference between it and intercept of purple line with vertical, dashed-dotted physical π line is a measure of systematic errors.
- Can now read off ratio of K and π splittings:

$$
\epsilon=0.84(5)
$$

Chiral Fit and Extrapolation

- Alternative correlated fit, with data that has been thinned more.
- SVD-like cut is needed; we cut eigenvalues of correlation matrix that are <1.
- 55 data points, 23 params, $\chi^{2} /$ dof $=53 / 32, \mathrm{p}=0.01$.
- Result is consistent with previous fit:

$$
\epsilon=0.79(8)
$$

Systematic Errors

- Difference between the finite-volume corrected result for ϵ and the uncorrected one is 0.19 . We currently take half this amount as the estimate of possible residual FV errors from higher orders in ChPT.
- Standard deviation on ϵ over all current continuum/chiral fits is 0.13 .
- Here we include all uncorrelated fits with $p>10^{-3}$ or correlated fits with $p>10^{-8}$.
\uparrow Instead of calculating ϵ by ratio of results for K and π splittings, we may use the experimental π splitting. This gives $\epsilon=1.02(4)$, or a difference from our central value of 0.18 .
- To be conservative, we take the larger number, 0.18 , as an estimate of the lattice errors from the continuum/chiral extrapolation, although some of the difference may be due to residual finite-volume errors (included separately) or the effect of dropping disconnected diagrams for the π^{0}.

Current Result

\uparrow Get (preliminary!):

$$
\epsilon=0.84(5)_{\mathrm{stat}}(18)_{a^{2}}(10)_{\mathrm{FV}}
$$

or:

$$
\epsilon=0.84(21)
$$

\checkmark Using this number with the current HISQ light meson analysis gives (preliminary!):

$$
m_{u} / m_{d}=0.4482(48)_{\mathrm{stat}}\left({ }_{-115}^{+21}\right)_{a^{2}}(1)_{\mathrm{FV}}^{\mathrm{QCD}} \text { }(177)_{\mathrm{EM}}
$$

- where here "EM" denotes all errors from ϵ, while " $\mathrm{FV}_{\mathrm{QCD}}$ " refers to finite-volume effects in the pure QCD calculation on the HISQ ensembles.

Future Plans

\rightarrow We have data from additional ensembles at $a \simeq 0.06 \mathrm{fm}$ and $a \simeq 0.045 \mathrm{fm}$.

- need to complete analysis and add in to chiral/continuum extrapolation.
\uparrow EM effects in baryons also being studied.
- Extension to MILC HISQ ensembles is straightforward, and should reduce errors significantly:
- Smaller discretization effects.
- Nearly absent chiral extrapolation errors, since ensembles with physical masses are included.
- Smaller FV effects, since our HISQ lattices are generally larger than the older asqtad ones. Max size $\sim 5.5 \mathrm{fm}$.
\uparrow Extension to unquenched case will make possible controlled calculations of many additional quantities.
- Dynamic (unquenched) QED code has been written, and has passed some basic tests.

Back-up Slides

Effective Mass Plots

Kaon, $12^{3} \times 64,0.01 / .04, q=0$

- No evidence of any systematic problem in extracting masses in charged case (right) compared to uncharged case (left).
- BMW [arXiv:1406.4088] recently reported problems (close excited states) in extracting masses for the FV version of EM that we use, but in pure (quenched) QED.
- We see no such problems in our quenched QED + full QCD simulations. But agree that masses are T-dependent, as seen in the FV formulas.

Finite-Volume ChPT: Sunset Graph

\uparrow In rest frame, $p=\left(p_{0}, 0,0,0\right)$, only the 00 component of the photon propagator contributes.

- In infinite-volume, get:

$$
\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{1}{\vec{k}^{2}} \frac{\left(2 p_{0}+k_{0}\right)^{2}}{k^{2}+m^{2}}
$$

- where m is the meson mass, and numerator comes from momentum factors in the coupling of a (pseudo)scalar particle to a photon.

Finite-Volume ChPT: Sunset Graph

$\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{1}{\overrightarrow{k^{2}}} \frac{\left(2 p_{0}+k_{0}\right)^{2}}{k^{2}+m^{2}}$
$\uparrow k_{0}$ integral, by itself, is linearly divergent.
\downarrow Even when we take difference between finite (spatial) volume version ["FV"] and infinite (spatial) volume version [" ∞ V"], the k_{0} integral makes the difference linearly divergent.
\uparrow (Usually, all divergences are the same in FV and $\infty \mathrm{V}$, so difference diagram by diagram is finite.)

- Problem here is coming from lack of Lorentz covariance of the gauge.
\uparrow But photon tadpole has a piece that cancels the spurious ko divergence.

Finite-Volume ChPT: Photon Tadpole

$\uparrow 00$ piece of photon propagator gives: $-\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{1}{\vec{k}^{2}}$ \uparrow Combines with sunset to give:

$$
\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{1}{\vec{k}^{2}}\left(\frac{\left(2 p_{0}+k_{0}\right)^{2}}{k^{2}+m^{2}}-1\right)
$$

\uparrow finite-volume effects of this integral ($\mathrm{FV}-\infty \mathrm{V}$) are now finite \& calculable.
\uparrow Do by brute force difference of FV sum from $\infty \mathrm{V}$ integral.

- FV sum over $2 \pi n_{i} / L$ for spatial directions; $2 \pi n_{0} / T$ for time direction.

FV Corrections: Comparison

- Accidental very small FV difference between $20^{3} \times 64$ (magenta) and $28^{3} \times 64$ (black) lattices at RM123 comparison point.

