Finite-volume effects and the electromagnetic contributions to kaon and pion masses

Claude Bernard
Washington University
Saint Louis, Missouri, USA

Lattice 2014
Columbia University, June 23-28, 2014
Disentangling electromagnetic and isospin-violating effects in the pions and kaons is a long-standing issue.

Crucial for determining light-quark masses.

- Fundamental parameters in Standard Model; important for phenomenology.
- Size of EM contributions is the largest uncertainty in the determination of m_u/m_d.

<table>
<thead>
<tr>
<th></th>
<th>m_u [GeV]</th>
<th>m_d [GeV]</th>
<th>m_u/m_d</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>1.9</td>
<td>4.6</td>
<td>0.42</td>
</tr>
<tr>
<td>statistics</td>
<td>0.0</td>
<td>0.0</td>
<td>0.00</td>
</tr>
<tr>
<td>lattice</td>
<td>0.1</td>
<td>0.2</td>
<td>0.01</td>
</tr>
<tr>
<td>perturbative</td>
<td>0.1</td>
<td>0.2</td>
<td>--</td>
</tr>
<tr>
<td>EM</td>
<td>0.1</td>
<td>0.1</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Reduce error by calculating EM effects on the lattice.
EM error in m_u/m_d dominated by error in $(M_{K+}^2 - M_{K^0}^2)\gamma$, where γ indicates the EM contribution.

Dashen (1960) showed that at leading order EM splittings are mass independent:

$$(M_{K+}^2 - M_{K^0}^2)\gamma = (M_{\pi^+}^2 - M_{\pi^0}^2)\gamma$$

Parameterize higher order effects ("corrections to Dashen’s theorem") by

$$(M_{K+}^2 - M_{K^0}^2)\gamma = (1 + \epsilon)(M_{\pi^+}^2 - M_{\pi^0}^2)\gamma$$

Note: ϵ is not exactly same as quantity defined by FLAG (Colangelo et al., arXiv: 1310.8555), which uses experimental pion splittings. But EM splitting should be \approx experimental splitting, since isospin violations for pions are small. Using the experimental splitting gives an alternative result, which enters systematic error estimate.
Table of ensembles used in the analysis:

<table>
<thead>
<tr>
<th>$\approx a [\text{fm}]$</th>
<th>Volume</th>
<th>β</th>
<th>m_l/m_s</th>
<th># configs</th>
<th>$L (\text{fm})$</th>
<th>$m_\pi L$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.12</td>
<td>$12^3 \times 64$</td>
<td>6.76</td>
<td>0.01/0.05</td>
<td>1000</td>
<td>1.4</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>$16^3 \times 64$</td>
<td>6.76</td>
<td>0.01/0.05</td>
<td>1003</td>
<td>1.8</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>$20^3 \times 64$</td>
<td>6.76</td>
<td>0.01/0.05</td>
<td>2254</td>
<td>2.3</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>$28^3 \times 64$</td>
<td>6.76</td>
<td>0.01/0.05</td>
<td>274</td>
<td>3.2</td>
<td>6.3</td>
</tr>
<tr>
<td></td>
<td>$20^3 \times 64$</td>
<td>6.76</td>
<td>0.007/0.05</td>
<td>1261</td>
<td>2.3</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>$24^3 \times 64$</td>
<td>6.76</td>
<td>0.005/0.05</td>
<td>2099</td>
<td>2.7</td>
<td>3.8</td>
</tr>
<tr>
<td>0.09</td>
<td>$28^3 \times 96$</td>
<td>7.09</td>
<td>0.0062/0.031</td>
<td>1930</td>
<td>2.3</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td>$40^3 \times 96$</td>
<td>7.08</td>
<td>0.0031/0.031</td>
<td>1015</td>
<td>3.3</td>
<td>4.2</td>
</tr>
<tr>
<td>0.06</td>
<td>$48^3 \times 144$</td>
<td>7.47</td>
<td>0.0036/0.018</td>
<td>670</td>
<td>2.8</td>
<td>4.5</td>
</tr>
</tbody>
</table>

These are dynamical QCD ($N_F=3$, asqtad) ensembles, with quenched, noncompact QED.
Table of ensembles used in the analysis:

<table>
<thead>
<tr>
<th>$\approx a$ [fm]</th>
<th>Volume</th>
<th>β</th>
<th>m_l/m_s</th>
<th># configs.</th>
<th>L (fm)</th>
<th>$m_\pi L$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.12</td>
<td>$12^3 \times 64$</td>
<td>6.76</td>
<td>0.01/0.05</td>
<td>1000</td>
<td>1.4</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>$16^3 \times 64$</td>
<td>6.76</td>
<td>0.01/0.05</td>
<td>1003</td>
<td>1.8</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>$20^3 \times 64$</td>
<td>6.76</td>
<td>0.01/0.05</td>
<td>2254</td>
<td>2.3</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>$28^3 \times 64$</td>
<td>6.76</td>
<td>0.01/0.05</td>
<td>274</td>
<td>3.2</td>
<td>6.3</td>
</tr>
<tr>
<td></td>
<td>$20^3 \times 64$</td>
<td>6.76</td>
<td>0.007/0.05</td>
<td>1261</td>
<td>2.3</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>$24^3 \times 64$</td>
<td>6.76</td>
<td>0.005/0.05</td>
<td>2099</td>
<td>2.7</td>
<td>3.8</td>
</tr>
<tr>
<td>0.09</td>
<td>$28^3 \times 96$</td>
<td>7.09</td>
<td>0.0062/0.031</td>
<td>1930</td>
<td>2.3</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td>$40^3 \times 96$</td>
<td>7.08</td>
<td>0.0031/0.031</td>
<td>1015</td>
<td>3.3</td>
<td>4.2</td>
</tr>
<tr>
<td>0.06</td>
<td>$48^3 \times 144$</td>
<td>7.47</td>
<td>0.0036/0.018</td>
<td>670</td>
<td>2.8</td>
<td>4.5</td>
</tr>
</tbody>
</table>

These are dynamical QCD ($N_F=3$, asqtad) ensembles, with quenched, noncompact QED.

- From Bijnens and Daniellson [PRD 75, 104505 ('07)], quenched QED is sufficient for a controlled calculation of ϵ at NLO in SU(3) ChPT.
• From Bijnens and Daniellson [PRD 75, 104505 ('07)], quenched QED is sufficient for a controlled calculation of ϵ at NLO in SU(3) ChPT.

• Small volumes used only to test our understanding of finite-volume effects, not for final analysis.

Table of ensembles used in the analysis:

<table>
<thead>
<tr>
<th>$\approx a [\text{fm}]$</th>
<th>Volume</th>
<th>β</th>
<th>m_l/m_s</th>
<th># configs.</th>
<th>L (fm)</th>
<th>$m_\pi L$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.12</td>
<td>$12^3 \times 64$</td>
<td>6.76</td>
<td>0.01/0.05</td>
<td>1000</td>
<td>1.4</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>$16^3 \times 64$</td>
<td>6.76</td>
<td>0.01/0.05</td>
<td>1003</td>
<td>1.8</td>
<td>3.6</td>
</tr>
<tr>
<td>0.09</td>
<td>$28^3 \times 96$</td>
<td>7.09</td>
<td>0.0062/0.031</td>
<td>1930</td>
<td>2.3</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td>$40^3 \times 96$</td>
<td>7.08</td>
<td>0.0031/0.031</td>
<td>1015</td>
<td>3.3</td>
<td>4.2</td>
</tr>
<tr>
<td>0.06</td>
<td>$48^3 \times 144$</td>
<td>7.47</td>
<td>0.0036/0.018</td>
<td>670</td>
<td>2.8</td>
<td>4.5</td>
</tr>
</tbody>
</table>

These are dynamical QCD ($N_F=3$, asqtad) ensembles, with quenched, noncompact QED.
Finite-Volume Effects

- Difference between 20^3 (□) and 28^3 (×) ensembles at $a=0.12$ fm is small compared to what we expect from BMW [arXiv: 1201.2787], and RM123 [arXiv:1303.4896] results.

- We are not currently able to resolve the differences (consistent with zero).
 - Sign of the difference actually varies fairly randomly as quark masses change.

- Our recent work has been focused on understanding the (surprisingly small) FV effects in our data.
Hayakawa and Uno [arXiv:0804.2044] calculated the EM finite-volume effects in ChPT.

- Use noncompact realization of QED on the lattice, as we do.
- Found rather large effects.
- But noncompact QED in finite-volume is not uniquely defined:
 - It is necessary to drop some zero modes, but dropping others appears to be optional.
 - In Coulomb gauge, action for A_0 is: $\frac{1}{2} \int (\partial_i A_0)^2$.
 - For path integral to be convergent, need to drop A_0 modes for 3-momentum $\vec{k}=0$, any k_0.
 - Action for A_i is: $\frac{1}{2} \int \left[(\partial_0 A_i)^2 + (\partial_j A_i)^2 \right]$.
 - Here, only required to drop mode with 4-momentum $k_\mu=0$.
 - Hayakawa & Uno drop all A_i modes with $\vec{k}=0$.
 - MILC keeps modes with $\vec{k}=0$, $k_0\neq0$.

C. Bernard, Lattice 2014
\[\left\langle A_0(k) A_0(-k) \right\rangle = \begin{cases} \frac{1}{k^2}, & \vec{k} \neq 0; \\ 0, & \vec{k} = 0. \end{cases} \]

\[\left\langle A_i(k) A_j(-k) \right\rangle = \begin{cases} \frac{1}{k^2} \left(\delta_{ij} - \frac{k_i k_j}{k^2} \right), & \vec{k} \neq 0; \\ 0, & \vec{k} = 0. \end{cases} \]
\[
\langle A_0(k) A_0(-k) \rangle = \begin{cases}
\frac{1}{k^2}, & \vec{k} \neq 0; \\
0, & \vec{k} = 0.
\end{cases}
\]

\[
\langle A_i(k) A_j(-k) \rangle = \begin{cases}
\frac{1}{k^2} \left(\delta_{ij} - \frac{k_i k_j}{k^2} \right), & \vec{k} \neq 0; \\
0, & \vec{k} = 0.
\end{cases}
\]
Hayakawa and Uno have an argument for dropping zero modes based on the problem of having a single electric charge on a torus, due to Gauss’s law.

- Gauss’s law comes from the equation of motion for A_0.
- Hayakawa & Uno and MILC drop the same modes for A_0 so Gauss’s law solution is the same for both.
- Difference is only for $\vec{k}=0$ modes for A_i.
Staggered version of NLO SU(3) χPT [C.B. & Freeland, arXiv:1011.3994]:

\[
\Delta M_{xy,5}^2 = q_{xy}^2 \delta_{EM} - \frac{1}{16\pi^2} e^2 q_{xy}^2 M_{xy,5}^2 \left[3 \ln \left(\frac{M_{xy,5}^2}{\Lambda_{\chi}^2} \right) - 4 \right]
- \frac{2\delta_{EM}}{16\pi^2 f^2} \frac{1}{16} \sum_{\sigma, \xi} \left[q_{x\sigma} q_{xy} M_{x\sigma,\xi}^2 \ln (M_{x\sigma,\xi}^2) - q_{y\sigma} q_{xy} M_{y\sigma,\xi}^2 \ln (M_{y\sigma,\xi}^2) \right]
+ c_1 q_{xy}^2 a^2 + c_2 q_{xy}^2 (2m_\ell + m_s) + c_3 (q_x^2 + q_y^2) (m_x + m_y) + c_4 q_{xy}^2 (m_x + m_y) + c_5 (q_x^2 m_x + q_y^2 m_y)
\]

- x, y are the valence quarks.
- q_x, q_y are quark charges; $q_{xy} = q_x - q_y$ is meson charge.
- δ_{EM} is the LO LEC; ξ is the staggered taste.
- σ runs over sea quarks (m_u, m_d, m_s, with $m_u = m_d = m_\ell$).
- Finite-volume corrections coming from the sunset and photon tadpole graphs are non-trivial.
 - (FV corrections to meson tadpole are known from standard ChPT and are quite small).
Staggered version of NLO SU(3) \(\chi \)PT [C.B. & Freeland, arXiv:1011.3994]:

\[
\Delta M_{xy,5}^2 = q_{xy}^2 \delta_{EM} - \frac{1}{16\pi^2} e^2 q_{xy}^2 M_{xy,5}^2 \left[3 \ln \left(\frac{M_{xy,5}^2}{\Lambda^2} \right) - 4 \right] - \frac{2\delta_{EM}}{16\pi^2 f^2} \frac{1}{16} \sum_{\sigma,\xi} \left[q_{xy} q_{xy} M_{x\sigma,\xi}^2 \ln \left(M_{x\sigma,\xi}^2 \right) - q_{xy} q_{xy} M_{y\sigma,\xi}^2 \ln \left(M_{y\sigma,\xi}^2 \right) \right] \\
+c_1 q_{xy} a^2 + c_2 q_{xy}^2 (2m_\ell + m_s) + c_3 (q_x^2 + q_y^2)(m_x + m_y) + c_4 q_{xy}^2 (m_x + m_y) + c_5 (q_x^2 m_x + q_y^2 m_y)
\]

- \(x, y \) are the valence quarks.
- \(q_x, q_y \) are quark charges; \(q_{xy} = q_x - q_y \) is meson charge.
- \(\delta_{EM} \) is the LO LEC; \(\xi \) is the staggered taste
- \(\sigma \) runs over sea quarks (\(m_u, m_d, m_s \), with \(m_u = m_d = m_\ell \))

- Finite-volume corrections coming from the sunset and photon tadpole graphs are non-trivial.
 - (FV corrections to meson tadpole are known from standard ChPT and are quite small).
Staggered version of NLO SU(3) χPT [C.B. & Freeland, arXiv:1011.3994]:

- x,y are the valence quarks.
- q_x, q_y are quark charges; $q_{xy} = q_x - q_y$ is meson charge.
- δ_{EM} is the LO LEC; ξ is the staggered taste.
- σ runs over sea quarks (m_u, m_d, m_s, with $m_u = m_d = m_\ell$).
- Finite-volume corrections coming from the sunset and photon tadpole graphs are non-trivial.
 - (FV corrections to meson tadpole are known from standard ChPT and are quite small).

$$\Delta M_{xy,5}^2 = q_{xy}^2 \delta_{EM} - \frac{1}{16\pi^2} e^2 q_{xy}^2 M_{xy,5}^2 \left[3 \ln\left(\frac{M_{xy,5}^2}{\Lambda^2_{\chi}} \right) - 4 \right]$$

$$- \frac{2\delta_{EM}}{16\pi^2 f^2} \frac{1}{16} \sum_{\sigma, \xi} \left[q_{x\sigma} q_{xy} M_{x\sigma,\xi}^2 \ln(M_{x\sigma,\xi}^2) - q_{y\sigma} q_{xy} M_{y\sigma,\xi}^2 \ln(M_{y\sigma,\xi}^2) \right]$$

$$+ c_1 q_{xy}^2 a^2 + c_2 q_{xy}^2 (2m_\ell + m_s) + c_3 (q_x^2 + q_y^2) (m_x + m_y) + c_4 q_{xy}^2 (m_x + m_y) + c_5 (q_x^2 m_x + q_y^2 m_y)$$
Need to add photon diagrams together in order for Coulomb-gauge finite-volume difference (FV -∞V) to be well-defined.

Can then perform brute force difference of FV sum (over $2\pi n_i/L$ and $2\pi n_0/T$) from ∞V integral.
Evaluation of FV difference

- Evaluate difference of sum and integral by VEGAS.
- Take VEGAS integrand as difference between ∞V integrand, and its evaluation at weighted average of the 16 corners of the FV hypercube containing the point.
- Checked against Hayakawa-Uno result (written in terms of 1-d integral over special functions).
There is a difference in FV part of photon tadpole between Hayakawa-Unno (HU) and MILC when $\vec{k} = 0$:

- HU omits the $\vec{k} = 0$ piece entirely.
- For MILC, FV integrand is $\frac{3}{k^2} = \frac{3}{k_0^2}$, as long as $k_0 \neq 0$.
- Difference (MILC-HU) = $\frac{q^2}{L^3T} \sum_{n_0 \neq 0} \frac{3}{(2\pi n_0/T)^2} = \frac{q^2T}{4L^3}$.
- Our formulation has subtle T, L dependence.
 - Fine if $L \to \infty$ first, or if both $T, L \to \infty$ with fixed ratio, but not if $T \to \infty$ first.
• Comparison of MILC and H-U FV corrections.
 ✦ An overall factor of $e^2 m^2$, (where e and m are charge & mass of the meson) has been taken out.

• T/L values are the ones of our lattices.
 ✦ $T/L = 4.0, 5.33$ are the small lattices (~1.4 fm, ~1.8 fm) used only for investigating FV effects.

• H-U results are insensitive to T in this range. (In their paper, they calculate in the $T=\infty$ limit only.)

• Our FV corrections are a factor of 2-3 less in most of the relevant range!
• ‘kaon’ and ‘pion’ points are the ones compared with BMW and RM123 results earlier.

• Each fit has 1 free parameter (overall height); shape is completely determined by ChPT at NLO.

• ChPT gives reasonable description of FV effects.

• Note that FV effect actually changes sign in ‘pion’ case.

• Can see why it is difficult to observe difference between results on $L=20$ and $L=28$ ensembles.
Mass-square difference between charge +1 mesons (π^+ & K^+) and ones made from uncharged valence quarks.

Shows unitary points only.

We have many partially quenched points, for charged and neutral mesons, as well as points with $2 \times$ physical charges.

~150 points in typical fit.

A big part the difference between results from different lattice spacings is from mis-tuned m_s, not discretization effects.
Points after correction for finite-volume effects.

Correction is ~7--10% (pions) and ~10--18% (kaons).

Bigger correction at higher mass because of overall factor of m^2 in 1-loop diagrams, but not at LO (Dashen’s theorem).

Note that $a \approx 0.12 \text{ fm}$, $m_l \approx 0.2m_s$ points for $L=20$ (□) and $L=28$ (×) are consistent.
Chiral fit to infinite-volume (corrected) points.

Data has very high correlations for different valence masses or charges on the same ensembles: covariance matrix nearly singular.

For that reason, and because errors are tiny (0.4--0.8%), it is difficult to get decent correlated fits.

This is a uncorrelated fit; has 149 data points, 29 parameters, $\chi^2/\text{dof}=127/120$, $p=0.34$ [uncorrel].

Fits are generally significantly better than earlier ones without FV corrections.
Chiral Fit and Extrapolation

\[M_{xy}^2(q_x=2/3, q_y=-1/3) - M_{xy}^2(q=0) \]

- Extrapolate to continuum, and set valence, sea masses equal.
- Adjust \(m_s \) to physical value.
- Keep sea charges = 0.
- Small change between \(a=0.06 \) fm and continuum is conspiracy between discretization and \(m_s \) effects.

\[\chi^2/\text{dof} = 127/120 \]
\[p = 0.34 \ [\text{uncorrel}] \]

- Extrapolate to continuum, and set valence, sea masses equal.
- Adjust \(m_s \) to physical value.
- Keep sea charges = 0.
- Small change between \(a=0.06 \) fm and continuum is conspiracy between discretization and \(m_s \) effects.

C. Bernard, Lattice 2014
Chiral Fit and Extrapolation

- Set sea quark charges to their physical values, using NLO chiral logs.

- Difference with previous case is very small for kaon; vanishes identically for pion.
• Neutral $\bar{d}d$-like mesons ($q_x = q_y = 1/3$) for same fit.

• Note difference in scale from charged meson plot.

• ~Function of $(m_x + m_y)$ only (π and K line up).

• Nearly linear: chiral logs vanish for neutrals.
Now subtract neutral masses from charged masses to give purple lines.

We are not including disconnected EM graphs for π^0, which is why we call it ‘π^0’.

Horizontal dotted line shows experimental value of π splitting; difference between it and intercept of purple line with vertical, dashed-dotted physical π line is a measure of systematic errors.

Can now read off ratio of K and π splittings:

$$\epsilon = 0.84(5)$$
Chiral Fit and Extrapolation

$M^2_{xy}(q_x=2/3, q_y=-1/3) - M^2_{xy}(q=0)$

- Alternative correlated fit, with data that has been thinned more.
- SVD-like cut is needed; we cut eigenvalues of correlation matrix that are < 1.
- 55 data points, 23 params, χ^2/dof=53/32, p=0.01.
- Result is consistent with previous fit:

$$\epsilon = 0.79(8)$$
Systematic Errors

- Difference between the finite-volume corrected result for ϵ and the uncorrected one is 0.19. We currently take half this amount as the estimate of possible residual FV errors from higher orders in ChPT.

- Standard deviation on ϵ over all current continuum/chiral fits is 0.13.
 - Here we include all uncorrelated fits with $p > 10^{-3}$ or correlated fits with $p > 10^{-8}$.

- Instead of calculating ϵ by ratio of results for K and π splittings, we may use the experimental π splitting. This gives $\epsilon = 1.02(4)$, or a difference from our central value of 0.18.
 - To be conservative, we take the larger number, 0.18, as an estimate of the lattice errors from the continuum/chiral extrapolation, although some of the difference may be due to residual finite-volume errors (included separately) or the effect of dropping disconnected diagrams for the π^0.

C. Bernard, Lattice 2014
Get (preliminary!):

\[\epsilon = 0.84(5)_{\text{stat}}(18)_{a^2}(10)_{\text{FV}} \]

or:

\[\epsilon = 0.84(21) \]

Using this number with the current HISQ light meson analysis gives (preliminary!):

\[m_u/m_d = 0.4482(48)_{\text{stat}}(^{+21}_{-15})_{a^2}(1)_{\text{FV}_{\text{QCD}}}(177)_{\text{EM}} \]

- where here “EM” denotes all errors from \(\epsilon \), while “FV_{\text{QCD}}” refers to finite-volume effects in the pure QCD calculation on the HISQ ensembles.
Future Plans

✧ We have data from additional ensembles at $a \approx 0.06$ fm and $a \approx 0.045$ fm.
 • need to complete analysis and add in to chiral/continuum extrapolation.

✧ EM effects in baryons also being studied.

✧ Extension to MILC HISQ ensembles is straightforward, and should reduce errors significantly:
 • Smaller discretization effects.
 • Nearly absent chiral extrapolation errors, since ensembles with physical masses are included.
 • Smaller FV effects, since our HISQ lattices are generally larger than the older asqtad ones. Max size ~ 5.5 fm.

✧ Extension to unquenched case will make possible controlled calculations of many additional quantities.
 • Dynamic (unquenched) QED code has been written, and has passed some basic tests.
• No evidence of any systematic problem in extracting masses in charged case (right) compared to uncharged case (left).

• BMW [arXiv:1406.4088] recently reported problems (close excited states) in extracting masses for the FV version of EM that we use, but in pure (quenched) QED.

• We see no such problems in our quenched QED + full QCD simulations. But agree that masses are T-dependent, as seen in the FV formulas.
In rest frame, \(p = (p_0,0,0,0) \), only the 00 component of the photon propagator contributes.

In infinite-volume, get:

\[
\int \frac{d^4k}{(2\pi)^4} \frac{1}{k^2} \frac{(2p_0 + k_0)^2}{k^2 + m^2}
\]

where \(m \) is the meson mass, and denominator comes from momentum factors in the coupling of a \((\text{pseudo})\text{scalar}\) particle to a photon.
Finite-Volume ChPT: Sunset Graph

\[\int \frac{d^4 k}{(2\pi)^4} \frac{1}{k^2} \frac{(2p_0 + k_0)^2}{k^2 + m^2} \]

- \(k_0 \) integral, by itself, is linearly divergent.
- Even when we take difference between finite (spatial) volume version ["FV"] and infinite (spatial) volume version ["\(\infty V \)"], the \(k_0 \) integral makes the difference linearly divergent.
- (Usually, all divergences are the same in FV and \(\infty V \), so difference diagram by diagram is finite.)
- Problem here is coming from lack of Lorentz covariance of the gauge.
- But photon tadpole has a piece that cancels the spurious \(k_0 \) divergence.

C. Bernard, Lattice 2014
Finite-Volume ChPT: Photon Tadpole

- 00 piece of photon propagator gives:
- Combines with sunset to give:

\[- \int \frac{d^4 k}{(2\pi)^4} \frac{1}{k^2}\]

\[\int \frac{d^4 k}{(2\pi)^4} \frac{1}{k^2} \left(\frac{(2p_0 + k_0)^2}{k^2 + m^2} - 1 \right)\]

- finite-volume effects of this integral (FV - ∞V) are now finite & calculable.
- Do by brute force difference of FV sum from ∞V integral.
 - FV sum over \(2\pi n_i / L\) for spatial directions; \(2\pi n_0 / T\) for time direction.

C. Bernard, Lattice 2014
Accidental very small FV difference between $20^3 \times 64$ (magenta) and $28^3 \times 64$ (black) lattices at RM123 comparison point.