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Introduction
We study a SU(3) gauge theory with 12 fundamental Dirac fermions on the lattice using 
the HISQ fermion discretization with Symanzik tree-level gauge action. Our goal is to 
determine, using spectral quantities, if the continuum theory described by our lattice 
model is inside the conformal window. In such case we calculate the anomalous mass 
dimension γ✽ characteristic of the infrared conformal fixed point.

Hyperscaling [1] dictates the dynamics for all theories in the conformal window and the 
the leading mass dependence of the spectrum is:

The computer simulations are performed using the LatKMI modified version of the 
publicly available MILC (v7) code. Expensive measurements of disconnected diagrams  
are made possible thanks to GPU-accelerated code based on QUDA. The main results of 
this work were obtained on the cluster system “𝞅” at KMI, CX400 at Nagoya University 
and CX400, plus HA8000 at Kyushu University.

Spectrum
We measure the lightest mesonic I=1 resonances that are present in the spectrum when 
a non-zero fermion mass term is included in the simulations. The pseudoscalar (π) mass 
and decay constant are measured, together with the vector (ρ) mass. We also measure 
the lightest I=0 scalar meson (σ) for our most continuum-like coupling.
The first indication that this theory is conformal in the chiral and infinite volume limit
comes from the ratio of hadronic scales: it approaches a constant in the chiral limit.

Finite-size scaling
At finite fermion mass and finite lattice size, the presence of a IR conformal fixed point can 
be studied using universal scaling relations (FSHS) [2] for the hadronic masses and decay 
constants as a function of the scaling variable:

The function f(x) is universal but unknown and it depends on the mass anomalous 
dimension at the fixed point, γ✽. By finding the function that describes an observable for 
different values of L and m, one can determine the mass anomalous dimension.
This value should be independent of the observable and coupling constant (at leading 
order).

Problems arising from this analysis are related to volume effects and non-universal 
corrections. Our latest analysis only considers data with LMπ>8.5 to reduce the finite 
volume effects. We also consider corrections to FSHS suggested by Schwinger-Dyson 
analysis, lattice artifacts and the gauge coupling (as a near-marginal operator) [3][4]:

Our conclusion from this analysis are:

✤the hyperscaling relations are very well consistent with the lattice data in the small 
fermion mass region. 

✤the extracted γ✽≃0.4-0.5 is consistent across different observables and coupling 
constants when small volume data are excluded (LMπ>8.5; LFπ>2.)

✤adding corrections due to near-marginal operators near the fixed point (ω≠0) gives 
compatible results, but improves the fit quality in the heavy mass region.

Iso-singlet scalar channel
In a mass-deformed conformal theory, the lightest flavor-singlet scalar excitation in the 
spectrum may be parametrically light with respect to the other resonances.
We measure the ground state in the iso-singlet scalar channel using a fermionic bilinear 
operator and a gluonic operator basis [5].
The signal for the disconnected diagrams crucial to this calculation is extracted using 64 
stochastic sources, a variance reduction technique, and a large number of gauge 
configurations at β=4.0.

The lightest iso-singlet scalar state is found to be lighter than the pseudoscalar one in the 
whole fermion mass region explored.
✤This is in agreement with the possibility that (quasi-)conformal dynamics makes the 
scalar state lighter than the rest of the spectrum.
✤A hyperscaling formula with the anomalous mass dimension obtained from Mπ fits to 
the large volume scalar data.
✤When purely gluonic operators are used to look at the flavor-singlet scalar channel, the 
extracted ground state mass tends to be higher than the one obtained with fermionic 
operators. But we find a non-negligible component in the cross-correlation between 
fermionic and gluonic operators for a particular set of parameters.

String tension

We also measure another purely gluonic observable to extend our hyperscaling analysis 
to more observables which are affected by different systematic effects compared to the 
fermionic ones.
The string tension is obtained using two well-known methodologies

•from smeared Polyakov loop correlators coupling to torelon excitations on the torus, 
whose mass as a function of the loop length L is: 

•from APE smeared Wilson loop operators used to construct Creutz ratios for the static 
quark-antiquark potential: 

✤The two methods agree in the full range of parameters explored
✤The hyperscaling fit of the data gives γ✽ =0.3(1), in broad agreement with the rest of the 
spectrum

Conclusions and future work
Finite-size hyperscaling formulae describe the lattice data for the pseudoscalar mass and 
decay constant and for the vector mass, resulting in a universal value for the anomalous 
mass dimension. Both the flavor-singlet scalar mass and the string tension are 
compatible with these predictions.
These are indications that the twelve-flavor SU(3) gauge theory simulated on the lattice 
corresponds to a conformal theory in the continuum and infinite volume limit. 
We also note that chiral perturbation theory does not apply to this context for the reason 
that the expansion parameter is much larger than unity and that the “pions” are no longer 
the lightest degrees of freedom of the theory.
The presence of an iso-singlet scalar state parametrically lighter than the rest of the 
spectrum can be related to the dilatonic nature of the conformal dynamics and it makes a 
pressing issue to investigate the same feature in candidate models for Walking 
Technicolor [6][7].
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Coupling ➥ β Lattice Size ➥ L×T Fermion Mass ➥ m

3.7 18x24, 24x32, 30x40, 36x48 0.03 ➭ 0.2

4.0 18x24, 24x32, 30x40, 36x48 0.04 ➭ 0.2
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From Ref. [3] UPDATE

↵ =(3� 2�)/(1 + �) (Schwinger-Dyson)

↵ =2 (lattice artifacts)


