TWO-BARYON SYSTEMS WITH TWISTED BOUNDARY CONDITIONS

Zohreh Davoudi
University of Washington

In collaboration with:
Raul Briceno (JLab), Thomas Luu (Julich) and Martin Savage (UW/INT)

TWISTED BOUNDARY CONDITIONS

$$
\begin{aligned}
& \psi(\mathbf{x}+\mathbf{n} L)=e^{i \phi \cdot \mathbf{n}} \psi(\mathbf{x}) \\
& \mathbf{p}=\frac{2 \pi}{L} \mathbf{n}+\frac{\phi}{L}, 0 \leq \phi_{i} \leq 2 \pi
\end{aligned}
$$

Bedaque, Phys, Lett: B593 (2004) 82.88
Hiburzit physiett B617:40(2005)
Meng:and itibuzit Phys. Lett: B645, 314 (2007)
Boyle, Fhyin, Jutner Sachraida, and Zanotti, JHEP 0705, 016 (2007).
Sinula (ETMC collaboration) Pos LAT2007, 371 (2007).
Boyle, Filyn; Juttner, Kelly, de Lima; et al., JHEP 0807, 112 (2008).
Aok, Horsley, zutbuchi, Nakamura, Pleiter, et al. (2008), 0808,1428.
Boyle, Flyin, Uluttner, Sachraida, Sivalingam, et al, PoS LATTICE2012, 112 (2012). Brandt, Iuttier, and Wittig, PoS ConfinementX, 112 (2012).
de Divitis and Tantalo (2004), hep-lat/0409154.
Sachrajda and Villadoro, Phys. Lett: B609, 73 (2005).
Jiang and Tiburzi; Phys.Bev. D78, 114505 (2008).
Bernard, Lage, Meißnerand Rusetsky, JHEP 1101 (2011) 019.
Doring, Meißner, Oset and Rusetsky, Eur. Phys. J. A 47 (2011) 139.
Doring, Meißner, Oset and Rusetsky, Eur. Phys. J. A 48 (2012) 114.

A GENERAL TWO-BARYON FINTTEVOLUME QUANTIZATION CONDITION

Arbitrary CM momentum twisted boundary conditions, arbitrary masses and relativistic kinematics.

Briceno, ZD and Luu, Phys. Rev. D 88, 034502. Briceno, ZD, Luu and Savage, Phys. Rev. D 89, 074509.

[^0]
TWO-NUCLEON CORRELATION FUNCIION

$$
C_{V}=\sigma^{\circ} v_{0}+{ }_{0}{ }^{2} v_{0}
$$

Kim, Sachrajda, sharpe, et al, NuchPhys, $3727(2005)$ 218-243.

TWO-NUCLEON CORRELATION FUNCIION

$$
\begin{aligned}
& T \Rightarrow \infty, a \rightarrow 0 \\
& \operatorname{det}\left(\delta \mathcal{G}^{V}+\mathcal{M}^{-1}\right)=0 \\
& \text { Briceno, zD and Luu } \\
& \text { Phys.Rev D 88, } 034502 .
\end{aligned}
$$

Non-diagonal in both L and J basis: energy and volume

Parametrized by phase shifts
and mixing angles

Diagonal in J basis

TWO-NUCLEON CORRELATION FUNCIION

Luscher, Nucl.Phys. B354, 531.578 (1991) Luscher, Commun Math Phys:105:153:
 $\operatorname{det}\left(\delta \mathcal{G}^{V}+\mathcal{M}^{-1}\right)=0$
 Briceno,z and Luu Phys: Rev: D8, 034502.

 (1986).Non-diagonal in both L and J basis energy and volume

Parametrized by phase shifts and mixing angles

Diagonal in J basis

TWO-NUCLEON CORRELATION FUNCIION

Non-diagonal in both L and J basis

A function of
energy and volume

Parametrized by phase shifts and mixing angles

Diagonal in J basis

ASSUMPTION
Example: Deuteron

Neglecting scattering with

$$
1>3
$$

$B_{d}^{\infty}=2.224644(34) \mathrm{MeV}$
$\mathcal{M}=\left(\begin{array}{cccc}\mathcal{M}_{1, S} & \mathcal{M}_{1, S D} & 0 & 0 \\ \mathcal{M}_{1, S D} & \mathcal{M}_{1, D} & 0 & 0 \\ 0 & 0 & \mathcal{M}_{2, D} & 0 \\ 0 & 0 & 0 & \mathcal{M}_{3, D}\end{array}\right)$

FINITE-VOLUME FUNCTION

$$
\begin{aligned}
& {\left[\delta \mathcal{G}^{V}\right]_{J M_{J}, L S ; J^{\prime} M_{J}^{\prime}, L^{\prime} S^{\prime}}=i \eta \frac{k^{*}}{8 \pi E^{*}} \delta_{S S^{\prime}}\left[\delta_{J J} \delta_{M_{J} M_{J}^{\prime}} \delta_{L L^{\prime}}+i \sum_{l, m} \frac{(4 \pi)^{3 / 2}}{k^{* l+1}} c_{l m}^{\mathrm{d}_{l+\infty}, \phi_{2}}\left(k^{* 2} ; L\right)\right.} \\
& \left.\quad \times \sum_{M_{L}, M_{L}^{\prime}, M_{S}}\left\langle J M_{J} \mid L M_{L}, S M_{S}\right\rangle\left\langle L^{\prime} M_{L}^{\prime}, S M_{S} \mid J^{\prime} M_{J}^{\prime}\right\rangle \int d \Omega Y_{L M_{L}}^{*} Y_{l m}^{*} Y_{L^{\prime} M_{L}^{\prime}}\right]
\end{aligned}
$$

Briceno, ZD and Luu, Phys, Rev, $D 8,034502$,

$$
\mathrm{d}=\mathrm{P} L / 2 \pi
$$

FINITE-VOLUME FUNCTION

$$
\begin{aligned}
& {\left[\delta \mathcal{G}^{V}\right]_{J M_{J}, L S ; J^{\prime} M_{J}^{\prime}, L^{\prime} S^{\prime}}=i \eta \frac{k^{*}}{8 \pi E^{*}} \delta_{S S^{\prime}}\left[\delta_{J J} \delta_{M_{J} M_{J}^{\prime}} \delta_{L L^{\prime}}+i \sum_{l, m} \frac{(4 \pi)^{3 / 2}}{k^{* l+1}} c_{l m}^{\mathrm{d}_{l+\infty}, \phi_{2}}\left(k^{* 2} ; L\right)\right.} \\
& \left.\quad \times \sum_{M_{L}, M_{L}^{\prime}, M_{S}}\left\langle J M_{J} \mid L M_{L}, S M_{S}\right\rangle\left\langle L^{\prime} M_{L}^{\prime}, S M_{S} \mid J^{\prime} M_{J}^{\prime}\right\rangle \int d \Omega Y_{L M_{L}}^{*} Y_{l m}^{*} Y_{L^{\prime} M_{L}^{\prime}}\right]
\end{aligned}
$$

Briceno, ZD and Lu, Phys, Rev, $D 8,034502$,

$$
\operatorname{with}^{(j)}
$$

$$
\mathrm{d}=\mathrm{P} L / 2 \pi
$$

ON-SHELL KINEMATICS AND FINITE-VOLUME FUNCTION

r^{2} depends on:

Volume and its shape, momentum of the CM, and the boundary conditions
Li and Liu, Phys.Lett. B587, 100 (2004).
Detmold W and Savage M J 2004 Nucl.Phys. A743 170-193.
Feng X, L X and LLU C 2004 Phys. Rev. DTo 014505 .

$$
\psi_{\mathrm{Lab}}\left(\mathbf{x}_{1}+L \mathbf{n}_{1}, \mathbf{x}_{2}+L \mathbf{n}_{2}\right)=e^{i \phi_{1} \cdot \mathbf{n}_{1}+i \phi_{2} \cdot \mathbf{n}_{2}} \psi_{\mathrm{Lab}}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)
$$

$$
\mathbf{n}_{1}, \mathbf{n}_{2} \in \mathbb{Z}^{3}
$$

$$
\mathrm{r}=\frac{1}{L} \hat{\gamma}^{-1}\left[2 \pi(\mathbf{n}-\alpha \mathbf{d})-\left(\alpha-\frac{1}{2}\right)\left(\phi_{1}+\phi_{2}\right)+\frac{1}{2}\left(\phi_{1}-\phi_{2}\right)\right]
$$

Briceno, ZD, Luu and Savage, Phys:Rev D9, 074509
K

$$
\operatorname{det}\left(\delta \mathcal{G}^{V}+\mathcal{M}^{-1}\right)=0
$$

ON-SHELL KINEMATICS AND FINITE-VOLUME FUNCTION

\mathbf{r}^{2} Depends on:

Volume and its shape, momentum of the CM , and the boundary conditions
Li and Liu, Phys.Lett. B587, 100 (2004).
Detmold W and Savage M J 2004 Nucl.Phys. A743 170-193.
Feng X, L X and LLU C 2004 Phys. Rev. Dro 014505 .

$$
\psi_{\mathrm{Lab}}\left(\mathbf{x}_{1}+L \mathbf{n}_{1}, \mathbf{x}_{2}+L \mathbf{n}_{2}\right)=e^{i \phi_{1} \cdot \mathbf{n}_{1}+i \phi_{2} \cdot \mathbf{n}_{2}} \psi_{\mathrm{Lab}}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)
$$

$$
\mathbf{n}_{1}, \mathbf{n}_{2} \in \mathbb{Z}^{3}
$$

$$
\mathrm{r}=\frac{1}{L} \hat{\gamma}^{-1}\left[2 \pi(\mathbf{n}-\alpha \mathbf{d})-\left(\alpha-\frac{1}{2}\right)\left(\phi_{1}+\phi_{2}\right)+\frac{1}{2}\left(\phi_{1}-\phi_{2}\right)\right]
$$

Briceno, ZD, Luu and Savage, Phys:Rev Do, 074509
Rummukainen, GottIeb,
Nucl.Phys, B450 (1995) 397-436,
Kim, Sachrajda, Sharpe, et al,

Nucl.Phys. B727 (2005) 218-243;

$$
\operatorname{det}\left(\delta \mathcal{G}^{V}+\mathcal{M}^{-1}\right)=0
$$

Agadijanov, Meissner and Rusetsky, JHEP01. 103 (2014).

THE SPECTRUM OF THE DEUTERON IN A FINITE VOLUME

1) Periodic boundary conditions and varying the CM momentum

See Briceno, ZD Luu and Savage, arXiv:1309. 1556 (2013).
2) Varying the twisted boundary conditions with zero CM momentum

INPUT: SCATTERING PARAMETERS FROM PHENOMENOLOGICAL ANALYSES

$$
S_{(J=1)}=\left(\begin{array}{cc}
\cos \epsilon_{1} & -\sin \epsilon_{1} \\
\sin \epsilon_{1} & \cos \epsilon_{1}
\end{array}\right)\left(\begin{array}{cc}
e^{2 i \delta_{1 \alpha}} & 0 \\
0 & e^{2 i \delta_{1 \beta}}
\end{array}\right)\left(\begin{array}{cc}
\cos \epsilon_{1} & \sin \epsilon_{1} \\
-\sin \epsilon_{1} & \cos \epsilon_{1}
\end{array}\right)
$$

NN-OnLine

$$
\mathcal{M}=\frac{4 \pi}{M_{N} k} \frac{S}{2}
$$

Biedenharn, Blatt, Phys, Rev, 86, 399 (1952). :Bjedenharn, Blat, PhysiRev 93, 1387 (1954).

Positive energy
Negative energy

$$
\kappa=-i k^{*}
$$

DEUTERON SPECTRUM TWISTED BOUNDARY CONDITIONS AND VOLUME IMPROVEMENT

DEUTERON SPECTRUM TWISTED BOUNDARY CONDITIONS AND VOLUME IMPROVEMENT

DEUTERON SPECTRUM

TWISTED BOUNDARY CONDITIONS AND VOLUME IMPROVEMENT

VOLUME-EFFECTS REDUCTION AN ANALYTICAL INVESTIGATION

The S-wave limit

$$
\left.k^{*} \cot \delta^{3} S_{1}\right)\left.\right|_{k^{*}=i \kappa}+\kappa=\sum_{\mathrm{n} \neq 0} e^{i\left(\alpha-\frac{1}{2}\right) \mathrm{n} \cdot\left(\phi^{p}+\phi^{n}\right)} e^{-i \frac{1}{2} \mathrm{n} \cdot\left(\phi^{p}-\phi^{n}\right)} e^{i 2 \pi \alpha n \cdot d} \frac{e^{-|\hat{n}| k L}}{|\hat{\gamma} n| L}
$$

$$
5_{6}^{2}: \sqrt[9]{M B d} \approx 45 \mathrm{MeV}
$$

VOLUME-EFFECTS REDUCTION AN ANALYTICAL INVESTIGATION

The S-wave limit

$$
\left.k^{*} \cot \delta^{\left({ }^{3} S_{1}\right)}\right|_{k^{*}=i \kappa}+\kappa=\sum_{\mathbf{n} \neq \mathbf{0}} e^{i\left(\alpha-\frac{1}{2}\right) n \cdot\left(\phi^{p}+\phi^{n}\right)} e^{-i \frac{1}{2} \mathrm{n} \cdot\left(\phi^{p}-\phi^{n}\right)} e^{i 2 \pi \alpha \mathrm{n} \cdot \mathrm{~d}} \frac{e^{-|\mathrm{n}| \kappa \mathrm{L}}}{|\mathrm{n}| \mathrm{L}}
$$

6. $\sqrt{M B d \approx 45 \pi \mathrm{MeV}}$

$\phi=0$	$\mathcal{O}\left(e^{-\mu \mathrm{L}} / \mathrm{L}\right)$	$O\left(e^{-\sqrt{2} / \mathrm{L}} / \mathrm{L}\right)$	$O\left(e^{-\sqrt{3} k L} / \mathrm{L}\right)$	$\mathcal{O}\left(e^{-2 \kappa \mathrm{~L}} / \mathrm{L}\right)$
$\phi=\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$	$O\left(e^{-r L} / \mathrm{L}\right)$	$O\left(e^{-\sqrt{2} \mathrm{~L}} / \mathrm{L}\right)$	$O\left(e^{-\sqrt{3} \mathrm{~L}} / \mathrm{L}\right)$	$\mathcal{O}\left(e^{-2 \kappa \mathrm{~L}} / \mathrm{L}\right)$
$\phi=(\pi, \pi, \pi)$	$\mathcal{O}\left(e^{-L L} / \mathrm{L}\right)$	$\mathcal{O}\left(e^{-\sqrt{2} k \mathrm{~L}} / \mathrm{L}\right)$	$\mathcal{O}\left(e^{-\sqrt{3} \kappa \mathrm{~L}} / \mathrm{L}\right)$	$\mathcal{O}\left(e^{-2 \kappa \mathrm{~L}} / \mathrm{L}\right)$
Average of PBC and APBC	$O\left(e^{-L L} / \mathrm{L}\right)$	$O\left(e^{-\sqrt{2} k \mathrm{~L}} / \mathrm{L}\right)$	$O\left(e^{-\sqrt{3} k \mathrm{~L}} / \mathrm{L}\right)$	$\mathcal{O}\left(e^{-2 \kappa \mathrm{~L}} / \mathrm{L}\right)$

PARTIALLY TWISTED BOUNDARY CONDIIIONS

NN sector

* No s-channel diagram with intermediate mesons containing a sea quark.
* The quantization condition valid up to exponential corrections in the masses of exchanged bosons.

$N N$ \qquad

Two-meson sector

* s-channel diagrams with intermediate mesons containing a sea quark exist.
* Quantization condition? Intricate cancellations in partially quenched QCD?

SUMMARY AND CONCLUSIONS

A general quantization condition for the two-hadron systems in a finite volume with twisted boundary conditions is presented:

The quantization condition holds for partial twisting scenario in the two-nucleon sector and makes this approach computationally plausible

Calculations with optimized TBCs make the extraction of binding energies feasible at smaller volumes:

Volume improvement in three (and higher)-particle bound states energies using optimized boundary conditions?

THANK YOU

BACKUP SLIDES

ON-SHELL KINEMATICS AND FINITE-VOLUME FUNCIION

$$
\psi_{\mathrm{Lab}}\left(\mathbf{x}_{1}+L \mathbf{n}_{1}, \mathbf{x}_{2}+L \mathbf{n}_{2}\right)=e^{i \phi_{1} \cdot \mathbf{n}_{1}+i \phi_{2} \cdot \mathbf{n}_{2}} \psi_{\mathrm{Lab}}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)
$$

$$
X-\alpha x_{1}+(1-\alpha) x_{2}
$$

Luschers. Nucl.Phys. B354 (1991) $531-578$
Rummukainen, Gottlieb, Nuclephys: B450 (1995) 397-436.

Nx

Bour, et al, Phys.Rev. D84 (2011) 091503.

ZD, Savage, Phys.Rev. D84 (2012) 114502.

$$
\mathrm{y}=\mathrm{x}
$$

$$
\mathrm{r}=\frac{1}{L} \hat{\gamma}^{-1}\left[2 \pi(\mathbf{n}-\alpha \mathrm{d})-\left(\alpha-\frac{1}{2}\right)\left(\phi_{1}+\phi_{2}\right)+\frac{1}{2}\left(\phi_{1}-\phi_{2}\right)\right]
$$

[^0]: See R. Briceno, Phys Rev. D 89, 074507 for generalization to arbitrary spin.

