
Lattice 2014  

Julius Kuti

University of California, San Diego

Lattice 2014 Symposium, July 23-28, 2014

Higgs physics near the conformal window

1

Lattice Higgs Collaboration  (LatHC)  

     Zoltan Fodor, Kieran Holland, Santanu Mondal,
     Daniel Nogradi, Chik Him Wong

USQCD
ALCC



Can the nearly conformal sextet gauge model hide the Higgs impostor? 
Zoltan Fodor (Wuppertal U. & IAS, Julich & Eotvos U.), Kieran Holland (U. Pacific, Stockton), Julius Kuti (UC, San Diego), Daniel Nogradi (Eotvos U.), Chris Schroeder (LLNL, 
Livermore), Chik Him Wong (UC, San Diego). Sep 2012. 10 pp. 
Published in Phys.Lett. B718 (2012) 657-666 
DOI: 10.1016/j.physletb.2012.10.079 
e-Print: arXiv:1209.0391 [hep-lat] | PDF

The Yang-Mills gradient flow in finite volume 
Zoltan Fodor (Wuppertal U. & IAS, Julich & Eotvos U.), Kieran Holland (U. Pacific, Stockton & Bern U.), Julius Kuti (UC, San Diego), Daniel Nogradi (Eotvos U.), Chik Him Wong 
(UC, San Diego). Aug 2012. 17 pp. 
Published in JHEP 1211 (2012) 007 
DOI: 10.1007/JHEP11(2012)007 
e-Print: arXiv:1208.1051 [hep-lat] | PDF

Can a light Higgs impostor hide in composite gauge models? 
Zoltan Fodor, Kieran Holland, Julius Kuti, Daniel Nogradi, Chik Him Wong. Jan 9, 2014. 7 pp. 
Conference: C13-07-29.1 Proceedings 
e-Print: arXiv:1401.2176 [hep-lat] | PDF

The chiral condensate from the Dirac spectrum in BSM gauge theories 
Zoltan Fodor, Kieran Holland, Julius Kuti, Daniel Nogradi, Chik Him Wong. Feb 24, 2014. 7 pp. 
Conference: C13-07-29.1 Proceedings 
e-Print: arXiv:1402.6029 [hep-lat] | PDF

Talk is based on 6 publications, with an overview and added 
discussion of new developments

The lattice gradient flow at tree-level and its improvement 
Zoltan Fodor, Kieran Holland, Julius Kuti, Santanu Mondal, Daniel Nogradi, Chik Him Wong. Jun 3, 2014. 14 pp. 
e-Print: arXiv:1406.0827 [hep-lat] 

Szabolcs Borsanyi, Zoltan Fodor, Kieran Holland, Julius Kuti, Santanu Mondal, Daniel Nogradi, Chik Him Wong. 
July 2014, in preparation

http://inspirehep.net/record/1184194
http://inspirehep.net/record/1184194
http://inspirehep.net/author/profile/Fodor%2C%20Zoltan?recid=1184194&ln=en
http://inspirehep.net/author/profile/Fodor%2C%20Zoltan?recid=1184194&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22Wuppertal%20U.%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22Wuppertal%20U.%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22IAS%2C%20Julich%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22IAS%2C%20Julich%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22Eotvos%20U.%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22Eotvos%20U.%22&ln=en
http://inspirehep.net/author/profile/Holland%2C%20Kieran?recid=1184194&ln=en
http://inspirehep.net/author/profile/Holland%2C%20Kieran?recid=1184194&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22U.%20Pacific%2C%20Stockton%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22U.%20Pacific%2C%20Stockton%22&ln=en
http://inspirehep.net/author/profile/Kuti%2C%20Julius?recid=1184194&ln=en
http://inspirehep.net/author/profile/Kuti%2C%20Julius?recid=1184194&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22UC%2C%20San%20Diego%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22UC%2C%20San%20Diego%22&ln=en
http://inspirehep.net/author/profile/Nogradi%2C%20Daniel?recid=1184194&ln=en
http://inspirehep.net/author/profile/Nogradi%2C%20Daniel?recid=1184194&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22Eotvos%20U.%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22Eotvos%20U.%22&ln=en
http://inspirehep.net/author/profile/Schroeder%2C%20Chris?recid=1184194&ln=en
http://inspirehep.net/author/profile/Schroeder%2C%20Chris?recid=1184194&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22LLNL%2C%20Livermore%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22LLNL%2C%20Livermore%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22LLNL%2C%20Livermore%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22LLNL%2C%20Livermore%22&ln=en
http://inspirehep.net/author/profile/Wong%2C%20Chik%20Him?recid=1184194&ln=en
http://inspirehep.net/author/profile/Wong%2C%20Chik%20Him?recid=1184194&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22UC%2C%20San%20Diego%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22UC%2C%20San%20Diego%22&ln=en
http://dx.doi.org/10.1016/j.physletb.2012.10.079
http://dx.doi.org/10.1016/j.physletb.2012.10.079
http://arxiv.org/abs/arXiv:1209.0391
http://arxiv.org/abs/arXiv:1209.0391
http://arxiv.org/pdf/1209.0391.pdf
http://arxiv.org/pdf/1209.0391.pdf
http://inspirehep.net/record/1125976
http://inspirehep.net/record/1125976
http://inspirehep.net/author/profile/Fodor%2C%20Zoltan?recid=1125976&ln=en
http://inspirehep.net/author/profile/Fodor%2C%20Zoltan?recid=1125976&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22Wuppertal%20U.%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22Wuppertal%20U.%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22IAS%2C%20Julich%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22IAS%2C%20Julich%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22Eotvos%20U.%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22Eotvos%20U.%22&ln=en
http://inspirehep.net/author/profile/Holland%2C%20Kieran?recid=1125976&ln=en
http://inspirehep.net/author/profile/Holland%2C%20Kieran?recid=1125976&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22U.%20Pacific%2C%20Stockton%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22U.%20Pacific%2C%20Stockton%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22Bern%20U.%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22Bern%20U.%22&ln=en
http://inspirehep.net/author/profile/Kuti%2C%20Julius?recid=1125976&ln=en
http://inspirehep.net/author/profile/Kuti%2C%20Julius?recid=1125976&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22UC%2C%20San%20Diego%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22UC%2C%20San%20Diego%22&ln=en
http://inspirehep.net/author/profile/Nogradi%2C%20Daniel?recid=1125976&ln=en
http://inspirehep.net/author/profile/Nogradi%2C%20Daniel?recid=1125976&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22Eotvos%20U.%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22Eotvos%20U.%22&ln=en
http://inspirehep.net/author/profile/Wong%2C%20Chik%20Him?recid=1125976&ln=en
http://inspirehep.net/author/profile/Wong%2C%20Chik%20Him?recid=1125976&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22UC%2C%20San%20Diego%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22UC%2C%20San%20Diego%22&ln=en
http://dx.doi.org/10.1007/JHEP11(2012)007
http://dx.doi.org/10.1007/JHEP11(2012)007
http://arxiv.org/abs/arXiv:1208.1051
http://arxiv.org/abs/arXiv:1208.1051
http://arxiv.org/pdf/1208.1051.pdf
http://arxiv.org/pdf/1208.1051.pdf
http://inspirehep.net/record/1276719
http://inspirehep.net/record/1276719
http://inspirehep.net/author/profile/Fodor%2C%20Zoltan?recid=1276719&ln=en
http://inspirehep.net/author/profile/Fodor%2C%20Zoltan?recid=1276719&ln=en
http://inspirehep.net/author/profile/Holland%2C%20Kieran?recid=1276719&ln=en
http://inspirehep.net/author/profile/Holland%2C%20Kieran?recid=1276719&ln=en
http://inspirehep.net/author/profile/Kuti%2C%20Julius?recid=1276719&ln=en
http://inspirehep.net/author/profile/Kuti%2C%20Julius?recid=1276719&ln=en
http://inspirehep.net/author/profile/Nogradi%2C%20Daniel?recid=1276719&ln=en
http://inspirehep.net/author/profile/Nogradi%2C%20Daniel?recid=1276719&ln=en
http://inspirehep.net/author/profile/Wong%2C%20Chik%20Him?recid=1276719&ln=en
http://inspirehep.net/author/profile/Wong%2C%20Chik%20Him?recid=1276719&ln=en
http://inspirehep.net/record/1217045
http://inspirehep.net/record/1217045
http://inspirehep.net/record/1272741
http://inspirehep.net/record/1272741
http://arxiv.org/abs/arXiv:1401.2176
http://arxiv.org/abs/arXiv:1401.2176
http://arxiv.org/pdf/1401.2176.pdf
http://arxiv.org/pdf/1401.2176.pdf
http://inspirehep.net/record/1282449
http://inspirehep.net/record/1282449
http://inspirehep.net/author/profile/Fodor%2C%20Zoltan?recid=1282449&ln=en
http://inspirehep.net/author/profile/Fodor%2C%20Zoltan?recid=1282449&ln=en
http://inspirehep.net/author/profile/Holland%2C%20Kieran?recid=1282449&ln=en
http://inspirehep.net/author/profile/Holland%2C%20Kieran?recid=1282449&ln=en
http://inspirehep.net/author/profile/Kuti%2C%20Julius?recid=1282449&ln=en
http://inspirehep.net/author/profile/Kuti%2C%20Julius?recid=1282449&ln=en
http://inspirehep.net/author/profile/Nogradi%2C%20Daniel?recid=1282449&ln=en
http://inspirehep.net/author/profile/Nogradi%2C%20Daniel?recid=1282449&ln=en
http://inspirehep.net/author/profile/Wong%2C%20Chik%20Him?recid=1282449&ln=en
http://inspirehep.net/author/profile/Wong%2C%20Chik%20Him?recid=1282449&ln=en
http://inspirehep.net/record/1217045
http://inspirehep.net/record/1217045
http://inspirehep.net/record/1272741
http://inspirehep.net/record/1272741
http://arxiv.org/abs/arXiv:1402.6029
http://arxiv.org/abs/arXiv:1402.6029
http://arxiv.org/pdf/1402.6029.pdf
http://arxiv.org/pdf/1402.6029.pdf
http://inspirehep.net/record/1298988
http://inspirehep.net/record/1298988
http://inspirehep.net/author/profile/Fodor%2C%20Zoltan?recid=1298988&ln=en
http://inspirehep.net/author/profile/Fodor%2C%20Zoltan?recid=1298988&ln=en
http://inspirehep.net/author/profile/Holland%2C%20Kieran?recid=1298988&ln=en
http://inspirehep.net/author/profile/Holland%2C%20Kieran?recid=1298988&ln=en
http://inspirehep.net/author/profile/Kuti%2C%20Julius?recid=1298988&ln=en
http://inspirehep.net/author/profile/Kuti%2C%20Julius?recid=1298988&ln=en
http://inspirehep.net/author/profile/Mondal%2C%20Santanu?recid=1298988&ln=en
http://inspirehep.net/author/profile/Mondal%2C%20Santanu?recid=1298988&ln=en
http://inspirehep.net/author/profile/Nogradi%2C%20Daniel?recid=1298988&ln=en
http://inspirehep.net/author/profile/Nogradi%2C%20Daniel?recid=1298988&ln=en
http://inspirehep.net/author/profile/Wong%2C%20Chik%20Him?recid=1298988&ln=en
http://inspirehep.net/author/profile/Wong%2C%20Chik%20Him?recid=1298988&ln=en
http://arXiv.org/abs/arXiv:1406.0827
http://arXiv.org/abs/arXiv:1406.0827
http://inspirehep.net/author/profile/Fodor%2C%20Zoltan?recid=1298988&ln=en
http://inspirehep.net/author/profile/Fodor%2C%20Zoltan?recid=1298988&ln=en
http://inspirehep.net/author/profile/Holland%2C%20Kieran?recid=1298988&ln=en
http://inspirehep.net/author/profile/Holland%2C%20Kieran?recid=1298988&ln=en
http://inspirehep.net/author/profile/Kuti%2C%20Julius?recid=1298988&ln=en
http://inspirehep.net/author/profile/Kuti%2C%20Julius?recid=1298988&ln=en
http://inspirehep.net/author/profile/Mondal%2C%20Santanu?recid=1298988&ln=en
http://inspirehep.net/author/profile/Mondal%2C%20Santanu?recid=1298988&ln=en
http://inspirehep.net/author/profile/Nogradi%2C%20Daniel?recid=1298988&ln=en
http://inspirehep.net/author/profile/Nogradi%2C%20Daniel?recid=1298988&ln=en
http://inspirehep.net/author/profile/Wong%2C%20Chik%20Him?recid=1298988&ln=en
http://inspirehep.net/author/profile/Wong%2C%20Chik%20Him?recid=1298988&ln=en


Outline
  
Near-conformal light Higgs?     
      light scalar (dilaton-like?) close to conformal window?
      EW precision and S-parameter
      scale setting and spectroscopy  Wong’s talk 2C

Running coupling  
      running (walking?) coupling from gradient flow
                                             Nogradi 7E Thursday
Chiral condensate       
      new stochastic method for spectral density
      mode number 
      topology
      anomalous dimension
    
Early universe
       EW phase transition
       dark matter   Mondal 8C Friday
      
Summary and Outlook   



Probing technicolor theories with staggered fermions Kieran Holland

Figure 1: The conformal window for SU(N) gauge theories with Nf techniquarks in various representations,

from [3]. The shaded regions are the windows, for fundamental (gray), 2-index antisymmetric (blue), 2-index

symmetric (red) and adjoint (green) representations.

1. Introduction

The LHC will probe the mechanism of electroweak symmetry breaking. A very attractive

alternative to the standard Higgs mechanism, with fundamental scalars, involves new strongly-

interacting gauge theories, known as technicolor [1, 2]. Such models avoid difficulties of theories

with scalars, such as triviality and fine-tuning. Chiral symmetry must be spontaneously broken in

a technicolor theory, to provide the technipions which generate the W± and Z masses and break

electroweak symmetry. Although this duplication of QCD is appealing, precise electroweak mea-

surements have made it difficult to find a viable candidate theory. It is also necessary to enlarge the

theory (extended technicolor) to generate quark masses, without generating large flavor-changing

neutral currents, which is challenging.

Technicolor theories have lately enjoyed a resurgence, due to the exploration of various tech-

niquark representations [3]. Feasible candidates have fewer new flavors, reducing tension with

electroweak constraints. If a theory is almost conformal, it is possible this generates additional

energy scales, which could help in building the extended technicolor sector. There are estimates

of which theories are conformal for various representations, shown in Fig. 1. For SU(N) gauge

theory, if the number of techniquark flavors is less than some critical number, conformal and chiral

symmetries are broken and the theory is QCD-like. For future model-building, it is crucial to go be-

yond these estimates and determine precisely where the conformal windows are. There have been

a number of recent lattice simulations of technicolor theories, attempting to locate the conformal

windows for various representations [4, 5, 6, 7, 8].

2. Dirac eigenvalues and chiral symmetry

The connection between the eigenvalues ! of the Dirac operator and chiral symmetry breaking

2
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It is easy to derive, like for example in [70], the dilaton ma-
trix element of the energy-momentum tensor trace using some
particular definition of the subtraction scheme,

⇧⌃(p = 0)|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ ⌅ 4

f⌃
⇧0|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ . (9)

When combined with Eq. (6), the partially conserved dilatation
current (PCDC) relation is obtained,

m2
⌃ ⌅ �

4
f 2
⌃

⇧0|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ . (10)

Predictions for m⌃ close to the conformal window depend on
the behavior of f⌃ and the gluon condensate

⌃
Ga
µ⌅Gaµ⌅

⌥
NP

of
Eq. (7). There are two di↵erent expectations about the limit
of the gluon condensate to f⌃ ratio when the conformal win-
dow is approached. In one interpretation, the right-hand side of
Eq. (10) is predicted to approach zero in the limit, so that the
dilaton mass m2

⌃ ⌅ (Nc
f � Nf ) · ⇤2 would parametrically van-

ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation

lima⇤0

�
1
a4 ⇧1 �

1
3

tr UP⌃
⇥
=
⇧2

36
⇧�
⇧

GG⌃lattice (11)

as the continuum limit is approached in the limit of vanishing
bare lattice coupling g0. At finite lattice coupling we have the
sum of a perturbative series in g0 and the non-perturbative gluon
condensate,

⇤
1� 1

3
tr UP

⌅
=
⇧

n

cn ·g2n
0 +a4 ⇧

2

36

�
b0

⇥(g0)

⇥ ⇤�
⇧

GG
⌅

lattice
+ O(a6) ,

(12)
where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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Will gradient flow based technology make the argument  less slippery?
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Figure 8: The linear fit is shown to the mass of the 0++ f0 meson from the
connected part of correlator I in Table 1 of [89]. For comparison, the scPion
which is the parity partner of the f0 meson in the correlator is replotted with
its fit from Figure 4 (magenta color). In the continuum limit, the mass of the
non-Goldstone scPion will vanish and the f0 state could become light close to
the conformal window. The disconnected part of the correlator is required to
resolve this issue.

fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,

 µDµ = �µµ =
⇥(�)
4�

Ga
µ⌅G

aµ⌅ . (4)

Although �(µ) and Ga
µ⌅Gaµ⌅ depend on the renormalization

scale µ, the trace of the energy-momentum tensor is scheme in-
dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga

µ⌅Gaµ⌅ and
�
µ
µ are removed in Eq. (4) and only the non-perturbative (NP)

infrared part will be considered in what follows.
The dilaton coupling f⇧ is defined by the matrix element

⌅0|�µ⌅(x)|⇧(p)⇧ = f⇧
3

(pµp⌅ � gµ⌅p2)e�ipx (5)

with p2 = m2
⇧ for the on-shell dilaton state ⇧(p). From the

divergence of the dilatation current in Eq. (4) we get

⌅0| µDµ(x)|⇧(p)⇧ = f⇧m2
⇧e�ipx . (6)

The subtracted non-perturbative part of the energy-momentum
tensor, �

�
µ
µ

⇥
NP
=

⇥(�)
4�

�
Ga
µ⌅G

aµ⌅
⇥

NP
, (7)

is defined by removing the perturbative part of the gluon con-
densate in the vacuum,

�
�
µ
µ

⇥
NP
=

⇥(�)
4�

Ga
µ⌅G

aµ⌅ � ⌅0|⇥(�)
4�

Ga
µ⌅G

aµ⌅|0⇧PT . (8)

The lattice implementation of the subtraction procedure will be
briefly described after the derivation of the PCDC relation.
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fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,
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aµ⌅ . (4)

Although �(µ) and Ga
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dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga

µ⌅Gaµ⌅ and
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µ
µ are removed in Eq. (4) and only the non-perturbative (NP)

infrared part will be considered in what follows.
The dilaton coupling f⇧ is defined by the matrix element

⌅0|�µ⌅(x)|⇧(p)⇧ = f⇧
3

(pµp⌅ � gµ⌅p2)e�ipx (5)

with p2 = m2
⇧ for the on-shell dilaton state ⇧(p). From the

divergence of the dilatation current in Eq. (4) we get

⌅0| µDµ(x)|⇧(p)⇧ = f⇧m2
⇧e�ipx . (6)

The subtracted non-perturbative part of the energy-momentum
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fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].
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with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
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The subtracted non-perturbative part of the energy-momentum
tensor, �
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µ
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=
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µ⌅G

aµ⌅
⇥

NP
, (7)

is defined by removing the perturbative part of the gluon con-
densate in the vacuum,
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aµ⌅ � ⌅0|⇥(�)
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The lattice implementation of the subtraction procedure will be
briefly described after the derivation of the PCDC relation.
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Figure 8: The linear fit is shown to the mass of the 0++ f0 meson from the
connected part of correlator I in Table 1 of [89]. For comparison, the scPion
which is the parity partner of the f0 meson in the correlator is replotted with
its fit from Figure 4 (magenta color). In the continuum limit, the mass of the
non-Goldstone scPion will vanish and the f0 state could become light close to
the conformal window. The disconnected part of the correlator is required to
resolve this issue.

fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,

 µDµ = �µµ =
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Although �(µ) and Ga
µ⌅Gaµ⌅ depend on the renormalization

scale µ, the trace of the energy-momentum tensor is scheme in-
dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga
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µ are removed in Eq. (4) and only the non-perturbative (NP)

infrared part will be considered in what follows.
The dilaton coupling f⇧ is defined by the matrix element
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with p2 = m2
⇧ for the on-shell dilaton state ⇧(p). From the

divergence of the dilatation current in Eq. (4) we get

⌅0| µDµ(x)|⇧(p)⇧ = f⇧m2
⇧e�ipx . (6)
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The lattice implementation of the subtraction procedure will be
briefly described after the derivation of the PCDC relation.
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III. THE DYNAMICAL MASS OF THE TC HIGGS

In QCD the lightest scalar is the ⌅meson (also termed f0(500) in PDG), with a measured mass

between 400 and 550 MeV [23] in agreement with early determinations [11]. Scaling up two-flavor

QCD yields a TC Higgs dynamical mass in the 1.0 TeV � M0
H � 1.4 TeV range. This estimate

changes when considering TC theories which are not an exact replica of two-flavor QCD. Here we

determine the geometric scaling of the TC Higgs dynamical mass, i.e. the value of M0
H as function of

the TC matter representation d(RTC), NTC and the number of techniflavors NTF for a given SU(NTC)

gauge theory. For a generalization to di⇥erent gauge groups see [24, 25]. We then discuss possible

e⇥ects of walking dynamics on M0
H, which are not automatically included in the geometric scaling.

Taking into account the SM induced radiative corrections discussed in Sec. II, we argue that TC can

accommodate a TC Higgs with a physical mass of 125 GeV, with or without e⇥ects from walking.

A. Geometric Scaling of the TC Higgs mass

We will consider at most two-index representations for TC matter, since at large NTC even

higher representations loose quickly asymptotic freedom [26]. The relevant scaling rules are:

F2
� ⌅ d(RTC) m2

TC , v2 = NTD F2
� , (5)

where F� is the technipion decay constant, mTC is the dynamically generated constituent techni-

quark mass, and NTD = N⇥TF/2, where N⇥TF is the actual number of techniflavors arranged in weak

doublets and therefore N⇥TF ⇤ NTF. v = 246 GeV is the electroweak vacuum expectation value and

will be kept fix in the following.

The squared mass of any large NTC leading technimeson scales like:

(M0
H)2 =
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1
NTD

v2

f 2
⇤

m2
⌅ . (6)
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FIG. 1: Quadratically divergent diagrams contributing to the Higgs mass, with the interaction vertices

given by (2). The gauge boson exchanges are computed in Landau gauge: then the seagull diagrams,

with a single W and Z exchange, are the only quadratically divergent one-loop diagrams with gauge

boson exchanges.

by the breaking of the electroweak symmetry, U = exp
�
i⇤aTa/v

⇥
, with covariant derivative DµU ⇥

�µU � igWa
µTaU + ig⇧UBµT3, 2Ta are the Pauli matrices, with a = 1, 2, 3, and V[H] is the TC Higgs
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The tree-level SM is recovered for

r⇤ = s⇤ = rt = rb = 1 . (3)

We divide the radiative corrections to the TC Higgs mass into two classes: external contributions,

corresponding to loop corrections involving elementary SM fields, and TC contributions, corre-

sponding to loop corrections involving TC composites only. The latter contribute to the dynamical

mass M0
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boson propagators correspond to elementary fields, and massless Goldstone boson propagators

correspond to TC composites. The only SM contributions to the TC Higgs mass which are quadrat-

ically divergent in the cuto⇤ come from the diagrams of Fig. 1. Retaining only the quadratically
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⇧
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⇤
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(4⇤�F⇥) , (4)

where �M2
H

(4⇤�F⇥) is the scale-dependent counterterm and � is a order unity number. To be able

to provide a physical estimate we assume that the counterterm is negligible at the scale 4⇤�F⇥,
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It is easy to derive, like for example in [70], the dilaton ma-
trix element of the energy-momentum tensor trace using some
particular definition of the subtraction scheme,

⇧⌃(p = 0)|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ ⌅ 4

f⌃
⇧0|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ . (9)

When combined with Eq. (6), the partially conserved dilatation
current (PCDC) relation is obtained,

m2
⌃ ⌅ �

4
f 2
⌃

⇧0|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ . (10)

Predictions for m⌃ close to the conformal window depend on
the behavior of f⌃ and the gluon condensate

⌃
Ga
µ⌅Gaµ⌅

⌥
NP

of
Eq. (7). There are two di↵erent expectations about the limit
of the gluon condensate to f⌃ ratio when the conformal win-
dow is approached. In one interpretation, the right-hand side of
Eq. (10) is predicted to approach zero in the limit, so that the
dilaton mass m2

⌃ ⌅ (Nc
f � Nf ) · ⇤2 would parametrically van-

ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation

lima⇤0

�
1
a4 ⇧1 �

1
3

tr UP⌃
⇥
=
⇧2

36
⇧�
⇧

GG⌃lattice (11)

as the continuum limit is approached in the limit of vanishing
bare lattice coupling g0. At finite lattice coupling we have the
sum of a perturbative series in g0 and the non-perturbative gluon
condensate,

⇤
1� 1

3
tr UP

⌅
=
⇧

n

cn ·g2n
0 +a4 ⇧

2

36

�
b0

⇥(g0)

⇥ ⇤�
⇧

GG
⌅

lattice
+ O(a6) ,

(12)
where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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Partially Conserved Dilatation Current (PCDC)

Will gradient flow based technology make the argument  less slippery?
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Figure 8: The linear fit is shown to the mass of the 0++ f0 meson from the
connected part of correlator I in Table 1 of [89]. For comparison, the scPion
which is the parity partner of the f0 meson in the correlator is replotted with
its fit from Figure 4 (magenta color). In the continuum limit, the mass of the
non-Goldstone scPion will vanish and the f0 state could become light close to
the conformal window. The disconnected part of the correlator is required to
resolve this issue.

fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,

 µDµ = �µµ =
⇥(�)
4�

Ga
µ⌅G

aµ⌅ . (4)

Although �(µ) and Ga
µ⌅Gaµ⌅ depend on the renormalization

scale µ, the trace of the energy-momentum tensor is scheme in-
dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga

µ⌅Gaµ⌅ and
�
µ
µ are removed in Eq. (4) and only the non-perturbative (NP)

infrared part will be considered in what follows.
The dilaton coupling f⇧ is defined by the matrix element

⌅0|�µ⌅(x)|⇧(p)⇧ = f⇧
3

(pµp⌅ � gµ⌅p2)e�ipx (5)

with p2 = m2
⇧ for the on-shell dilaton state ⇧(p). From the

divergence of the dilatation current in Eq. (4) we get

⌅0| µDµ(x)|⇧(p)⇧ = f⇧m2
⇧e�ipx . (6)

The subtracted non-perturbative part of the energy-momentum
tensor, �
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µ
µ

⇥
NP
=

⇥(�)
4�
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Ga
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aµ⌅
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NP
, (7)

is defined by removing the perturbative part of the gluon con-
densate in the vacuum,
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The lattice implementation of the subtraction procedure will be
briefly described after the derivation of the PCDC relation.
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Figure 8: The linear fit is shown to the mass of the 0++ f0 meson from the
connected part of correlator I in Table 1 of [89]. For comparison, the scPion
which is the parity partner of the f0 meson in the correlator is replotted with
its fit from Figure 4 (magenta color). In the continuum limit, the mass of the
non-Goldstone scPion will vanish and the f0 state could become light close to
the conformal window. The disconnected part of the correlator is required to
resolve this issue.

fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,

 µDµ = �µµ =
⇥(�)
4�

Ga
µ⌅G

aµ⌅ . (4)

Although �(µ) and Ga
µ⌅Gaµ⌅ depend on the renormalization

scale µ, the trace of the energy-momentum tensor is scheme in-
dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga

µ⌅Gaµ⌅ and
�
µ
µ are removed in Eq. (4) and only the non-perturbative (NP)

infrared part will be considered in what follows.
The dilaton coupling f⇧ is defined by the matrix element

⌅0|�µ⌅(x)|⇧(p)⇧ = f⇧
3

(pµp⌅ � gµ⌅p2)e�ipx (5)

with p2 = m2
⇧ for the on-shell dilaton state ⇧(p). From the

divergence of the dilatation current in Eq. (4) we get

⌅0| µDµ(x)|⇧(p)⇧ = f⇧m2
⇧e�ipx . (6)

The subtracted non-perturbative part of the energy-momentum
tensor, �

�
µ
µ

⇥
NP
=

⇥(�)
4�

�
Ga
µ⌅G

aµ⌅
⇥

NP
, (7)

is defined by removing the perturbative part of the gluon con-
densate in the vacuum,

�
�
µ
µ

⇥
NP
=

⇥(�)
4�

Ga
µ⌅G

aµ⌅ � ⌅0|⇥(�)
4�

Ga
µ⌅G

aµ⌅|0⇧PT . (8)

The lattice implementation of the subtraction procedure will be
briefly described after the derivation of the PCDC relation.
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Figure 8: The linear fit is shown to the mass of the 0++ f0 meson from the
connected part of correlator I in Table 1 of [89]. For comparison, the scPion
which is the parity partner of the f0 meson in the correlator is replotted with
its fit from Figure 4 (magenta color). In the continuum limit, the mass of the
non-Goldstone scPion will vanish and the f0 state could become light close to
the conformal window. The disconnected part of the correlator is required to
resolve this issue.

fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
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tion current (PCDC) relation and its related dilaton implica-
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connected part of correlator I in Table 1 of [89]. For comparison, the scPion
which is the parity partner of the f0 meson in the correlator is replotted with
its fit from Figure 4 (magenta color). In the continuum limit, the mass of the
non-Goldstone scPion will vanish and the f0 state could become light close to
the conformal window. The disconnected part of the correlator is required to
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fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,
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⇥(�)
4�

Ga
µ⌅G

aµ⌅ . (4)

Although �(µ) and Ga
µ⌅Gaµ⌅ depend on the renormalization

scale µ, the trace of the energy-momentum tensor is scheme in-
dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga

µ⌅Gaµ⌅ and
�
µ
µ are removed in Eq. (4) and only the non-perturbative (NP)

infrared part will be considered in what follows.
The dilaton coupling f⇧ is defined by the matrix element
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with p2 = m2
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divergence of the dilatation current in Eq. (4) we get
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=
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where F� is the TC pion decay constant and ⇥ scales like 1/
�

d(RTC) if the cuto⇥ is identified

with the technirho mass, or is a constant if the cuto⇥ is of the order of 4⇤F�. Provided rt is also

of order one, the dominant radiative correction is due to the top quark. For instance, if F� = v,

which is appropriate for a TC theory with one weak technidoublet, then �M2
H ⌅ �12⇥2r2

t m2
t ⌅

�⇥2r2
t (600 GeV)2. This demonstrates that the dynamical mass of the TC Higgs can be substantially

heavier than the physical mass, MH ⇧ 125 GeV.

III. THE DYNAMICAL MASS OF THE TC HIGGS

In QCD the lightest scalar is the ⌅meson (also termed f0(500) in PDG), with a measured mass

between 400 and 550 MeV [23] in agreement with early determinations [11]. Scaling up two-flavor

QCD yields a TC Higgs dynamical mass in the 1.0 TeV � M0
H � 1.4 TeV range. This estimate

changes when considering TC theories which are not an exact replica of two-flavor QCD. Here we

determine the geometric scaling of the TC Higgs dynamical mass, i.e. the value of M0
H as function of

the TC matter representation d(RTC), NTC and the number of techniflavors NTF for a given SU(NTC)

gauge theory. For a generalization to di⇥erent gauge groups see [24, 25]. We then discuss possible

e⇥ects of walking dynamics on M0
H, which are not automatically included in the geometric scaling.

Taking into account the SM induced radiative corrections discussed in Sec. II, we argue that TC can

accommodate a TC Higgs with a physical mass of 125 GeV, with or without e⇥ects from walking.

A. Geometric Scaling of the TC Higgs mass

We will consider at most two-index representations for TC matter, since at large NTC even

higher representations loose quickly asymptotic freedom [26]. The relevant scaling rules are:

F2
� ⌅ d(RTC) m2

TC , v2 = NTD F2
� , (5)

where F� is the technipion decay constant, mTC is the dynamically generated constituent techni-

quark mass, and NTD = N⇥TF/2, where N⇥TF is the actual number of techniflavors arranged in weak

doublets and therefore N⇥TF ⇤ NTF. v = 246 GeV is the electroweak vacuum expectation value and

will be kept fix in the following.

The squared mass of any large NTC leading technimeson scales like:

(M0
H)2 =

3
d(RTC)

1
NTD

v2

f 2
⇤

m2
⌅ . (6)

few hundred GeV Higgs impostor?
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t

W Z

FIG. 1: Quadratically divergent diagrams contributing to the Higgs mass, with the interaction vertices

given by (2). The gauge boson exchanges are computed in Landau gauge: then the seagull diagrams,

with a single W and Z exchange, are the only quadratically divergent one-loop diagrams with gauge

boson exchanges.

by the breaking of the electroweak symmetry, U = exp
�
i⇤aTa/v

⇥
, with covariant derivative DµU ⇥

�µU � igWa
µTaU + ig⇧UBµT3, 2Ta are the Pauli matrices, with a = 1, 2, 3, and V[H] is the TC Higgs

potential. �S is the contribution to the S parameter from the physics at the cuto⇤ scale, and is

assumed to vanish in the M⌅ ⌅ ⌃ limit. The interactions contributing to the Higgs self-energy

are

LH ⇤
2 m2

W r⇤
v

H W+
µ W�µ +

m2
Z r⇤
v

H Zµ Zµ � mt rt

v
H t̄ t

+
m2

W s⇤
v2 H2 W+

µ W�µ +
m2

Z s⇤
2 v2 H2 Zµ Zµ . (2)

The tree-level SM is recovered for

r⇤ = s⇤ = rt = rb = 1 . (3)

We divide the radiative corrections to the TC Higgs mass into two classes: external contributions,

corresponding to loop corrections involving elementary SM fields, and TC contributions, corre-

sponding to loop corrections involving TC composites only. The latter contribute to the dynamical

mass M0
H, whose size will be estimated in the next section by non-perturbative analysis. In order

to isolate the SM contributions we work in Landau gauge. Here transversely polarized gauge

boson propagators correspond to elementary fields, and massless Goldstone boson propagators

correspond to TC composites. The only SM contributions to the TC Higgs mass which are quadrat-

ically divergent in the cuto⇤ come from the diagrams of Fig. 1. Retaining only the quadratically

divergent terms leads to a physical mass MH given by

M2
H = (M0

H)2 +
3(4⇤�F⇥)2

16⇤2v2

⇧
    ⌥�4r2

t m2
t + 2s⇤

⇤
����↵m2

W +
m2

Z
2

⌅
�����

⌃
⌦⌦⌦⌦� + �M2

H
(4⇤�F⇥) , (4)

where �M2
H

(4⇤�F⇥) is the scale-dependent counterterm and � is a order unity number. To be able

to provide a physical estimate we assume that the counterterm is negligible at the scale 4⇤�F⇥,
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mσ

fσ
→ ?

It is easy to derive, like for example in [70], the dilaton ma-
trix element of the energy-momentum tensor trace using some
particular definition of the subtraction scheme,

⇧⌃(p = 0)|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ ⌅ 4

f⌃
⇧0|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ . (9)

When combined with Eq. (6), the partially conserved dilatation
current (PCDC) relation is obtained,

m2
⌃ ⌅ �

4
f 2
⌃

⇧0|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ . (10)

Predictions for m⌃ close to the conformal window depend on
the behavior of f⌃ and the gluon condensate

⌃
Ga
µ⌅Gaµ⌅

⌥
NP

of
Eq. (7). There are two di↵erent expectations about the limit
of the gluon condensate to f⌃ ratio when the conformal win-
dow is approached. In one interpretation, the right-hand side of
Eq. (10) is predicted to approach zero in the limit, so that the
dilaton mass m2

⌃ ⌅ (Nc
f � Nf ) · ⇤2 would parametrically van-

ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation
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36
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⇧
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as the continuum limit is approached in the limit of vanishing
bare lattice coupling g0. At finite lattice coupling we have the
sum of a perturbative series in g0 and the non-perturbative gluon
condensate,

⇤
1� 1

3
tr UP
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=
⇧

n

cn ·g2n
0 +a4 ⇧

2

36

�
b0

⇥(g0)
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⇧
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⌅
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(12)
where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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Figure 8: The linear fit is shown to the mass of the 0++ f0 meson from the
connected part of correlator I in Table 1 of [89]. For comparison, the scPion
which is the parity partner of the f0 meson in the correlator is replotted with
its fit from Figure 4 (magenta color). In the continuum limit, the mass of the
non-Goldstone scPion will vanish and the f0 state could become light close to
the conformal window. The disconnected part of the correlator is required to
resolve this issue.

fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,

 µDµ = �µµ =
⇥(�)
4�

Ga
µ⌅G

aµ⌅ . (4)

Although �(µ) and Ga
µ⌅Gaµ⌅ depend on the renormalization

scale µ, the trace of the energy-momentum tensor is scheme in-
dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga

µ⌅Gaµ⌅ and
�
µ
µ are removed in Eq. (4) and only the non-perturbative (NP)

infrared part will be considered in what follows.
The dilaton coupling f⇧ is defined by the matrix element

⌅0|�µ⌅(x)|⇧(p)⇧ = f⇧
3

(pµp⌅ � gµ⌅p2)e�ipx (5)

with p2 = m2
⇧ for the on-shell dilaton state ⇧(p). From the

divergence of the dilatation current in Eq. (4) we get

⌅0| µDµ(x)|⇧(p)⇧ = f⇧m2
⇧e�ipx . (6)

The subtracted non-perturbative part of the energy-momentum
tensor, �

�
µ
µ

⇥
NP
=

⇥(�)
4�

�
Ga
µ⌅G

aµ⌅
⇥

NP
, (7)

is defined by removing the perturbative part of the gluon con-
densate in the vacuum,

�
�
µ
µ

⇥
NP
=

⇥(�)
4�

Ga
µ⌅G

aµ⌅ � ⌅0|⇥(�)
4�

Ga
µ⌅G

aµ⌅|0⇧PT . (8)

The lattice implementation of the subtraction procedure will be
briefly described after the derivation of the PCDC relation.
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fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,

 µDµ = �µµ =
⇥(�)
4�

Ga
µ⌅G

aµ⌅ . (4)

Although �(µ) and Ga
µ⌅Gaµ⌅ depend on the renormalization

scale µ, the trace of the energy-momentum tensor is scheme in-
dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga

µ⌅Gaµ⌅ and
�
µ
µ are removed in Eq. (4) and only the non-perturbative (NP)

infrared part will be considered in what follows.
The dilaton coupling f⇧ is defined by the matrix element

⌅0|�µ⌅(x)|⇧(p)⇧ = f⇧
3

(pµp⌅ � gµ⌅p2)e�ipx (5)

with p2 = m2
⇧ for the on-shell dilaton state ⇧(p). From the

divergence of the dilatation current in Eq. (4) we get

⌅0| µDµ(x)|⇧(p)⇧ = f⇧m2
⇧e�ipx . (6)

The subtracted non-perturbative part of the energy-momentum
tensor, �
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µ
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⇥
NP
=

⇥(�)
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Ga
µ⌅G

aµ⌅
⇥

NP
, (7)

is defined by removing the perturbative part of the gluon con-
densate in the vacuum,
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The lattice implementation of the subtraction procedure will be
briefly described after the derivation of the PCDC relation.
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fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,

 µDµ = �µµ =
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µ⌅G

aµ⌅ . (4)

Although �(µ) and Ga
µ⌅Gaµ⌅ depend on the renormalization

scale µ, the trace of the energy-momentum tensor is scheme in-
dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga

µ⌅Gaµ⌅ and
�
µ
µ are removed in Eq. (4) and only the non-perturbative (NP)

infrared part will be considered in what follows.
The dilaton coupling f⇧ is defined by the matrix element

⌅0|�µ⌅(x)|⇧(p)⇧ = f⇧
3

(pµp⌅ � gµ⌅p2)e�ipx (5)

with p2 = m2
⇧ for the on-shell dilaton state ⇧(p). From the

divergence of the dilatation current in Eq. (4) we get

⌅0| µDµ(x)|⇧(p)⇧ = f⇧m2
⇧e�ipx . (6)

The subtracted non-perturbative part of the energy-momentum
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=
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, (7)
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fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,
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Although �(µ) and Ga
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scale µ, the trace of the energy-momentum tensor is scheme in-
dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga
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is defined by removing the perturbative part of the gluon con-
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The lattice implementation of the subtraction procedure will be
briefly described after the derivation of the PCDC relation.
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where F� is the TC pion decay constant and ⇥ scales like 1/
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with the technirho mass, or is a constant if the cuto⇥ is of the order of 4⇤F�. Provided rt is also

of order one, the dominant radiative correction is due to the top quark. For instance, if F� = v,

which is appropriate for a TC theory with one weak technidoublet, then �M2
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�⇥2r2
t (600 GeV)2. This demonstrates that the dynamical mass of the TC Higgs can be substantially

heavier than the physical mass, MH ⇧ 125 GeV.

III. THE DYNAMICAL MASS OF THE TC HIGGS

In QCD the lightest scalar is the ⌅meson (also termed f0(500) in PDG), with a measured mass

between 400 and 550 MeV [23] in agreement with early determinations [11]. Scaling up two-flavor

QCD yields a TC Higgs dynamical mass in the 1.0 TeV � M0
H � 1.4 TeV range. This estimate

changes when considering TC theories which are not an exact replica of two-flavor QCD. Here we

determine the geometric scaling of the TC Higgs dynamical mass, i.e. the value of M0
H as function of

the TC matter representation d(RTC), NTC and the number of techniflavors NTF for a given SU(NTC)

gauge theory. For a generalization to di⇥erent gauge groups see [24, 25]. We then discuss possible

e⇥ects of walking dynamics on M0
H, which are not automatically included in the geometric scaling.

Taking into account the SM induced radiative corrections discussed in Sec. II, we argue that TC can

accommodate a TC Higgs with a physical mass of 125 GeV, with or without e⇥ects from walking.

A. Geometric Scaling of the TC Higgs mass

We will consider at most two-index representations for TC matter, since at large NTC even

higher representations loose quickly asymptotic freedom [26]. The relevant scaling rules are:

F2
� ⌅ d(RTC) m2

TC , v2 = NTD F2
� , (5)

where F� is the technipion decay constant, mTC is the dynamically generated constituent techni-

quark mass, and NTD = N⇥TF/2, where N⇥TF is the actual number of techniflavors arranged in weak

doublets and therefore N⇥TF ⇤ NTF. v = 246 GeV is the electroweak vacuum expectation value and

will be kept fix in the following.

The squared mass of any large NTC leading technimeson scales like:

(M0
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NTD
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f 2
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FIG. 1: Quadratically divergent diagrams contributing to the Higgs mass, with the interaction vertices

given by (2). The gauge boson exchanges are computed in Landau gauge: then the seagull diagrams,

with a single W and Z exchange, are the only quadratically divergent one-loop diagrams with gauge

boson exchanges.
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The tree-level SM is recovered for

r⇤ = s⇤ = rt = rb = 1 . (3)
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⇤
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where �M2
H

(4⇤�F⇥) is the scale-dependent counterterm and � is a order unity number. To be able

to provide a physical estimate we assume that the counterterm is negligible at the scale 4⇤�F⇥,
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It is easy to derive, like for example in [70], the dilaton ma-
trix element of the energy-momentum tensor trace using some
particular definition of the subtraction scheme,

⇧⌃(p = 0)|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ ⌅ 4

f⌃
⇧0|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ . (9)

When combined with Eq. (6), the partially conserved dilatation
current (PCDC) relation is obtained,

m2
⌃ ⌅ �

4
f 2
⌃

⇧0|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ . (10)

Predictions for m⌃ close to the conformal window depend on
the behavior of f⌃ and the gluon condensate

⌃
Ga
µ⌅Gaµ⌅

⌥
NP

of
Eq. (7). There are two di↵erent expectations about the limit
of the gluon condensate to f⌃ ratio when the conformal win-
dow is approached. In one interpretation, the right-hand side of
Eq. (10) is predicted to approach zero in the limit, so that the
dilaton mass m2

⌃ ⌅ (Nc
f � Nf ) · ⇤2 would parametrically van-

ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation

lima⇤0

�
1
a4 ⇧1 �

1
3

tr UP⌃
⇥
=
⇧2

36
⇧�
⇧

GG⌃lattice (11)

as the continuum limit is approached in the limit of vanishing
bare lattice coupling g0. At finite lattice coupling we have the
sum of a perturbative series in g0 and the non-perturbative gluon
condensate,

⇤
1� 1

3
tr UP

⌅
=
⇧

n

cn ·g2n
0 +a4 ⇧

2

36

�
b0

⇥(g0)

⇥ ⇤�
⇧

GG
⌅

lattice
+ O(a6) ,

(12)
where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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Partially Conserved Dilatation Current (PCDC)

Will gradient flow based technology make the argument  less slippery?
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Figure 8: The linear fit is shown to the mass of the 0++ f0 meson from the
connected part of correlator I in Table 1 of [89]. For comparison, the scPion
which is the parity partner of the f0 meson in the correlator is replotted with
its fit from Figure 4 (magenta color). In the continuum limit, the mass of the
non-Goldstone scPion will vanish and the f0 state could become light close to
the conformal window. The disconnected part of the correlator is required to
resolve this issue.

fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,

 µDµ = �µµ =
⇥(�)
4�

Ga
µ⌅G

aµ⌅ . (4)

Although �(µ) and Ga
µ⌅Gaµ⌅ depend on the renormalization

scale µ, the trace of the energy-momentum tensor is scheme in-
dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga

µ⌅Gaµ⌅ and
�
µ
µ are removed in Eq. (4) and only the non-perturbative (NP)

infrared part will be considered in what follows.
The dilaton coupling f⇧ is defined by the matrix element

⌅0|�µ⌅(x)|⇧(p)⇧ = f⇧
3

(pµp⌅ � gµ⌅p2)e�ipx (5)

with p2 = m2
⇧ for the on-shell dilaton state ⇧(p). From the

divergence of the dilatation current in Eq. (4) we get

⌅0| µDµ(x)|⇧(p)⇧ = f⇧m2
⇧e�ipx . (6)

The subtracted non-perturbative part of the energy-momentum
tensor, �

�
µ
µ

⇥
NP
=

⇥(�)
4�

�
Ga
µ⌅G

aµ⌅
⇥

NP
, (7)

is defined by removing the perturbative part of the gluon con-
densate in the vacuum,

�
�
µ
µ

⇥
NP
=

⇥(�)
4�

Ga
µ⌅G

aµ⌅ � ⌅0|⇥(�)
4�

Ga
µ⌅G

aµ⌅|0⇧PT . (8)

The lattice implementation of the subtraction procedure will be
briefly described after the derivation of the PCDC relation.
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non-Goldstone scPion will vanish and the f0 state could become light close to
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mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.
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glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.
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state, the scalar meson f0 has to be taste singlet. Taste selection
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in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
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states remain light and create complicated threshold e⇥ects.
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Figure 8: The linear fit is shown to the mass of the 0++ f0 meson from the
connected part of correlator I in Table 1 of [89]. For comparison, the scPion
which is the parity partner of the f0 meson in the correlator is replotted with
its fit from Figure 4 (magenta color). In the continuum limit, the mass of the
non-Goldstone scPion will vanish and the f0 state could become light close to
the conformal window. The disconnected part of the correlator is required to
resolve this issue.

fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,

 µDµ = �µµ =
⇥(�)
4�

Ga
µ⌅G

aµ⌅ . (4)

Although �(µ) and Ga
µ⌅Gaµ⌅ depend on the renormalization

scale µ, the trace of the energy-momentum tensor is scheme in-
dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga

µ⌅Gaµ⌅ and
�
µ
µ are removed in Eq. (4) and only the non-perturbative (NP)

infrared part will be considered in what follows.
The dilaton coupling f⇧ is defined by the matrix element

⌅0|�µ⌅(x)|⇧(p)⇧ = f⇧
3

(pµp⌅ � gµ⌅p2)e�ipx (5)

with p2 = m2
⇧ for the on-shell dilaton state ⇧(p). From the

divergence of the dilatation current in Eq. (4) we get

⌅0| µDµ(x)|⇧(p)⇧ = f⇧m2
⇧e�ipx . (6)
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FIG. 1: Quadratically divergent diagrams contributing to the Higgs mass, with the interaction vertices

given by (2). The gauge boson exchanges are computed in Landau gauge: then the seagull diagrams,

with a single W and Z exchange, are the only quadratically divergent one-loop diagrams with gauge

boson exchanges.

by the breaking of the electroweak symmetry, U = exp
�
i⇤aTa/v

⇥
, with covariant derivative DµU ⇥

�µU � igWa
µTaU + ig⇧UBµT3, 2Ta are the Pauli matrices, with a = 1, 2, 3, and V[H] is the TC Higgs

potential. �S is the contribution to the S parameter from the physics at the cuto⇤ scale, and is

assumed to vanish in the M⌅ ⌅ ⌃ limit. The interactions contributing to the Higgs self-energy

are

LH ⇤
2 m2

W r⇤
v

H W+
µ W�µ +

m2
Z r⇤
v

H Zµ Zµ � mt rt

v
H t̄ t

+
m2

W s⇤
v2 H2 W+

µ W�µ +
m2

Z s⇤
2 v2 H2 Zµ Zµ . (2)

The tree-level SM is recovered for

r⇤ = s⇤ = rt = rb = 1 . (3)

We divide the radiative corrections to the TC Higgs mass into two classes: external contributions,

corresponding to loop corrections involving elementary SM fields, and TC contributions, corre-

sponding to loop corrections involving TC composites only. The latter contribute to the dynamical

mass M0
H, whose size will be estimated in the next section by non-perturbative analysis. In order

to isolate the SM contributions we work in Landau gauge. Here transversely polarized gauge

boson propagators correspond to elementary fields, and massless Goldstone boson propagators

correspond to TC composites. The only SM contributions to the TC Higgs mass which are quadrat-

ically divergent in the cuto⇤ come from the diagrams of Fig. 1. Retaining only the quadratically

divergent terms leads to a physical mass MH given by

M2
H = (M0

H)2 +
3(4⇤�F⇥)2

16⇤2v2

⇧
    ⌥�4r2

t m2
t + 2s⇤

⇤
����↵m2

W +
m2

Z
2

⌅
�����

⌃
⌦⌦⌦⌦� + �M2

H
(4⇤�F⇥) , (4)

where �M2
H

(4⇤�F⇥) is the scale-dependent counterterm and � is a order unity number. To be able

to provide a physical estimate we assume that the counterterm is negligible at the scale 4⇤�F⇥,

5

where F� is the TC pion decay constant and ⇥ scales like 1/
�

d(RTC) if the cuto⇥ is identified

with the technirho mass, or is a constant if the cuto⇥ is of the order of 4⇤F�. Provided rt is also

of order one, the dominant radiative correction is due to the top quark. For instance, if F� = v,

which is appropriate for a TC theory with one weak technidoublet, then �M2
H ⌅ �12⇥2r2

t m2
t ⌅

�⇥2r2
t (600 GeV)2. This demonstrates that the dynamical mass of the TC Higgs can be substantially

heavier than the physical mass, MH ⇧ 125 GeV.

III. THE DYNAMICAL MASS OF THE TC HIGGS

In QCD the lightest scalar is the ⌅meson (also termed f0(500) in PDG), with a measured mass

between 400 and 550 MeV [23] in agreement with early determinations [11]. Scaling up two-flavor

QCD yields a TC Higgs dynamical mass in the 1.0 TeV � M0
H � 1.4 TeV range. This estimate

changes when considering TC theories which are not an exact replica of two-flavor QCD. Here we

determine the geometric scaling of the TC Higgs dynamical mass, i.e. the value of M0
H as function of

the TC matter representation d(RTC), NTC and the number of techniflavors NTF for a given SU(NTC)

gauge theory. For a generalization to di⇥erent gauge groups see [24, 25]. We then discuss possible

e⇥ects of walking dynamics on M0
H, which are not automatically included in the geometric scaling.

Taking into account the SM induced radiative corrections discussed in Sec. II, we argue that TC can

accommodate a TC Higgs with a physical mass of 125 GeV, with or without e⇥ects from walking.

A. Geometric Scaling of the TC Higgs mass

We will consider at most two-index representations for TC matter, since at large NTC even

higher representations loose quickly asymptotic freedom [26]. The relevant scaling rules are:

F2
� ⌅ d(RTC) m2

TC , v2 = NTD F2
� , (5)

where F� is the technipion decay constant, mTC is the dynamically generated constituent techni-

quark mass, and NTD = N⇥TF/2, where N⇥TF is the actual number of techniflavors arranged in weak

doublets and therefore N⇥TF ⇤ NTF. v = 246 GeV is the electroweak vacuum expectation value and

will be kept fix in the following.

The squared mass of any large NTC leading technimeson scales like:

(M0
H)2 =

3
d(RTC)

1
NTD

v2

f 2
⇤

m2
⌅ . (6)
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A0   ~ 1.7 TeV

near-conformal resonance spectrum 
separated from light scalarN     ~ 3.2 TeV

Wong’s talk

We are in a second generation run set pushing the resonance spectrum 
somewhat higher
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Figure 1: Local fields Ot(x) constructed at flow time t > 0 depend on the fundamental field variables in a
region of space-time approximately 2

√
8t wide (red area). Further away from the point x, the sensitivity to

the basic fields decreases like a Gaussian and very rapidly becomes totally negligible.

The smoothing property of the gradient flow and the associated quark flow implies that correla-
tion functions of fields at non-zero flow times have no short-distance singularities. Renormalization
is nevertheless required, but turns out to be extremely simple. Explicitly, if Ot(x) is a bare, gauge-
invariant composite field at flow time t > 0 of degree n and n̄ in the quark and antiquark fields, the
renormalized field is given by

OR,t = (Zχ)
1
2 (n+n̄)Ot , (2.9)

where the renormalization constant Zχ is independent of t. In particular, the field (2.7) does not
require renormalization and the chiral densities (2.8) renormalize with the same factor Zχ .

The proof of these statements [2, 3] is based on an exact representation of the correlation
functions through a local field theory in 4+1 dimensions, the extra dimension being the flow time.
Zinn–Justin and Zwanziger [8] introduced the representation many years ago in their work on the
renormalization of the Langevin equation. In the pure gauge theory, the latter actually coincides
with the flow equation (2.1) except for the fact that it includes a noise term, which complicates the
situation and requires a renormalization of the Langevin time, for example.

3. Chiral condensate

In lattice QCD, the expectation value of the scalar density ūu+ d̄d of the up and down quarks
diverges like the second or third inverse power of the lattice spacing when the continuum limit is
taken. The divergent terms are proportional to the light-quark masses if the lattice theory preserves
chiral symmetry, but also in these cases their subtraction tends to give rise to important significance
losses or even some conceptual issues. Using the gradient flow, this problem can now be elegantly
bypassed [3].

3.1 Flow-time dependent condensate

Since the flow equations are chirally invariant, the quark field at non-zero flow times, χ(t,x),
transforms in the same way as the fundamental field ψ(x) under global chiral rotations. In particu-
lar, the light-quark chiral densities

Srst ±Prst , r,s ∈ {u,d}, (3.1)

4

Lüscher
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Yang–Mills gradient flow M. Lüscher

Figure 1: Local fields Ot(x) constructed at flow time t > 0 depend on the fundamental field variables in a
region of space-time approximately 2

√
8t wide (red area). Further away from the point x, the sensitivity to

the basic fields decreases like a Gaussian and very rapidly becomes totally negligible.

The smoothing property of the gradient flow and the associated quark flow implies that correla-
tion functions of fields at non-zero flow times have no short-distance singularities. Renormalization
is nevertheless required, but turns out to be extremely simple. Explicitly, if Ot(x) is a bare, gauge-
invariant composite field at flow time t > 0 of degree n and n̄ in the quark and antiquark fields, the
renormalized field is given by

OR,t = (Zχ)
1
2 (n+n̄)Ot , (2.9)

where the renormalization constant Zχ is independent of t. In particular, the field (2.7) does not
require renormalization and the chiral densities (2.8) renormalize with the same factor Zχ .

The proof of these statements [2, 3] is based on an exact representation of the correlation
functions through a local field theory in 4+1 dimensions, the extra dimension being the flow time.
Zinn–Justin and Zwanziger [8] introduced the representation many years ago in their work on the
renormalization of the Langevin equation. In the pure gauge theory, the latter actually coincides
with the flow equation (2.1) except for the fact that it includes a noise term, which complicates the
situation and requires a renormalization of the Langevin time, for example.

3. Chiral condensate

In lattice QCD, the expectation value of the scalar density ūu+ d̄d of the up and down quarks
diverges like the second or third inverse power of the lattice spacing when the continuum limit is
taken. The divergent terms are proportional to the light-quark masses if the lattice theory preserves
chiral symmetry, but also in these cases their subtraction tends to give rise to important significance
losses or even some conceptual issues. Using the gradient flow, this problem can now be elegantly
bypassed [3].

3.1 Flow-time dependent condensate

Since the flow equations are chirally invariant, the quark field at non-zero flow times, χ(t,x),
transforms in the same way as the fundamental field ψ(x) under global chiral rotations. In particu-
lar, the light-quark chiral densities

Srst ±Prst , r,s ∈ {u,d}, (3.1)
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In terms of the gauge field Aµ(p) lattice gauge transformations are the usual ones,

Aµ(p) ⇥ Aµ(p)� p̂µ . (3.8)

It is simple to check that both the Symanzik action and the clover observable are gauge
invariant, i.e.

Sµ� p̂� = 0

Eµ� p̂� = 0 . (3.9)

Hence both the propagator and the gradient flow require gauge fixing and a suitable gauge
fixing term is

Gµ� =
1
�

p̂µp̂� . (3.10)

The continuum flow in section 2 at finite lattice spacing and tree-level is then

dAµ(p, t)
dt

= �
⇤
Sf

µ�(p) + Gµ�(p)
⌅

A�(p, t) (3.11)

which is easy to solve,

Aµ(p, t) =
⌃
e�t(Sf+G)

⌥

µ�
A�(p, 0) (3.12)

where on the right hand side we have a matrix exponential. Remember that the path
integral is over Aµ(p, 0). Our observable is then, at tree-level,

⌅t2E(t)⇧ = g2
0t

2
⇧ �

a

��
a

d4p

(2⇥)4
Se

µ�(p)⌅Aµ(p, t)A�(p, t)⇧ . (3.13)

Substituting (3.12) into the above and using the free propagator

⌅Aµ(p, 0)A�(p, 0)⇧ =
�
(Sg + G)�1

⇥
µ�

(3.14)

we obtain

⌅t2E(t)⇧ = g2
0t

2
⇧ �

a

��
a

d4p

(2⇥)4
Tr

⇤
e�t(Sf+G)(Sg + G)�1e�t(Sf+G)Se

⌅
(3.15)

This expression will be the starting point for all what follows.
In order to expand in the lattice spacing we simply have to expand S which of course

involves expanding Sµ� and Kµ� as well as the the gauge fixing term Gµ� .
Note that since generally cf ⇤= cg the two exponentials in (3.15) cannot be combined

because Sf and Sg do not commute. The expansions and further calculations are simplest
with the choice � = 1 but of course the final result should be �-independent. We have
checked this for all the final correction coe�cients explicitly and it is easy to see that
�-independence holds to all orders.

Another cross-check we performed is the numerical evaluation of the integral (3.15).
The lattice momentum integrals are replaced by sums and if the sum is over su�ciently
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The chiral condensate in the sextet theory

the lattice spacing. The Banks–Casher relation consequently cannot be expected to
hold exactly and the detailed properties of the low quark modes could be significantly
different from those in the continuum theory. On the other hand, as long as only
renormalizable quantities are considered, their values in the continuum limit must
in principle be computable using the Wilson theory.

The spectral density of the (hermitian) Dirac operator, and thus the average num-
ber of quark modes in a given range of eigenvalues, are known to be renormalizable
[5]. In the present paper, we first give a second proof of this important fact (sect. 3).
We then discuss the chiral perturbation expansion of the mode numbers and show, in
sect. 5, that their calculation in lattice QCD requires only a modest computational
effort. Taken together, these results allow the chiral condensate to be computed in
the Wilson theory in a straightforward manner (sect. 6). Spectral projectors however
have a wider range of applicability and provide interesting opportunities to explore
the chiral regime of QCD, some of which are briefly mentioned in sect. 7.

2. Preliminaries

For simplicity we focus on QCD with a doublet of mass-degenerate quarks, but the
theoretical discussion is more generally valid and extends to the case of real-world
QCD. The quarks will be referred to as the up and down quarks, the associated
Goldstone bosons as the pions and the SU(2) flavour symmetry as the isospin sym-
metry. We consider both the continuum and the Wilson lattice theory in order to
make it clear in which way the mode number computed on the lattice is related to
the one defined in the continuum theory.

2.1 Spectral density and mode number in the continuum theory

In a space-time box of volume V with periodic or antiperiodic boundary conditions,
the euclidean massless Dirac operator D in presence of a given gauge field has purely
imaginary eigenvalues iλ1, iλ2, . . ., which may be ordered so that those with the
lower magnitude come first. The associated average spectral density is given by

ρ(λ,m) =
1

V

∞
∑

k=1

〈δ(λ − λk)〉 (2.1)

where the bracket 〈. . .〉 denotes the QCD expectation value and m the current-quark

2

mass. Note that the isospin degeneracy is not included in the mode counting, i.e. the
Dirac operator is diagonalized in the subspace of, say, the up-quark fields.

The Banks–Casher relation [1]

lim
λ→0

lim
m→0

lim
V →∞

ρ(λ,m) =
Σ

π
(2.2)

provides a link between the chiral condensate

Σ = − lim
m→0

lim
V →∞

〈ūu〉 (2.3)

(where u is the up-quark field) and the spectral density. In particular, if chiral sym-
metry is spontaneously broken by a non-zero value of the condensate, the density of
the quark modes in infinite volume does not vanish at the origin. A non-zero density
conversely implies that the symmetry is broken, i.e. the Banks–Casher relation can
be read in either direction.

Instead of the spectral density, the average number ν(M,m) of eigenmodes of the
massive hermitian operator D†D + m2 with eigenvalues α ≤ M2 turns out to be a
more convenient quantity to consider. Evidently, since

ν(M,m) = V

∫ Λ

−Λ
dλρ(λ,m), Λ =

√

M2 − m2, (2.4)

the mode number ultimately carries the same information as the spectral density.

2.2 O(a)-improved lattice QCD

The lattice theory is set up as usual on a hyper-cubic lattice with spacing a, time-like
extent T and spatial size L. Periodic boundary conditions are imposed on all fields
and in all directions, the only exception being the quark fields which are taken to
be antiperiodic in time.

As already mentioned, we focus on the Wilson theory in this paper. The details
are not very relevant, but for definiteness we choose the Wilson plaquette action for
the gauge field [2] and the standard expression

SF = a4
∑

x

{

ū(x)Dmu(x) + d̄(x)Dmd(x)
}

(2.5)

for the quark action, in which Dm denotes the massive, O(a)-improved lattice Dirac
operator [3,4]. Apart from the bare coupling g0 and the bare mass m0, the only free

3
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extent T and spatial size L. Periodic boundary conditions are imposed on all fields
and in all directions, the only exception being the quark fields which are taken to
be antiperiodic in time.

As already mentioned, we focus on the Wilson theory in this paper. The details
are not very relevant, but for definiteness we choose the Wilson plaquette action for
the gauge field [2] and the standard expression

SF = a4
∑
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{
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operator [3,4]. Apart from the bare coupling g0 and the bare mass m0, the only free

3

where it is understood that the bare masses are expressed through the renormalized
ones. The factors 1 + bPP amq in eq. (3.6) are required for the cancellation of the
O(amq) terms alluded to above which derive from the short-distance singularities of
the density-chain correlation functions [5].

3.3 Renormalized mode number

If the twisted-mass term is considered to be a perturbation of the theory at µ = 0,
one quickly notices that

Zµ = Z−1
P (3.7)

is a possible (and natural) choice of the renormalization factor Zµ.
Another simplification derives from the identity

∂

∂µ
σk(µ,mq) = −2kµσk+1(µ,mq). (3.8)

When the renormalized spectral sums are similarly differentiated with respect to the
renormalized twisted mass µR, the expressions one obtains must be O(a)-improved.
As it turns out, this is the case if and only if

bµ + bP − bPP = 0. (3.9)

The renormalization factor in eq. (3.6) thus becomes

ZP
1 + bP amq

1 + bPP amq
=

1

Zµ(1 + bµamq)
(3.10)

up to terms of order a2m2
q.

Returning to the integral representation (3.2), we now note that the renormaliza-
tion factor {Zµ(1 + bµamq)}−2k needed to renormalize the spectral sum on the left
of the equation is cancelled on the right if we substitute

MR = Zµ(1 + bµamq)M (3.11)

and renormalize µ. We are thus led to conclude that

νR(MR,mR) = ν(M,mq) (3.12)

is a renormalized and O(a)-improved quantity. In other words, the mode number is
a renormalization-group invariant.
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the lattice spacing. The Banks–Casher relation consequently cannot be expected to
hold exactly and the detailed properties of the low quark modes could be significantly
different from those in the continuum theory. On the other hand, as long as only
renormalizable quantities are considered, their values in the continuum limit must
in principle be computable using the Wilson theory.

The spectral density of the (hermitian) Dirac operator, and thus the average num-
ber of quark modes in a given range of eigenvalues, are known to be renormalizable
[5]. In the present paper, we first give a second proof of this important fact (sect. 3).
We then discuss the chiral perturbation expansion of the mode numbers and show, in
sect. 5, that their calculation in lattice QCD requires only a modest computational
effort. Taken together, these results allow the chiral condensate to be computed in
the Wilson theory in a straightforward manner (sect. 6). Spectral projectors however
have a wider range of applicability and provide interesting opportunities to explore
the chiral regime of QCD, some of which are briefly mentioned in sect. 7.

2. Preliminaries

For simplicity we focus on QCD with a doublet of mass-degenerate quarks, but the
theoretical discussion is more generally valid and extends to the case of real-world
QCD. The quarks will be referred to as the up and down quarks, the associated
Goldstone bosons as the pions and the SU(2) flavour symmetry as the isospin sym-
metry. We consider both the continuum and the Wilson lattice theory in order to
make it clear in which way the mode number computed on the lattice is related to
the one defined in the continuum theory.

2.1 Spectral density and mode number in the continuum theory

In a space-time box of volume V with periodic or antiperiodic boundary conditions,
the euclidean massless Dirac operator D in presence of a given gauge field has purely
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lower magnitude come first. The associated average spectral density is given by
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(where u is the up-quark field) and the spectral density. In particular, if chiral sym-
metry is spontaneously broken by a non-zero value of the condensate, the density of
the quark modes in infinite volume does not vanish at the origin. A non-zero density
conversely implies that the symmetry is broken, i.e. the Banks–Casher relation can
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extent T and spatial size L. Periodic boundary conditions are imposed on all fields
and in all directions, the only exception being the quark fields which are taken to
be antiperiodic in time.

As already mentioned, we focus on the Wilson theory in this paper. The details
are not very relevant, but for definiteness we choose the Wilson plaquette action for
the gauge field [2] and the standard expression
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be antiperiodic in time.

As already mentioned, we focus on the Wilson theory in this paper. The details
are not very relevant, but for definiteness we choose the Wilson plaquette action for
the gauge field [2] and the standard expression

SF = a4
∑

x

{

ū(x)Dmu(x) + d̄(x)Dmd(x)
}

(2.5)

for the quark action, in which Dm denotes the massive, O(a)-improved lattice Dirac
operator [3,4]. Apart from the bare coupling g0 and the bare mass m0, the only free

3

where it is understood that the bare masses are expressed through the renormalized
ones. The factors 1 + bPP amq in eq. (3.6) are required for the cancellation of the
O(amq) terms alluded to above which derive from the short-distance singularities of
the density-chain correlation functions [5].

3.3 Renormalized mode number

If the twisted-mass term is considered to be a perturbation of the theory at µ = 0,
one quickly notices that

Zµ = Z−1
P (3.7)

is a possible (and natural) choice of the renormalization factor Zµ.
Another simplification derives from the identity

∂

∂µ
σk(µ,mq) = −2kµσk+1(µ,mq). (3.8)

When the renormalized spectral sums are similarly differentiated with respect to the
renormalized twisted mass µR, the expressions one obtains must be O(a)-improved.
As it turns out, this is the case if and only if

bµ + bP − bPP = 0. (3.9)

The renormalization factor in eq. (3.6) thus becomes

ZP
1 + bP amq

1 + bPP amq
=

1

Zµ(1 + bµamq)
(3.10)

up to terms of order a2m2
q.

Returning to the integral representation (3.2), we now note that the renormaliza-
tion factor {Zµ(1 + bµamq)}−2k needed to renormalize the spectral sum on the left
of the equation is cancelled on the right if we substitute

MR = Zµ(1 + bµamq)M (3.11)

and renormalize µ. We are thus led to conclude that

νR(MR,mR) = ν(M,mq) (3.12)

is a renormalized and O(a)-improved quantity. In other words, the mode number is
a renormalization-group invariant.
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Figure 3: (left) The mode number n as a function of the eigenvalue cut M as measured on 483 ⇥ 96 lattice volumes.
The region where the derivative of the mode number is used to extract the effective condensate Seff is shown by the
red line. The derivative dn/dL is approximated by a finite difference between M2 and M1 centered around M. (right)
The volume-dependence of the effective condensate Seff, extracted on all ensembles at L = 0.003. The data are slightly
offset horizontally for visibility.

relatively few gauge configurations, the mode number is quite accurately measured. We measure
on configurations separated by 20 Molecular Dynamics time units to reduce autocorrelation. Moti-
vated by the leading-order linear relationship between Seff and n , we define the effective condensate
via the derivative dn/dL, which we approximate with finite differences around the central value.
Deviation from linearity would reflect the increase in r moving away from l = 0. The choice
L = 0.003 is convenient for all ensembles as being in the central eigenvalue region, neither too
close to the maximal M value due to the finite number of eigenvalues being calculated, nor too
close to the lower end of the eigenvalue spectrum. The location L = 0.003 is shown on the left in
Figure 3 as the red line where the derivative is calculated.

We repeat the analysis for each ensemble at the value L = 0.003, the results are summarized
on the right in Figure 3. At three values of the fermion mass m, there is good consistency in
the determination of Seff from different lattice volumes, an empirical indication that the physical
volume is large enough to allow a non-zero density of small eigenvalues to emerge. For further
analysis, we treat the value of Seff on the largest lattice volume at each fermion mass as being the
infinite-volume result. As shown on the left in Figure 4, we find the data can be described quite
well by linear mass dependence. The extrapolation gives a value for the fermion condensate in the
chiral limit which lies between those obtained from the direct measurement of hȳyi and from the
GMOR relation. We can also compare the data with an expansion in the fermion mass from chiral
perturbation theory. The analytic result from Osborn et al [13] is

Seff

S
= 1+

S
32p3NFF4


2N2

F |L|arctan
|L|
m

�4p|L|�N2
Fm log

L2 +m2

µ2 �4m log
|L|
µ

�
(3.1)

where the scale is set by µ = F2L2
mom/2S and Lmom is the momentum cutoff (the term p3 as above

is a correction). In the special case NF = 2, there is no L correction in the limit m ! 0. As we
show on the right in Figure 4 the chiral form appears to describe the data quite well, with a roughly

5

• new stochastic method  allows the extension of chiPT analysis and study topology
• m and the scale on the spectrum can be tuned more freely in partial quenching
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effects infrared physics 
 
condensate decreases at 
Q=0 in the right direction

effects infrared physics 
 
condensate decreases at 
Q=0 in the right direction
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Dark matter
•lattice BSM phenomenology of dark matter
  pioneering LSD work

• dark matter candidate  sextet Nf=2
   electroweak active in the application

• there is room for third heavy fermion 
   flavor as electroweak singlet

•  rather subtle sextet baryon 
   construction (symmetric in color)
   

Dark matter
self-interacting?  
O(barn) cross section would be challenging

The Total Energy of the Universe:

Vacuum Energy (Dark Energy)  ~  67 %
Dark Matter                                ~  29 %
Visible Baryonic Matter              ~    4 %

Buchoff talk at Lattice 2013

• Nf=2   Qu=2/3 Qd = -1/3
   udd neutral dark matter candidate

Early universe
Kogut-Sinclair work finite temperature χSB phase transition?
Relevance in early cosmology (order of the phase transition?)

Mondal 8C Friday



Summary and Outlook
  

Simplest composite scalar is light near conformality ? 
   
      light scalar (dilaton-like?) emerging            close to conformal window?

      running (walking) coupling in progress       difficult, Gradient Flow is huge improvement

      chiral condensate                                        new method is very promising

      spectroscopy                                               emerging resonance spectrum  ~ 2-3 TeV

      dark matter                                                  implications are intriguing
                                                                          strong self-interactions?
Tuning with third flavor ?

We have a candidate for minimal Higgs impostor to make it fail !

Our job is not to oversell, but do everything we can to kill the model !
 
If we fail to kill, the model will speak for itself without naming rights










