Loop formulation of Supersymmetric Yang-Mills Quantum Mechanics

Dan Boss, Kyle Steinhauer and Urs Wenger

Albert Einstein Center for Fundamental Physics
University of Bern University of Bern

Lattice 2014
Columbia University, New York, USA

Motivation

Motivation for the fermion loop formulation

- Possibility to control fermion sign problem:
- e.g. for $\mathcal{N}=16$ SUSY YM QM,
- fermion contribution decomposes into fermion sectors,
- each sector has definite sign
- New way to simulate fermions (including gauge fields):
- local fermion algorithm,
- works for massless fermions,
- no critical slowing down
- Interesting physics:
- testing gauge/gravity duality,
- thermodynamics of black holes

Dualities, black holes and all that

Gauge/gravity duality conjecture:

- $U(N)$ gauge theories as a low energy effective theory of N D-branes
- Dimensionally reduced large- N super Yang-Mills might provide a nonperturbative formulation of the string/ M -theory
- Connection to black p-branes allows studying black hole thermodynamics through strongly coupled gauge theory:

Continuum Model

- Start from $\mathcal{N}=1$ SYM in $d=4$ (or 10) dimensions
- Dimensionally reduce to 1 -dim. $\mathcal{N}=4$ (or 16) SYM QM:

$$
S=\frac{1}{g^{2}} \int_{0}^{\beta} d t \operatorname{Tr}\left\{\left(D_{t} X_{i}\right)^{2}-\frac{1}{2}\left[X_{i}, X_{j}\right]^{2}+\bar{\psi} D_{t} \psi-\bar{\psi} \sigma_{i}\left[X_{i}, \psi\right]\right\}
$$

- covariant derivative $D_{t}=\partial_{t}-i[A(t), \cdot]$,
- time component of the gauge field $A(t)$,
- spatial components become bosonic fields $X_{i}(t)$ with $i=1, \ldots, d-1$,
- anticommuting fermion fields $\bar{\psi}(t), \psi(t)$,
- σ_{i} are the γ-matrices in d dimensions
- all fields in the adjoint representation of $\operatorname{SU}(N)$

Continuum Model

- Start from $\mathcal{N}=1$ SYM in $d=4$ (or 10) dimensions
- Dimensionally reduce to 1 -dim. $\mathcal{N}=4$ (or 16) SYM QM:

$$
S=\frac{1}{g^{2}} \int_{0}^{\beta} d t \operatorname{Tr}\left\{\left(D_{t} X_{i}\right)^{2}-\frac{1}{2}\left[X_{i}, X_{j}\right]^{2}+\bar{\psi} D_{t} \psi-\bar{\psi} \sigma_{i}\left[X_{i}, \psi\right]\right\}
$$

- covariant derivative $D_{t}=\partial_{t}-i[A(t), \cdot]$,
- time component of the gauge field $A(t)$,
- spatial components become bosonic fields $X_{i}(t)$ with $i=1,2,3($ for $\mathcal{N}=4)$,
- anticommuting fermion fields $\bar{\psi}(t), \psi(t)$, (complex 2-component spinors for $\mathcal{N}=4$)
- σ_{i} are the γ-matrices in d dimensions (Pauli matrices for $\mathcal{N}=4$)
- all fields in the adjoint representation of $\operatorname{SU}(N)$

Lattice regularisation

- Discretise the bosonic part:

$$
S_{B}=\frac{1}{g^{2}} \sum_{t=0}^{L_{t}-1} \operatorname{Tr}\left\{D_{t} X_{i}(t) D_{t} X_{i}(t)-\frac{1}{2}\left[X_{i}(t), X_{j}(t)\right]^{2}\right\}
$$

with $D_{t} X_{i}(t)=U(t) X_{i}(t+1) U^{\dagger}(t)-X_{i}(t)$

- Use Wilson term for the fermionic part,

$$
S_{F}=\frac{1}{g^{2}} \sum_{t=0}^{L_{t}-1} \operatorname{Tr}\left\{\bar{\psi}(t) D_{t} \psi(t)-\bar{\psi}(t) \sigma_{i}\left[X_{i}(t), \psi(t)\right]\right\}
$$

since

$$
\partial^{\mathcal{W}}=\frac{1}{2}\left(\nabla^{+}+\nabla^{-}\right) \pm \frac{1}{2} \nabla^{+} \nabla^{-} \quad \stackrel{d=1}{\Longrightarrow} \nabla^{ \pm}
$$

Lattice regularisation

- Specifically, we have in uniform gauge $U(t)=U$

$$
S_{F}=\frac{1}{2 g^{2}} \sum_{t=0}^{L_{t}-1}\left[-\bar{\psi}_{\alpha}^{a}(t) W_{\alpha \beta}^{a b} \psi_{\beta}^{b}(t+1)+\bar{\psi}_{\alpha}^{a}(t) \Phi_{\alpha \beta}^{a c}(t) \psi_{\beta}^{c}(t)\right]
$$

where $W_{\alpha \beta}^{a b}=2 \delta_{\alpha \beta} \otimes \operatorname{Tr}\left\{T^{a} U T^{b} U^{\dagger}\right\}$.

- Φ is a $2\left(N^{2}-1\right) \times 2\left(N^{2}-1\right)$ Yukawa interaction matrix:

$$
\Phi_{\alpha \beta}^{a c}(t)=\left(\sigma_{0}\right)_{\alpha \beta} \otimes \delta^{a c}-2\left(\sigma_{i}\right)_{\alpha \beta} \otimes \operatorname{Tr}\left\{T^{a}\left[X_{i}(t), T^{c}\right]\right\}
$$

- Determinant reduction techniques give:

$$
\operatorname{det} \mathcal{D}_{p, a}=\operatorname{det}\left[\prod_{t=0}^{L_{t}-1}\left(\Phi(t) W^{\dagger}\right) \mp 1\right]
$$

Lattice regularisation

- Specifically, we have in uniform gauge $U(t)=U$

$$
S_{F}=\frac{1}{2 g^{2}} \sum_{t=0}^{L_{t}-1}\left[-\bar{\psi}_{\alpha}^{a}(t) W_{\alpha \beta}^{a b} \psi_{\beta}^{b}(t+1)+\bar{\psi}_{\alpha}^{a}(t) \Phi_{\alpha \beta}^{a c}(t) \psi_{\beta}^{c}(t)\right]
$$

where $W_{\alpha \beta}^{a b}=2 \delta_{\alpha \beta} \otimes \operatorname{Tr}\left\{T^{a} U T^{b} U^{\dagger}\right\}$.

- Φ is a $2\left(N^{2}-1\right) \times 2\left(N^{2}-1\right)$ Yukawa interaction matrix:

$$
\Phi_{\alpha \beta}^{a c}(t)=\left(\sigma_{0}\right)_{\alpha \beta} \otimes \delta^{a c}-2\left(\sigma_{i}\right)_{\alpha \beta} \otimes \operatorname{Tr}\left\{T^{a}\left[X_{i}(t), T^{c}\right]\right\}
$$

- Determinant reduction techniques give: (for finite density $\mu \neq 0$)

$$
\operatorname{det} \mathcal{D}_{p, a}=\operatorname{det}\left[\prod_{t=0}^{L_{t}-1}\left(\Phi(t) W^{\dagger}\right) \mp e^{-\mu L_{t}}\right]
$$

Hopping expansion

- Hopping expansion of the fermion Boltzmann factor:

$$
\begin{aligned}
\exp \left(-S_{F}\right) \propto \prod_{t, a, b, \alpha, \beta} & {\left[\sum_{m_{\alpha \beta}^{a b}(t)=0}^{1}\left(-\Phi_{\alpha \beta}^{a b}(t) \bar{\psi}_{\alpha}^{a}(t) \psi_{\beta}^{b}(t)\right)^{m_{\alpha \beta}^{a b}(t)}\right] } \\
& \times \prod_{t, a, \alpha}\left[\sum_{h_{\alpha}^{a}(t)=0}^{1}\left(\bar{\psi}_{\alpha}^{a}(t) \psi_{\alpha}^{a}(t+1)\right)^{h_{\alpha}^{a}(t)}\right]
\end{aligned}
$$

- Grassmann integration:
- every $\bar{\psi}_{\alpha}^{a}(t) \psi_{\alpha}^{a}(t)$ needs to be saturated,
- yields local constraints on occupation numbers $h_{\alpha}^{a}(t)$ and $m_{\alpha \beta}^{a b}(t)$
- Represent each $\bar{\psi}_{\alpha}^{a}(t) \psi_{\alpha}^{a}(t)$ by \bullet and $h_{\alpha}^{a}(t), m_{\alpha \beta}^{a b}(t)$ by \longrightarrow : only closed, oriented fermion loops survive
- Each fermion loop picks up a factor (-1)

Hopping expansion building blocks

- Non-temporal (flavour or colour) hops $m_{\alpha \beta}^{a b}(t)=1$:

weight: $\Phi_{\alpha \beta}^{a b}(t)$
weight: $\Phi_{\alpha \alpha}^{a a}(t)$
- Temporal hops $h_{\alpha}^{a}(t)=1$ (only forward!)

- Gauge links allow flavour non-diagonal temporal hops:

weight: $\delta_{\alpha \beta} \cdot \operatorname{Tr}\left[T^{a} U T^{b} U^{\dagger}\right]$

Fermion sectors

- Configurations can be classified according to the number of propagating fermions n_{f} :

$$
n_{f}=0
$$

$$
n_{f}=1
$$

$$
\cdots \quad n_{f}=2\left(N^{2}-1\right)
$$

Fermion sectors

- Propagation of fermions described by transfer matrices $T_{n_{f}}(t)$
- Fermion contribution to the partition function is simply

$$
Z_{n_{f}}=\operatorname{Tr}\left[\prod_{t=0}^{L_{t}-1} T_{n_{f}}(t)\right]
$$

and the full contribution with periodic b.c. is

$$
Z_{p}=Z_{0}-Z_{1} \pm \ldots+Z_{2\left(N^{2}-1\right)}=\sum_{n_{f}=0}^{2\left(N^{2}-1\right)}(-1)^{n_{f}} \operatorname{Tr}\left[\prod_{t=0}^{L_{t}-1} T_{n_{f}}(t)\right]
$$

- Size of $T_{n_{f}}$ is given by the number of states in sector n_{f} :

$$
\# \text { of states }=\binom{2\left(N^{2}-1\right)}{n_{f}}
$$

Fermion sectors

- Propagation of fermions described by transfer matrices $T_{n_{f}}(t)$
- Fermion contribution to the partition function is simply

$$
Z_{n_{f}}=\operatorname{Tr}\left[\prod_{t=0}^{L_{t}-1} T_{n_{f}}(t)\right]
$$

and the full contribution with antiperiodic b.c. is

$$
Z_{a}=Z_{0}+Z_{1}+\ldots+Z_{2\left(N^{2}-1\right)}=\sum_{n_{f}=0}^{2\left(N^{2}-1\right)} \operatorname{Tr}\left[\prod_{t=0}^{L_{t}-1} T_{n_{f}}(t)\right]
$$

- Size of $T_{n_{f}}$ is given by the number of states in sector n_{f} :

$$
\# \text { of states }=\binom{2\left(N^{2}-1\right)}{n_{f}}
$$

Fermion sector $n_{f}=0$

- Fermion sector $n_{f}=0$ is simple:
- $T_{0}(t)$ is a 1×1 matrix
- $T_{0}(t)=\operatorname{det} \Phi(t)$
- all signs from fermion loops taken into account

$$
n_{f}=0
$$

- fermion contribution factorises completely:

$$
Z_{0}=\prod_{t=0}^{L_{t}-1} \operatorname{det} \Phi(t)
$$

Fermion sector $n_{f}=2\left(N^{2}-1\right)$

- Fermion sector $n_{f}=2\left(N^{2}-1\right) \equiv n_{f}^{\max }$ is even simpler:
- $T_{n_{f}^{\max }}(t)=1$

$$
n_{f}=2\left(N^{2}-1\right)
$$

- including the gauge link:

$$
T_{n_{f}^{\max }}(t)=\operatorname{det}\left[\sigma_{0} \otimes W\right]=1
$$

- all signs from fermion loops taken into account
- fermion contribution is trivial:
\Rightarrow quenched sector

Fermion sector $n_{f}=1$

- Fermion sector $n_{f}=1$ less simple:
- $T_{1}(t)$ is $\left[2\left(N^{2}-1\right)\right]^{2}$ matrix
- $\left(T_{1}\right)_{i j}=\left.\operatorname{det} \Phi\right|_{\Phi_{k i}=\delta_{k j}, \Phi_{j k}=\delta_{i k}}$ $=\operatorname{det} \Phi{ }^{\text {l }} \mathrm{X}$
- including the gauge link:

$$
\left(T_{1}^{U}\right)_{i j}=\operatorname{det}\left[\left(\sigma_{0} \otimes W\right)^{\mathrm{i} i}\right]
$$

- all signs taken into account
- fermion contribution:

$$
Z_{1}=\prod_{t=0}^{L_{t}-1} \operatorname{Tr}\left[T_{1}(t) \cdot T_{1}^{U}\right]
$$

$$
n_{f}=1
$$

Fermion sector $n_{f} \geq 1$

- Z_{1} not necessarily positive
- Generic fermion sector $n_{f}>1$ increasingly more complicated:
- transfer matrices become large,
- matrix elements determined by permanents
- Sectors with many states may be simulated with worm algorithm:
- boson bond formulation is also available

Conclusions

- Fermion loop formulation yields decomposition of fermion determinant into fermion sectors
- Each fermion sector described by transfer matrices
- $n_{f}=0,1$ and $n_{f}^{\max }$ implemented:
- numerical results in reach,
- sign problem for $n_{f}=1$?
- Extension to $\mathcal{N}=16$ SYM QM:
- in principle straightforward,
- but need $\psi D_{t} \psi$,
- no notion of n_{f} for Majorana in $d=0$

