Loop formulation of Supersymmetric Yang-Mills Quantum Mechanics

Dan Boss, Kyle Steinhauer and Urs Wenger

Albert Einstein Center for Fundamental Physics University of Bern

 $u^{\scriptscriptstyle b}$

b UNIVERSITÄT BERN

Lattice 2014 Columbia University, New York, USA

Motivation

Motivation for the fermion loop formulation

- Possibility to control fermion sign problem:
 - $\bullet\,$ e.g. for $\mathcal{N}=16$ SUSY YM QM,
 - fermion contribution decomposes into fermion sectors,
 - each sector has definite sign
- New way to simulate fermions (including gauge fields):
 - local fermion algorithm,
 - works for massless fermions,
 - no critical slowing down
- Interesting physics:
 - testing gauge/gravity duality,
 - thermodynamics of black holes

Dualities, black holes and all that

Gauge/gravity duality conjecture:

- *U*(*N*) gauge theories as a low energy effective theory of *N* D-branes
- Dimensionally reduced large-*N* super Yang-Mills might provide a nonperturbative formulation of the string/M-theory
- Connection to black p-branes allows studying black hole thermodynamics through strongly coupled gauge theory:

Continuum Model

- Start from $\mathcal{N}=1$ SYM in d=4 (or 10) dimensions
- \bullet Dimensionally reduce to 1-dim. $\mathcal{N}=4$ (or 16) SYM QM:

$$S = \frac{1}{g^2} \int_0^\beta dt \operatorname{Tr}\left\{ (D_t X_i)^2 - \frac{1}{2} \left[X_i, X_j \right]^2 + \overline{\psi} D_t \psi - \overline{\psi} \sigma_i \left[X_i, \psi \right] \right\}$$

- covariant derivative $D_t = \partial_t i[A(t), \cdot]$,
- time component of the gauge field A(t),
- spatial components become bosonic fields $X_i(t)$ with i = 1, ..., d 1,
- anticommuting fermion fields $\overline{\psi}(t), \psi(t)$,
- σ_i are the γ -matrices in d dimensions
- all fields in the adjoint representation of SU(N)

Continuum Model

- Start from $\mathcal{N} = 1$ SYM in d = 4 (or 10) dimensions
- Dimensionally reduce to 1-dim. $\mathcal{N} = 4$ (or 16) SYM QM:

$$S = \frac{1}{g^2} \int_0^\beta dt \operatorname{Tr}\left\{ (D_t X_i)^2 - \frac{1}{2} [X_i, X_j]^2 + \overline{\psi} D_t \psi - \overline{\psi} \sigma_i [X_i, \psi] \right\}$$

- covariant derivative $D_t = \partial_t i[A(t), \cdot]$,
- time component of the gauge field A(t),
- spatial components become bosonic fields $X_i(t)$ with i = 1, 2, 3 (for $\mathcal{N} = 4$),
- anticommuting fermion fields $\overline{\psi}(t)$, $\psi(t)$, (complex 2-component spinors for $\mathcal{N} = 4$)
- σ_i are the γ -matrices in d dimensions (Pauli matrices for $\mathcal{N} = 4$)
- all fields in the adjoint representation of SU(N)

Lattice regularisation

• Discretise the bosonic part:

$$S_B = rac{1}{g^2} \sum_{t=0}^{L_t-1} \operatorname{Tr} \left\{ D_t X_i(t) D_t X_i(t) - rac{1}{2} \left[X_i(t), X_j(t) \right]^2
ight\}$$

with $D_t X_i(t) = U(t)X_i(t+1)U^{\dagger}(t) - X_i(t)$

• Use Wilson term for the fermionic part,

$$S_F = rac{1}{g^2} \sum_{t=0}^{L_t-1} \operatorname{Tr}\left\{\overline{\psi}(t) D_t \psi(t) - \overline{\psi}(t) \sigma_i \left[X_i(t), \psi(t)\right]\right\} \,,$$

since

$$\partial^{\mathcal{W}} = \frac{1}{2} (\nabla^+ + \nabla^-) \pm \frac{1}{2} \nabla^+ \nabla^- \quad \stackrel{d=1}{\Longrightarrow} \quad \nabla^{\pm}$$

Lattice regularisation

• Specifically, we have in uniform gauge U(t) = U

$$S_{F} = \frac{1}{2g^{2}} \sum_{t=0}^{L_{t}-1} \left[-\overline{\psi}_{\alpha}^{a}(t) W_{\alpha\beta}^{ab} \psi_{\beta}^{b}(t+1) + \overline{\psi}_{\alpha}^{a}(t) \Phi_{\alpha\beta}^{ac}(t) \psi_{\beta}^{c}(t) \right]$$

where
$$W^{ab}_{\alpha\beta} = 2\delta_{\alpha\beta} \otimes \text{Tr}\{T^a U T^b U^{\dagger}\}.$$

• Φ is a $2(N^2 - 1) \times 2(N^2 - 1)$ Yukawa interaction matrix:

$$\Phi^{ac}_{\alpha\beta}(t) = (\sigma_0)_{\alpha\beta} \otimes \delta^{ac} - 2(\sigma_i)_{\alpha\beta} \otimes \mathsf{Tr}\{T^a[X_i(t), T^c]\}$$

• Determinant reduction techniques give:

$$\det \mathcal{D}_{
ho, a} = \det \left[\prod_{t=0}^{L_t-1} (\Phi(t) \mathcal{W}^\dagger) \mp 1
ight]$$

Lattice regularisation

• Specifically, we have in uniform gauge U(t) = U

$$S_{F} = \frac{1}{2g^{2}} \sum_{t=0}^{L_{t}-1} \left[-\overline{\psi}_{\alpha}^{a}(t) W_{\alpha\beta}^{ab} \psi_{\beta}^{b}(t+1) + \overline{\psi}_{\alpha}^{a}(t) \Phi_{\alpha\beta}^{ac}(t) \psi_{\beta}^{c}(t) \right]$$

where $W^{ab}_{\alpha\beta} = 2\delta_{\alpha\beta} \otimes \text{Tr}\{T^a U T^b U^{\dagger}\}.$

• Φ is a $2(N^2 - 1) \times 2(N^2 - 1)$ Yukawa interaction matrix:

$$\Phi^{ac}_{\alpha\beta}(t) = (\sigma_0)_{\alpha\beta} \otimes \delta^{ac} - 2(\sigma_i)_{\alpha\beta} \otimes \mathsf{Tr}\{T^a[X_i(t), T^c]\}$$

• Determinant reduction techniques give: (for finite density $\mu \neq 0$)

$$\det \mathcal{D}_{\rho,a} = \det \left[\prod_{t=0}^{L_t - 1} (\Phi(t) W^{\dagger}) \mp \frac{e^{-\mu L_t}}{e^{-\mu L_t}} \right]$$

Hopping expansion

• Hopping expansion of the fermion Boltzmann factor:

$$\begin{split} \exp(-S_F) \propto \prod_{t,a,b,\alpha,\beta} \left[\sum_{m^{ab}_{\alpha\beta}(t)=0}^{1} \left(-\Phi^{ab}_{\alpha\beta}(t) \overline{\psi}^a_{\alpha}(t) \psi^b_{\beta}(t) \right)^{m^{ab}_{\alpha\beta}(t)} \right] \\ \times \prod_{t,a,\alpha} \left[\sum_{h^a_{\alpha}(t)=0}^{1} \left(\overline{\psi}^a_{\alpha}(t) \psi^a_{\alpha}(t+1) \right)^{h^a_{\alpha}(t)} \right] \end{split}$$

- Grassmann integration:
 - every $\overline{\psi}^{a}_{\alpha}(t)\psi^{a}_{\alpha}(t)$ needs to be saturated,
 - yields local constraints on occupation numbers $h^{*}_{\alpha}(t)$ and $m^{ab}_{\alpha\beta}(t)$
- Represent each ψ_α^a(t)ψ_α^a(t) by and h_α^a(t), m_{αβ}^{ab}(t) by →: only closed, oriented fermion loops survive
- Each fermion loop picks up a factor (-1)

Hopping expansion building blocks

• Non-temporal (flavour or colour) hops $m_{\alpha\beta}^{ab}(t) = 1$:

• Gauge links allow flavour non-diagonal temporal hops:

Fermion sectors

 Configurations can be classified according to the number of propagating fermions n_f:

Fermion sectors

- Propagation of fermions described by transfer matrices $T_{n_f}(t)$
- Fermion contribution to the partition function is simply

$$Z_{n_f} = \operatorname{Tr}\left[\prod_{t=0}^{L_t-1} T_{n_f}(t)\right]$$

and the full contribution with periodic b.c. is

$$Z_{p} = Z_{0} - Z_{1} \pm \ldots + Z_{2(N^{2}-1)} = \sum_{n_{f}=0}^{2(N^{2}-1)} (-1)^{n_{f}} \operatorname{Tr} \left[\prod_{t=0}^{L_{t}-1} T_{n_{f}}(t) \right]$$

• Size of T_{n_f} is given by the number of states in sector n_f :

$$\# \text{ of states} = \left(\begin{array}{c} 2(N^2 - 1) \\ n_f \end{array} \right)$$

Fermion sectors

- Propagation of fermions described by transfer matrices $T_{n_f}(t)$
- Fermion contribution to the partition function is simply

$$Z_{n_f} = \operatorname{Tr}\left[\prod_{t=0}^{L_t-1} T_{n_f}(t)\right]$$

and the full contribution with antiperiodic b.c. is

$$Z_{a} = Z_{0} + Z_{1} + \ldots + Z_{2(N^{2}-1)} = \sum_{n_{f}=0}^{2(N^{2}-1)} \operatorname{Tr}\left[\prod_{t=0}^{L_{t}-1} T_{n_{f}}(t)\right]$$

• Size of T_{n_f} is given by the number of states in sector n_f :

$$\# \text{ of states} = \left(\begin{array}{c} 2(N^2 - 1) \\ n_f \end{array}\right)$$

Fermion sector $n_f = 0$

- Fermion sector $n_f = 0$ is simple:
 - $T_0(t)$ is a 1×1 matrix
 - $T_0(t) = \det \Phi(t)$
 - all signs from fermion loops taken into account
 - fermion contribution factorises completely:

$$Z_0 = \prod_{t=0}^{L_t-1} \det \Phi(t)$$

 $n_f = 0$

Fermion sector $n_f = 2(N^2 - 1)$

- Fermion sector $n_f = 2(N^2 1) \equiv n_f^{\max}$ is even simpler:
 - $T_{n_f^{\max}}(t)=1$
 - including the gauge link:

$$T_{n_f^{\max}}(t) = \det \left[\sigma_0 \otimes W
ight] = 1$$

- all signs from fermion loops taken into account
- fermion contribution is trivial:
 ⇒ quenched sector

$$n_f=2(N^2-1)$$

Fermion sector $n_f = 1$

- Fermion sector $n_f = 1$ less simple:
 - $T_1(t)$ is $[2(N^2-1)]^2$ matrix

•
$$(T_1)_{ij} = \det \Phi|_{\Phi_{ki} = \delta_{kj}, \Phi_{jk} = \delta_{ik}}$$

= det Φ^{YY}

• including the gauge link:

$$(T_1^U)_{ij} = \det[(\sigma_0 \otimes W)^{\check{y}\check{y}}]$$

- all signs taken into account
- fermion contribution:

$$Z_1 = \prod_{t=0}^{L_t-1} \operatorname{Tr}\left[T_1(t) \cdot T_1^U\right]$$

 $n_{f} = 1$

Fermion sector $n_f \geq 1$

- Z_1 not necessarily positive
- Generic fermion sector $n_f > 1$ increasingly more complicated:
 - transfer matrices become large,
 - matrix elements determined by permanents

- Sectors with many states may be simulated with worm algorithm:
 - boson bond formulation is also available

Conclusions

- Fermion loop formulation yields decomposition of fermion determinant into fermion sectors
- Each fermion sector described by transfer matrices
- $n_f = 0, 1$ and n_f^{max} implemented:
 - numerical results in reach,
 - sign problem for $n_f = 1$?
- Extension to $\mathcal{N}=16$ SYM QM:
 - in principle straightforward,
 - but need $\overline{\psi}D_t\psi$,
 - no notion of n_f for Majorana in d = 0