Kaon semileptonic vector form factor with $\mathrm{N}_{\mathrm{f}}=2+1+1$ Twisted Mass fermions

L. Riggio (ETM Collaboration)

Università di Roma Tre, INFN Roma Tre
N. Carrasco, P. Lami, V. Lubicz, E. Picca, L. Riggio, F. Sanfilippo, S. Simula, C. Tarantino

Motivation

Precise determination of the CKM matrix element is important to test the SM

Semileptonic decay rate :

$$
\Gamma(K \rightarrow \pi l v) \propto\left(\left|V_{u s}\right| f_{+}(0)\right)^{2}
$$

Experimental average

$$
\left|V_{u s}\right| f_{+}(0)=0.2163(5)
$$

Extracting $\mathrm{f}+(0)$ from Lattice QCD allows us to estimate $\left|\mathrm{V}_{\mathrm{us}}\right|$

Outline

- Simulation Details

General strategy
Plateaux
Interpolation of f_{+}and f_{0} to $q^{2}=0$
Chiral and continuum extrapolation of $f(0)$
Results and CKM unitarity tests
Summary and Conclusions

Simulation Details

Something on the action:

- Wilson Twisted Mass action at maximal twist with $\mathrm{Nf}=2+1+1$ sea quarks
\downarrow Osterwalder-Seiler valence quark action
- Iwasaki gluon action

Simulation Details

Details of the ensembles used in this $\mathrm{N}_{\mathrm{f}}=2+1+1$ analysis

The valence light quark mass is put equal to the sea quark mass

PRA027
"QCD simulations for flavor physics in the Standard Model and beyond" (35 millions of core-hours at the BG/ P system in Julich from December 2010 to March 2011)

ensemble	β	V / a^{4}	$a \mu_{\text {sea }}=a \mu_{l}$	$a \mu_{\sigma}$	$a \mu_{\delta}$	$N_{c f g}$	$a \mu_{s}$	$a \mu_{c}$
$A 30.32$	1.90	$32^{3} \times 64$	0.0030	0.15	0.19	150	0.0145,	$0.1800,0.2200$,
$A 40.32$			0.0040			90	0.0185,	$0.2600,0.3000$,
$A 50.32$			0.0050			150	0.0225	$0.3600,0.4400$
$A 40.24$	1.90	$24^{3} \times 48$	0.0040	0.15	0.19	150		
$A 60.24$			0.0060			150		
$A 80.24$			0.0080			150		
$A 100.24$			0.0100			150		
$B 25.32$	1.95	$32^{3} \times 64$	0.0025	0.135	0.170	150	0.0141,	$0.1750,0.2140$,
$B 35.32$			0.0035			150	0.0180,	$0.2530,0.2920$,
$B 55.32$			0.0055			150	0.0219	$0.3510,0.4290$
$B 75.32$			0.0075			75		
$B 85.24$	1.95	$24^{3} \times 48$	0.0085	0.135	0.170	150		
$D 15.48$	2.10	$48^{3} \times 96$	0.0015	0.12	0.1385	60	0.0118,	$0.1470,0.1795$,
$D 20.48$			0.0020			90	0.0151,	$0.2120,0.2450$,
$D 30.48$			0.0030			90	0.0184	$0.2945,0.3595$

Range of the simulated pion masses

β	$L(f m)$	$M_{\pi}(\mathrm{MeV})$	$M_{\pi} L$
1.90	2.84	245.41	3.53
		282.13	4.06
		314.43	4.53
1.90	2.13	282.13	3.05
		343.68	3.71
		396.04	4.27
		442.99	4.78
1.95	2.61	238.67	3.16
		280.95	3.72
		350.12	4.64
		408.13	5.41
1.95	1.96	434.63	4.32
2.10	2.97	211.18	3.19
		242.80	3.66
		295.55	4.46

Lattice Spacings	
$\mathrm{a}(\beta=1.90)$	$0.0885(36) \mathrm{fm}$
$\mathrm{a}(\beta=1.95)$	$0.0815(30) \mathrm{fm}$
$\mathrm{a}(\beta=2.10)$	$0.0619(18) \mathrm{fm}$

Simulation Details

Details of the ensembles used in this $\mathrm{N}_{\mathrm{f}}=2+1+1$ analysis

The valence light quark mass is put equal to the sea quark mass

PRA027

"QCD simulations for flavor physics in the Standard Model and beyond" (35 millions of core-hours at the BG/ P system in Julich from December 2010 to March 2011)

ensemble	β	V / a^{4}	$a \mu_{\text {sea }}=a \mu_{l}$	$a \mu_{\sigma}$	$a \mu_{\delta}$	$N_{c f g}$	$a \mu_{s}$	$a \mu_{c}$
$A 30.32$	1.90	$32^{3} \times 64$	0.0030	0.15	0.19	150	0.0145,	$0.1800,0.2200$,
$A 40.32$			0.0040			90	0.0185,	$0.2600,0.3000$,
$A 50.32$			0.0050			150	0.0225	$0.3600,0.4400$
$A 40.24$	1.90	$24^{3} \times 48$	0.0040	0.15	0.19	150		
$A 60.24$			0.0060			150		
$A 80.24$			0.0080			150		
$A 100.24$			0.0100			150		
$B 25.32$	1.95	$32^{3} \times 64$	0.0025	0.135	0.170	150	0.0141,	$0.1750,0.2140$,
$B 35.32$			0.0035			150	0.0180,	$0.2530,0.2920$,
$B 55.32$			0.0055			150	0.0219	$0.3510,0.4290$
$B 75.32$			0.0075			75		
$B 85.24$	1.95	$24^{3} \times 48$	0.0085	0.135	0.170	150		
$D 15.48$	2.10	$48^{3} \times 96$	0.0015	0.12	0.1385	60	0.0118,	$0.1470,0.1795$,
$D 20.48$			0.0020			90	0.0151,	$0.2120,0.2450$,
$D 30.48$			0.0030			90	0.0184	$0.2945,0.3595$

Range of the simulated pion masses

β	$L(f m)$	$M_{\pi}(\mathrm{MeV})$	$M_{\pi} L$
1.90	2.84	245.41	3.53
		282.13	4.06
		314.43	4.53
1.90	2.13	282.13	3.05
		343.68	3.71
		396.04	4.27
		442.99	4.78
1.95	2.61	238.67	3.16
		280.95	3.72
		350.12	4.64
		408.13	5.41
1.95	1.96	434.63	4.32
2.10	2.97	211.18	3.19
		242.80	3.66
		295.55	4.46

Lattice Spacings	
$\mathrm{a}(\beta=1.90)$	$0.0885(36) \mathrm{fm}$
$\mathrm{a}(\beta=1.95)$	$0.0815(30) \mathrm{fm}$
$\mathrm{a}(\beta=2.10)$	$0.0619(18) \mathrm{fm}$

Three different values of the lattice spacing: $0.06 \mathrm{fm} \div 0.09 \mathrm{fm}$

Simulation Details

Details of the ensembles used in this $\mathrm{N}_{\mathrm{f}}=2+1+1$ analysis

The valence light quark mass is put equal to the sea quark mass

PRA027
"QCD simulations for flavor physics in the Standard Model and beyond" (35 millions of core-hours at the BG/ P system in Julich from December 2010 to March 2011)

ensemble	β	V / a^{4}	$a \mu_{\text {sea }}=a \mu_{l}$	$a \mu_{\sigma}$	$a \mu_{\delta}$	$N_{c f g}$	$a \mu_{s}$	$a \mu_{c}$
$A 30.32$	1.90	$32^{3} \times 64$	0.0030	0.15	0.19	150	0.0145,	$0.1800,0.2200$,
$A 40.32$			0.0040			90	0.0185,	$0.2600,0.3000$,
$A 50.32$			0.0050			150	0.0225	$0.3600,0.4400$
$A 40.24$	1.90	$24^{3} \times 48$	0.0040	0.15	0.19	150		
$A 60.24$			0.0060			150		
$A 80.24$			0.0080			150		
$A 100.24$			0.0100			150		
$B 25.32$	1.95	$32^{3} \times 64$	0.0025	0.135	0.170	150	0.0141,	$0.1750,0.2140$,
$B 35.32$			0.0035			150	0.0180,	$0.2530,0.2920$,
$B 55.32$			0.0055			150	0.0219	$0.3510,0.4290$
$B 75.32$			0.0075			75		
$B 85.24$	1.95	$24^{3} \times 48$	0.0085	0.135	0.170	150		
$D 15.48$	2.10	$48^{3} \times 96$	0.0015	0.12	0.1385	60	0.0118,	$0.1470,0.1795$,
$D 20.48$			0.0020			90	0.0151,	$0.2120,0.2450$,
$D 30.48$			0.0030			90	0.0184	$0.2945,0.3595$

Range of the simulated pion masses

β	$L(f m)$	$M_{\pi}(\mathrm{MeV})$	$M_{\pi} L$
1.90	2.84	245.41	3.53
		282.13	4.06
		314.43	4.53
1.90	2.13	282.13	3.05
		343.68	3.71
		396.04	4.27
		442.99	4.78
1.95	2.61	238.67	3.16
		280.95	3.72
		350.12	4.64
		408.13	5.41
1.95	1.96	434.63	4.32
2.10	2.97	211.18	3.19
		242.80	3.66
		295.55	4.46

Lattice Spacings	
$\mathrm{a}(\beta=1.90)$	$0.0885(36) \mathrm{fm}$
$\mathrm{a}(\beta=1.95)$	$0.0815(30) \mathrm{fm}$
$\mathrm{a}(\beta=2.10)$	$0.0619(18) \mathrm{fm}$

Different volumes: $2 \mathrm{fm} \div 3 \mathrm{fm}$

Simulation Details

Details of the ensembles used in this $\mathrm{N}_{\mathrm{f}}=2+1+1$ analysis

The valence light quark mass is put equal to the sea quark mass

PRA027
"QCD simulations for flavor physics in the Standard Model and beyond" (35 millions of core-hours at the BG/ P system in Julich from December 2010 to March 2011)

ensemble	β	V / a^{4}	$a \mu_{\text {sea }}=a \mu_{l}$	$a \mu_{\sigma}$	$a \mu_{\delta}$	$N_{c f g}$	$a \mu_{s}$	$a \mu_{c}$
$A 30.32$	1.90	$32^{3} \times 64$	0.0030	0.15	0.19	150	0.0145,	$0.1800,0.2200$,
$A 40.32$			0.0040			90	0.0185,	$0.2600,0.3000$,
$A 50.32$			0.0050			150	0.0225	$0.3600,0.4400$
$A 40.24$	1.90	$24^{3} \times 48$	0.0040	0.15	0.19	150		
$A 60.24$			0.0060			150		
$A 80.24$			0.0080			150		
$A 100.24$			0.0100			150		
$B 25.32$	1.95	$32^{3} \times 64$	0.0025	0.135	0.170	150	0.0141,	$0.1750,0.2140$,
$B 35.32$			0.0035			150	0.0180,	$0.2530,0.2920$,
$B 55.32$			0.0055			150	0.0219	$0.3510,0.4290$
$B 75.32$			0.0075			75		
$B 85.24$	1.95	$24^{3} \times 48$	0.0085	0.135	0.170	150		
$D 15.48$	2.10	$48^{3} \times 96$	0.0015	0.12	0.1385	60	0.0118,	$0.1470,0.1795$,
$D 20.48$			0.0020			90	0.0151,	$0.2120,0.2450$,
$D 30.48$			0.0030			90	0.0184	$0.2945,0.3595$

Range of the simulated pion masses

β	$L(f m)$	$M_{\pi}(\mathrm{MeV})$	$M_{\pi} L$
1.90	2.84	245.41	3.53
		282.13	4.06
		314.43	4.53
1.90	2.13	282.13	3.05
		343.68	3.71
		396.04	4.27
		442.99	4.78
1.95	2.61	238.67	3.16
		280.95	3.72
		350.12	4.64
		408.13	5.41
1.95	1.96	434.63	4.32
2.10	2.97	211.18	3.19
		242.80	3.66
		295.55	4.46

Pion masses in range $210 \div 440 \mathrm{MeV}$

Simulation Details

Details of the ensembles used in this $\mathrm{N}_{\mathrm{f}}=2+1+1$ analysis

The valence light quark mass is put equal to the sea quark mass

ensemble	β	V / a^{4}	$a \mu_{\text {sea }}=a \mu_{l}$	$a \mu_{\sigma}$	$a \mu_{\delta}$	$N_{c f g}$	$a \mu_{s}$	$a \mu_{c}$
$A 30.32$	1.90	$32^{3} \times 64$	0.0030	0.15	0.19	150	0.0145,	$0.1800,0.2200$,
$A 40.32$			0.0040			90	0.0185,	$0.2600,0.3000$,
$A 50.32$			0.0050			150	0.0225	$0.3600,0.4400$
$A 40.24$	1.90	$24^{3} \times 48$	0.0040	0.15	0.19	150		
$A 60.24$			0.0060			150		
$A 80.24$			0.0080			150		
$A 100.24$			0.0100			150		
$B 25.32$	1.95	$32^{3} \times 64$	0.0025	0.135	0.170	150	0.0141,	$0.1750,0.2140$,
$B 35.32$			0.0035			150	0.0180,	$0.2530,0.2920$,
$B 55.32$			0.0055			150	0.0219	$0.3510,0.4290$
$B 75.32$			0.0075			75		
$B 85.24$	1.95	$24^{3} \times 48$	0.0085	0.135	0.170	150		
$D 15.48$	2.10	$48^{3} \times 96$	0.0015	0.12	0.1385	60	0.0118,	$0.1470,0.1795$,
$D 20.48$			0.0020			90	0.0151,	$0.2120,0.2450$,
$D 30.48$			0.0030			90	0.0184	$0.2945,0.3595$

To inject momenta we used non-periodic boundary conditions

β	V / a^{4}	θ	
1.90	$32^{3} \times 64$	0.0, ± 0.400, ± 0.933, ± 1.733	
		$24^{3} \times 48$	
		0.0, ± 0.300, ± 0.700, ± 1.300	
1.95	$32^{3} \times 64$	0.0, ± 0.366, ± 0.854, ± 1.588	
		$24^{3} \times 48$	
		0.0, ± 0.275, ± 0.641, ± 1.191	
2.10	$48^{3} \times 96$	0.0, ± 0.424, ± 0.986, ± 1.832	

General strategy

$$
\left\langle\pi\left(p^{\prime}\right)\right| V_{\mu}|K(p)\rangle=\left(p_{\mu}+p_{\mu}^{\prime}\right) f_{+}\left(q^{2}\right)+\left(p_{\mu}-p_{\mu}^{\prime}\right) f_{-}\left(q^{2}\right)
$$

extract the matrix element $\left\langle\pi\left(p^{\prime}\right)\right| V_{\mu}|K(p)\rangle$ from appropriate ratio of three-points correlation function to build $\mathrm{f}_{0}\left(\mathrm{q}^{2}\right)$ and $\mathrm{f}_{+}\left(\mathrm{q}^{2}\right)$

- we used the ratio $\quad R_{\mu}=\frac{C_{\mu}^{K \pi}\left(t, \vec{p}, \vec{p}^{\prime}\right) \quad C_{\mu}^{\pi K}\left(t, \vec{p}^{\prime}, \vec{p}\right)}{C_{\mu}^{\pi \pi}\left(t, \vec{p}^{\prime}, \vec{p}^{\prime}\right) \quad C_{\mu}^{K K}(t, \vec{p}, \vec{p})}$

Fit simultaneously $f_{0}\left(q^{2}\right)$ and $f_{+}\left(q^{2}\right)$ to get $f_{0}(0)=f_{+}(0)$

- $\quad \mathrm{z}$ expansion
- Polynomial fit

Perform the Chiral and continuum extrapolation of $f(0)$

- $\quad \mathrm{SU}(2) \mathrm{ChPT}$
$\downarrow \quad \mathrm{SU}(3) \mathrm{ChPT}$

General strategy

The matrix element of the vector current between two PS mesons decomposes into two form factors
$\left\langle\pi\left(p^{\prime}\right)\right| V_{\mu}|K(p)\rangle=\left(p_{\mu}+p_{\mu}^{\prime}\right) f_{+}\left(q^{2}\right)+\left(p_{\mu}-p_{\mu}^{\prime}\right) f_{-}\left(q^{2}\right)$
depending on the momentum transfer

$$
q^{2}=\left(E-E^{\prime}\right)^{2}-\left(p_{i}-p_{i}^{\prime}\right)^{2}
$$

The matrix element can be derived in lattice QCD from a combination of Euclidean three-point functions We define the ratio:

$$
\begin{array}{ll}
R_{\mu}=\frac{C_{\mu}^{K \pi}\left(t, \vec{p}, \vec{p}^{\prime}\right)}{C_{\mu}^{\pi \pi}\left(t, \vec{p}^{\prime}, \vec{p}^{\prime}\right)} C_{\mu}^{\pi K}\left(t, \vec{p}^{\prime}, \vec{p}\right) \\
C_{\mu}^{K K}(t, \vec{p}, \vec{p}) & \text { in which the renormalization } \mathrm{Z}_{\mathrm{v}} \text { and } \mathrm{Z}_{\mathrm{K}} \text { and } \mathrm{Z}_{\pi} \text { cancels } \\
\left.t_{x}, t_{y}, \vec{p}, \vec{p}^{\prime}\right) \xrightarrow[t_{x} \rightarrow \infty\left(t_{x}-t_{y}\right) \rightarrow \infty]{ } \frac{\sqrt{Z_{K} Z_{\pi}}}{4 E_{K} E_{\pi}}\left\langle\pi\left(p^{\prime}\right)\right| \hat{V}_{\mu}|K(p)\rangle e^{-E_{K} t_{x}-E_{\pi}\left(t_{x}-t_{y}\right)}
\end{array}
$$

$$
\hat{R}_{\mu}=\frac{\left(\left\langle\pi\left(p^{\prime}\right)\right| V_{\mu}|K(p)\rangle\right)^{2}}{4 p_{\mu} p_{\mu}^{\prime}}
$$

General strategy

The matrix element of the vector current between two PS mesons decomposes into two form factors
$\left\langle\pi\left(p^{\prime}\right)\right| V_{\mu}|K(p)\rangle=\left(p_{\mu}+p_{\mu}^{\prime}\right) f_{+}\left(q^{2}\right)+\left(p_{\mu}-p_{\mu}^{\prime}\right) f_{-}\left(q^{2}\right)$

$$
\hat{R}_{\mu}=\frac{\left(\left\langle\pi\left(p^{\prime}\right)\right| V_{\mu}|K(p)\rangle\right)^{2}}{4 p_{\mu} p_{\mu}^{\prime}}
$$

We can define V_{0} and V_{1} related to the form factors by the relations

$$
\begin{aligned}
& V_{0}=2 \sqrt{R_{0}} \sqrt{E E^{\prime}}=\left(\left(E+E^{\prime}\right) f_{+}\left(q^{2}\right)+\left(E-E^{\prime}\right) f_{-}\left(q^{2}\right)\right) \\
& V_{i}=2 \sqrt{R_{i}} \sqrt{p_{i} p_{i}^{\prime}}=\left(\left(p_{i}+p_{i}^{\prime}\right) f_{+}\left(q^{2}\right)+\left(p_{i}-p_{i}^{\prime}\right) f_{-}\left(q^{2}\right)\right)
\end{aligned}
$$

and resolving the system we obtain:

$$
\begin{aligned}
& f_{+}\left(q^{2}\right)=\frac{\left(E-E^{\prime}\right) V_{i}-\left(p_{i}-p_{i}^{\prime}\right) V_{0}}{2 E p_{i}^{\prime}-2 E^{\prime} p_{i}} \\
& f_{-}\left(q^{2}\right)=\frac{\left(p_{i}+p_{i}^{\prime}\right) V_{0}-\left(E+E^{\prime}\right) V_{i}}{2 E p_{i}^{\prime}-2 E^{\prime} p_{i}} \\
& f_{0}\left(q^{2}\right)=f_{+}\left(q^{2}\right)+\frac{q^{2}}{m_{K}^{2}-m_{\pi}^{2}} f_{-}\left(q^{2}\right)
\end{aligned}
$$

$\downarrow \quad \mathrm{V}_{0}$ and V_{i} are extracted from the double ratio of the three-points correlation function

- momenta are fixed by the non-periodic boundary conditions
- energies are extracted from the dispersion relation with the masses obtained fitting the two-points correlation function at rest

Plateaux

example of plateaux of V_{0} and V_{1} for all the selected kinematics

$$
\begin{aligned}
\beta & =1.90 \\
\mu_{1} \text { (sea) } & =0.0050 \\
\mu_{\mathrm{s}} & =0.0145
\end{aligned}
$$

Plateaux

example of plateaux of the effective mass of a two-points correlation function at zero momentum

The fit intervals for the two-point correlation functions at rest are the one reported in [arXiv:1403.4504]

β	V / a^{4}	$\left[t_{\min }, t_{\max }\right]_{(\ell \ell, \ell s)} / a$
1.90	$24^{3} \times 48$	$[12,23]$
1.90	$32^{3} \times 64$	$[12,31]$
1.95	$24^{3} \times 48$	$[13,23]$
1.95	$32^{3} \times 64$	$[13,31]$
2.10	$48^{3} \times 96$	$[18,40]$

Extracting $f(0)$

We fitted simultaneously $\mathrm{f}_{+}\left(\mathrm{q}^{2}\right)$ and $\mathrm{f}_{0}\left(\mathrm{q}^{2}\right)$ to extract $\mathrm{f}(0)$ using the z expansion * to interpolate at $\mathrm{q}^{2}=0$ we neglect the points corresponding to large negative q^{2}

* Bourrely Caprini and Lellouch [Phys.Rev. D79 (2009) 013008]

$$
\begin{aligned}
& f_{+}\left(q^{2}\right)=\frac{a_{0}+a_{1}\left(z+\frac{1}{2} z^{2}\right)}{1-\frac{q^{2}}{M_{V}^{2}}} \\
& f_{0}\left(q^{2}\right)=\frac{b_{0}+b_{1}\left(z+\frac{1}{2} z^{2}\right)}{1-\frac{q^{2}}{M_{S}^{2}}}
\end{aligned}
$$

with

$$
\begin{aligned}
z= & \frac{\sqrt{t_{+}-q^{2}}-\sqrt{t_{+}-t_{0}}}{\sqrt{t_{+}-q^{2}}+\sqrt{t_{+}-t_{0}}} \\
& t_{+}=\left(m_{K}+m_{\pi}\right)^{2} \quad t_{0}=\left(m_{K}+m_{\pi}\right)\left(\sqrt{m_{K}}-\sqrt{m_{\pi}}\right)^{2}
\end{aligned}
$$

Ensemble $A .60 .24 \mathrm{a}_{\mathrm{s}}=0.0225$

Extracting $f(0)$

We fitted simultaneously $\mathrm{f}_{+}\left(\mathrm{q}^{2}\right)$ and $\mathrm{f}_{0}\left(\mathrm{q}^{2}\right)$ to extract $\mathrm{f}(0)$ using the z expansion to interpolate at $\mathrm{q}^{2}=0$ we neglect the points corresponding to large negative q^{2}

$$
\begin{aligned}
& f_{+}\left(q^{2}\right)=\frac{a_{0}+a_{1}\left(z+\frac{1}{2} z^{2}\right)}{1-\frac{q^{2}}{M_{V}^{2}}} \\
& f_{0}\left(q^{2}\right)=\frac{b_{0}+b_{1}\left(z+\frac{1}{2} z^{2}\right)}{1-\frac{q^{2}}{M_{S}^{2}}}
\end{aligned}
$$

The fit works well even for a larger range in q^{2}

Ensemble $A .60 .24 \mathrm{a}_{\mathrm{s}}=0.0225$

Extracting $f(0)$

We fitted simultaneously $\mathrm{f}_{+}\left(\mathrm{q}^{2}\right)$ and $\mathrm{f}_{0}\left(\mathrm{q}^{2}\right)$ to extract $\mathrm{f}(0)$ using the z expansion to interpolate at $\mathrm{q}^{2}=0$ we neglect the points corresponding to large negative q^{2}

$$
\begin{aligned}
& f_{+}\left(q^{2}\right)=\frac{a_{0}+a_{1}\left(z+\frac{1}{2} z^{2}\right)}{1-\frac{q^{2}}{M_{V}^{2}}} \\
& f_{0}\left(q^{2}\right)=\frac{b_{0}+b_{1}\left(z+\frac{1}{2} z^{2}\right)}{1-\frac{q^{2}}{M_{S}^{2}}}
\end{aligned}
$$

The results obtained with polynomial fit formulae are also compatible

$$
\begin{aligned}
f_{+}\left(q^{2}\right) & =f(0)\left(1+P_{1} q^{2}+P_{2} q^{4}\right) \\
f_{0}\left(q^{2}\right) & =f(0)\left(1+P_{3} q^{2}+P_{4} q^{4}\right)
\end{aligned}
$$

Ensemble $A .60 .24$ a $\mu_{\mathrm{s}}=0.0225$

$f_{+}(0)$ Chiral and continuum extrapolation

Two different approaches for the chiral extrapolation

$\star \operatorname{SU}(2) \mathrm{ChPT} \quad$ Flynn \& Sachrajda [NPB 812 (2009)]

$$
f_{+}(0)=F_{0}^{+}\left(1-\frac{3}{4} \xi \log \xi+P_{2} \xi+P_{3} a^{2}\right)
$$

$$
\xi=\frac{2 B_{0} m_{l}}{\left(4 \pi f_{0}\right)^{2}}
$$

$\checkmark \quad \mathrm{SU}(3) \mathrm{ChPT}$ (at fixed m_{s})

$$
\begin{aligned}
& f_{+}(0)=1+f_{2}+\Delta f \\
& f_{2}^{\mathrm{fullQCD}}=\frac{3}{2} H_{\pi K}+\frac{3}{2} H_{\eta K} \\
& H_{P Q}=-\frac{1}{64 \pi^{2} f_{\pi}^{2}}\left[M_{P}^{2}+M_{Q}^{2}+\frac{2 M_{P}^{2} M_{Q}^{2}}{M_{P}^{2}-M_{Q}^{2}} \log \frac{M_{Q}^{2}}{M_{P}^{2}}\right] \\
& \Delta f=\left(m_{s}-m_{l}\right)^{2}\left[\Delta_{0}+\Delta_{1} m_{l}\right]+\Delta_{2} a^{2}
\end{aligned}
$$

$\mathrm{f}_{+}(0): S U(2)$ Chiral and continuum extrapolation

$(f+(0))$
we performed a small interpolation in the data to arrive at m_{s} phys
fit formula:
$\mathrm{SU}(2)$ Chiral fit: $\quad f_{+}(0)=F_{0}^{+}\left(1-\frac{3}{4} \xi \log \xi+P_{2} \xi+P_{3} a^{2}\right)$

$$
\xi=\frac{2 B_{0} m_{l}}{\left(4 \pi f_{0}\right)^{2}}
$$

The compatibility between ensemble A40.32 and A40.24 shows that FSE are small

To calculate $\mathrm{f}_{+}(0)$ we used $\mathrm{m}_{\mathrm{s}}=99.6(4.1) \mathrm{MeV}$ and $m_{u d d}=3.70(17) \mathrm{MeV}$ from our previous work [arXiv:1403.4504]
our result:

$$
f_{+}(0)=0.9641(58)
$$

$\mathrm{f}_{+}(0): \mathrm{SU}(3)$ Chiral and continuum extrapolation

$(f+(0))$
we performed a small interpolation in the data to arrive at m_{s} phys

SU(3) Chiral fit

fit formula:
SU(3) Chiral fit

$$
\begin{aligned}
& f_{+}(0)=1+f_{2}+\Delta f \\
& \Delta f=\left(m_{s}-m_{l}\right)^{2}\left[\Delta_{0}+\Delta_{1} m_{l}\right]+\Delta_{2} a^{2}
\end{aligned}
$$

$M^{2}{ }_{K}, M^{2}{ }_{\pi}$ and f_{π} appearing in f_{2} are expressed at LO
We also tried the same fit using f_{π} instead of f_{0} in the definition of f_{2} obtaining cosistent results $\mathrm{f}_{+}(0)=0.9734$ (40)

The compatibility between ensemble A40.32 and A 40.24 shows that FSE are small

To calculate $\mathrm{f}_{+}(0)$ we used $\mathrm{m}_{\mathrm{s}}=99.6(4.1) \mathrm{MeV}$ and $\mathrm{m}_{\mathrm{u} / \mathrm{d}}=3.70(17) \mathrm{MeV}$ extracted in our previous work [arXiv:1403.4504]
our result:

$$
f_{+}(0)=0.9725(41)
$$

$\mathrm{f}_{+}(0)$ - results and sistematics

The results from our analysis:

$f_{+}(0)=0.9683(65)$

in particular:

$$
f_{+}(0)=0.9683(50)_{\text {stat+fit }}(42)_{\text {chiral }}
$$

stat+fit is referred to both the statistical uncertainties (including the total error on the light and strange quark mass determination) and the uncertainties due to the fitting procedure

Chiral extrapolation systematic uncertainties have been evaluated comparing the results obtained from two different fit formulae i.e. $\mathrm{SU}(2) \mathrm{ChPT}$ and $\mathrm{SU}(3) \mathrm{ChPT}$

An estimate of the systematic effects associated to the FSE has not been performed yet. However comparing ensembles A40.24 and A40.32 we expect these effect to be small compared to the other uncertainties

Testing the CKM unitarity

Testing the first row

$$
\left|V_{u}\right|^{2} \equiv\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=1
$$

$$
V_{C K M}=\left(\begin{array}{cc}
V_{u d} V_{u s} & V_{u b} \\
V_{c d} & V_{c s} \\
V_{c b} \\
V_{t d} & V_{t s}
\end{array} V_{t b}\right)
$$

Experimental input ${ }^{(1)}$

$$
\begin{array}{llll}
\mathrm{K}_{\ell 2} & \left|\frac{V_{u s}}{V_{u d}}\right| \frac{f_{K^{ \pm}}}{f_{\pi^{ \pm}}}=0.2758(5) & \frac{f_{K^{ \pm}}}{f_{\pi^{ \pm}}}=1.183(17)^{(2)} & \left|V_{u s}\right|=0.2271(33) \tag{2}\\
\mathrm{K}_{\ell 3} & \left|V_{u s}\right| f_{+}(0)=0.2163(5) & f_{+}(0)=0.9683(65) & \left|V_{u s}\right|=0.2234(16)
\end{array}
$$

$$
\left|V_{u d}\right|=0.97425(22) \quad \text { from } \beta \text {-decay }{ }^{(3)}
$$

$$
\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=1.0007(16)
$$

(1) Eur.Phys.J. C69 (2010) 399-424
K_{63}

$$
\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=0.9991(8)
$$

(3) Phys.Rev. C79 (2009) 055502

Testing the CKM unitarity

Conclusions

\downarrow We presented $\mathrm{N}_{\mathrm{f}}=2+1+1$ preliminary results for the semileptonic form factor $f_{+}(0)$

Summary of the results in comparison with FLAG averages:

	Our results	FLAG $_{N_{f}=2}$	FLAG $_{N_{f}=2+1}$	FNAL/MILC $N_{N_{f}=2+1+1}^{*}$
$f_{+}(0)$	$0.9683(65)$	$0.9560(84)$	$0.9661(32)$	$0.9704(32)$

Future plans:

\downarrow compare with an estimate of $\mathrm{f}_{+}(0)$ coming from the scalar density
\downarrow A more detailed analysis of the q^{2} dependence of the form factor and a comparison with the experimental data

Backup

Chiral and continuum extrapolation of M_{V}

Extrapolating the vector pole mass M_{v} obtained from the fit in q^{2} of f_{+}we should get a rough estimate of the K^{*} mass

Our result:

$$
M_{V}^{\text {Phys }}=937(42) \mathrm{MeV}
$$

while K^{*} has a mass of 892 MeV

Chiral and continuum extrapolation of M_{V}

Excluding the ensemble A30.32 from the chiral and continuum extrapolation of $f(0)$ we get
$\mathrm{SU}(2)$ result:

$$
f_{+}(0)=0.9649(61)
$$

while with all the points we get

$$
f_{+}(0)=0.9641(58)
$$

So even if A30.32 seems to be off is overall effect is less then 0.1% and therefore marginal

Ademollo Gatto Theorem

The AG theorem states that in $\operatorname{SU}(3)$ limits $\mathrm{f}_{+}(0)=1$ and deviation from unity are of the order of $\left(\mathrm{m}_{\mathrm{s}}-\mathrm{m}_{\mathrm{l}}\right)^{2}$

$$
f_{+}(0)=1+\propto\left(m_{s}-m_{l}\right)^{2}
$$

We can test AG theorem plotting $\Delta \mathrm{f}=\mathrm{f}_{+}(0)-1-\mathrm{f}_{2}$ divided by $\left(\mathrm{m}_{\mathrm{s}}-\mathrm{m}_{1}\right)^{2}$ as a function m_{1} notice the the data as been extrapolated at $\mathrm{m}_{s}{ }^{\text {phys }}$

On the action

- Wilson Twisted Mass action at maximal twist with $\mathrm{Nf}=2+1+1$ sea quarks

Light degenerate doublet

$$
S_{t m}^{l}=a^{4} \sum_{x} \bar{\psi}(x)\left\{\frac{1}{2} \gamma_{\mu}\left(\nabla_{\mu}+\nabla_{\mu}^{*}\right)-i \gamma_{5} \tau^{3}\left[M_{0}-\frac{a}{2} \nabla_{\mu} \nabla_{\mu}^{*}\right]+\mu_{l}\right\} \psi(x)
$$

Heavy non degenerate doublet

$$
S_{t m}^{h}=a^{4} \sum_{x} \bar{\psi}(x)\left\{\frac{1}{2} \gamma_{\mu}\left(\nabla_{\mu}+\nabla_{\mu}^{*}\right)-i \gamma_{5} \tau^{1}\left[M_{0}-\frac{a}{2} \nabla_{\mu} \nabla_{\mu}^{*}\right]+\mu_{\sigma}+\mu_{\delta} \tau^{3}\right\} \psi(x)
$$

- Osterwalder-Seiler valence quark action

$$
S_{O S}^{f}=a^{4} \sum_{x} \bar{q}_{f}(x)\left\{\frac{1}{2} \gamma_{\mu}\left(\nabla_{\mu}+\nabla_{\mu}^{*}\right)-i \gamma_{5} r_{f}\left[M_{0}-\frac{a}{2} \nabla_{\mu} \nabla_{\mu}^{*}\right]+\mu_{f}\right\} q_{f}(x)
$$

