Nucleon and pion structure in $N_{\rm f} = 2$ QCD

Gunnar Bali for RQCD University of Regensburg

with <u>Sara Collins</u>, Benjamin Gläßle, Meinulf Göckeler, <u>Johannes Najjar</u>, <u>Narjes Javadi-Motaghi</u>, <u>Daniel Richtmann</u>, <u>Rudolf Rödel</u>, Andreas Schäfer, Wolfgang Söldner and André Sternbeck

Lattice 2014

Columbia University, June 24, 2014

Motivation	Set-up	Proton: $\langle x \rangle_{u-d}$ and g_A	The pion	Mixed boundaries	Summary
Outling					

- Motivation
- Set-up: simulation parameters
- Proton g_A and $\langle x \rangle_{u-d}$
- $\langle x \rangle_u^{\text{con}}$ in the pion and σ -terms
- Mixed boundary conditions
- Summary

Proton structure calculations are...

- ... essential to exclude beyond-the-Standard-Model (BSM) dark matter candidates, relating predictions to experimental limits.
- ... important to predict cross-sections for processes on the quark-gluon level. Experiment e.g. unable to directly measure strangeness and gluon PDFs.
- ... needed to relate QCD to low energy effective theories that are also relevant for precision experiments.

Here I concentrate on

- ► How is the mass distributed among the partons? (scalar couplings)
- How is the spin distributed? (axial couplings)
- How is the momentum distributed? (moments of PDFs)

Action and configurations

Set-up

- $N_{\rm f} = 2$ NP improved Sheikholeslami-Wilson fermions, Wilson glue.
- $m_{\pi}L$ up to 6.7, a down to 0.06 fm, m_{π} down to 150 MeV.
- \blacktriangleright Two lattice spacings around $m_\pi \approx 280$ MeV, three around 430 MeV.
- 300–600 Wuppertal=Gauss smearing iterations on top of APE smearing.

β	<i>a</i> /fm	κ	V	$m_\pi/{ m MeV}$	Lm_{π}	$n_{ m conf}$	$t_{ m sink}/a$
5.20	0.081	0.13596	$32^{3} \times 64$	280	3.69	1986(4)	13
5.29	0.071	0.13620	$24^3 \times 48$	428	3.71	1999(2)	15
		0.13620	$32^3 \times 64$	423	4.89	1998(2)	15,17
		0.13632	$32^3 imes 64$	294	3.42	2023(2)	7,9,11,13,15,17
			$40^3 imes 64$	290	4.19	2025(2)	15
			$64^3 imes 64$	289	6.70	1232(2)	15
		0.13640	$48^3 imes 64$	160	2.77	3442(2)	15
			$64^3 imes 64$	151	3.49	1593(3)	9,12,15
5.40	0.060	0.13640	$32^{3} \times 64$	491	4.81	1123(2)	17
		0.13647	$32^3 \times 64$	427	4.18	1999(2)	17
		0.13660	$48^3 \times 64$	261	3.82	2177(2)	17

Three point functions

Set-up

Evaluate $\langle N | \bar{q} \Gamma q | N \rangle$ (Lines: quark "propagators" M_{xy}^{-1} , $M = \not D + m_q$)

disconnected

 $q \in \{u, d\}$: both quark-line connected and disconnected terms.

q = s: only the disconnected term.

 χ symmetry explicitly broken: mixing under renormalization.

"Connected" requires only 12 rows of M^{-1} .

"Disconnected" 12N³ rows (timeslice): stochastic "all-to-all" methods.

"Disconnected" cancels $(m_u = m_d, \not(D, D))$ from isovector combinations: "proton minus neutron", i.e. $\langle N | (\bar{u}\Gamma u - \bar{d}\Gamma d) | N \rangle$.

Excited states

Simultaneous fit of $C_{3\text{pt}}(t, t_{\text{sink}})/(A_0 e^{-m_N t_{\text{sink}}})$ (renormalized to $\overline{\text{MS}}$) for $\langle x \rangle_{u-d}$ at $m_{\pi} \approx 290,150$ MeV, $a \approx 0.071$ fm, $m_{\pi}L \approx 3.5$ [S Collins]:

Excited states were e.g. also investigated by Dinter et al, arXiv:1108.1076; Owen et al, arXiv:1212.4668; Capitani et al, arXiv:1205.0180; Green et al, arXiv:1209.1687; Bhattacharya et al, 1306.5435; Alexandrou et al, 1312.2874.

Motivation	Set-up	Proton: $\langle x \rangle_{u-d}$ and g_A	The pion	Mixed boundaries	Summary
Г:+ £	at a c				

Fit function

$$\begin{split} \mathcal{C}_{\rm 2pt}(t_{\rm sink}) &= e^{-m_N t_{\rm sink}} \left[\mathcal{A}_0 + \mathcal{A}_1 e^{-\Delta m_N t_{\rm sink}} \right] + \cdots \\ \mathcal{C}_{\rm 3pt}(t_{\rm sink},t) &= \mathcal{A}_0 e^{-m_N t_{\rm sink}} \left\{ \mathcal{B}_0 + \mathcal{B}_1 \left[e^{-\Delta m_N (t_{\rm sink}-t)} + e^{-\Delta m_N t} \right] \right. \\ &+ \left. \mathcal{B}_2 e^{-\Delta m_N t_{\rm sink}} \right\} + \cdots , \end{split}$$

 $B_0 = \langle N | O | N \rangle$, $B_1 \propto \langle N' | O | N \rangle$, $B_2 \propto \langle N' | O | N' \rangle$, $\Delta m_N = m_{N'} - m_N$.

Fit $C_{2\text{pt}}$ and $C_{3\text{pt}}$ simultaneously for all t_{sink} , t with $t \in [\Delta t, t_{\text{sink}} - \Delta t]$, varying Δt , and compare with constant fit to

$$rac{C_{
m 3pt}(t_{
m sink},t)}{C_{
m 2pt}(t_{
m sink})} = B_0 + \cdots \,.$$

 B_2 can only be identified, varying $t_{\rm sink}$.

 B_1 , corresponding to a change of nodes of the "wavefunction", may be enhanced if O contains a derivative.

Comparison between constant and combined fits

$m_\pi pprox$ 290 MeV [S Collins, R Rödl]:

Using our smearing function, the excited state contributions to g_A almost cancel in $C_{3\rm pt}/C_{2\rm pt}$.

Results: g_A

Comparing similar volumes: no significant discretization effects.

 $m_{\pi} \approx 425$ MeV: g_A increases by $\approx 5\%$ with $m_{\pi}L \approx 3.7 \rightarrow 4.9$ $m_{\pi} \approx 290$ MeV: g_A up by $\approx 6\%$ with $m_{\pi}L \approx 3.4 \rightarrow 4.2$, then constant. $m_{\pi} \approx 150$ MeV: No difference between $m_{\pi}L \approx 2.8$ and $m_{\pi}L \approx 3.5$. $\geq 80^3$ volume would have been interesting.

- With similar FSE as at 290 MeV or 430 MeV the 150 MeV point would have hit the experimental value.
- Unfortunately, we are unable to check this.
- χ PT however predicts FSE at constant $m_{\pi}L$ to decrease with m_{π}^2 .
- $m_{\pi}L$ may be too small for FSE to be dominated by pion exchange.
- ▶ χ PT may not yet converge well at our pion masses? → Plenary talk S Dürr

Results: $\langle x \rangle_{u-d}$

No significant lattice spacing effects.

Motivation	Set-up	Proton: $\langle x \rangle_{u-d}$ and g_A	The pion	Mixed boundaries	Summary

- Physical point is missed.
- ▶ NP Renormalization? Under investigation but 20% are a lot.
- ► Finite-*a* effects: We only vary *a* by 25%. Unlike for *g_A* there will be O(*a*) corrections.

 \Rightarrow $\textit{N}_{\rm f}$ = 2+1 CLS simulations with open boundary conditions: $\textit{a} \rightarrow 0.$

Results: Pion $\langle x \rangle_{\mu}^{\rm con}$

needs to be included for $\langle x \rangle_u$. Effect could also be due to omitting this.

Decomposition of the proton (and pion) mass I

$$m_{N} = \underbrace{\sum_{q \in \{u,d,s,\ldots\}}}_{\text{quarks}} m_{q} \langle N | \bar{q} \mathbbm{1} q | N \rangle}_{\text{quarks}} + \underbrace{\left\langle N \left| \frac{1}{8\pi\alpha_{L}} (\mathbf{E}^{2} - \mathbf{B}^{2}) + \sum_{q} \bar{q} \mathbf{D} \cdot \gamma q \right| N \right\rangle}_{\text{gluon interactions (Eucl. spacetime)}} + \underbrace{\frac{1}{4} \left(m_{N} - \sum_{q} m_{q} \langle N | \bar{q} \mathbbm{1} q | N \rangle \right)}_{\text{trace anomaly}}$$

VEV $\langle 0|\bar{q}q|0\rangle$ is understood to be subtracted from $\langle N|\bar{q}q|N\rangle$. Pion-nucleon σ -term: $\sigma_{\pi N} = m_u \langle N|\bar{u}u|N\rangle + m_d \langle N|\bar{d}d|N\rangle = \sigma_u + \sigma_d$. Scalar particles (Higgs, neutralino etc.) couple \propto quark matrix elements.

Decomposition of the proton (and pion) mass II

$$\sigma_{\pi} = m_{ud} \langle \pi | \bar{u}u + \bar{d}d | \pi \rangle = m_{ud} \frac{\partial m_{\pi}}{\partial m_{ud}} \quad \underbrace{= \frac{m_{\pi}}{2}}_{\text{GMOR}} + \mathcal{O}(m_{\pi}^3) \,.$$

Therefore:

 σ_{π} can be further decomposed into valence and sea quark contributions. Wilson fermions: singlet and non-singlet mass renormalization constants differ by $r_m > 1 \Rightarrow$ "valence" > "connected":

$$r := \frac{\langle \pi | \bar{u}u + \bar{d}d | \pi \rangle^{\text{sea}}}{\langle \pi | \bar{u}u + \bar{d}d | \pi \rangle} = r_m \left(\frac{\langle \pi | \bar{u}u + \bar{d}d | \pi \rangle^{\text{dis}}}{\langle \pi | \bar{u}u + \bar{d}d | \pi \rangle_{\text{lat}}} - 1 \right) + 1$$

σ_{π} compared to $m_{\pi}/2$ and sea quark contrib.

[S Collins, D Richtmann]

The theoretical expectation $\sigma_{\pi} \approx m_{\pi}/2$ is confirmed.

Less than \sim 10% of σ_π is due to sea quarks.

However, for $a \approx 0.071$ fm about 30% of the signal originates from the disconnected contribution.

16 / 21

$\sigma_{\pi N}$ for the nucleon

[S Collins]

The non-vanishing light quark masses are directly responsible for only ≈ 35 MeV of the nucleon mass but for 68 MeV of the pion mass!

This may not be too surprising since $m_N \not\rightarrow 0$ as $m_{ud} \rightarrow 0$ but recently I met someone who believes in "constituent quarks".

Nucleon and pion

Motivation Set-up Proton: $\langle { imes}
angle_{u-d}$ and g_A The pion Mixed boundaries Summary

Scalars: even $|n\rangle$, pseudoscalars: odd $|n\rangle$. Vacuum: $|0\rangle$, Pion: $|1\rangle$. $\hat{O}^{\dagger}|0\rangle \propto |1\rangle$ creates a pion, *S* is the scalar current. (Anti-)periodic boundary conditions:

$$\langle O(t_f)S(t)O^{\dagger}(0)
angle = \left[\sum_{m \,\mathrm{even}}\sum_{n,k \,\mathrm{odd}} + \sum_{m \,\mathrm{odd}}\sum_{n,k \,\mathrm{even}}
ight] imes \\ \left(\langle m|\hat{O}|n
angle\langle n|S|k
angle\langle k|\hat{O}^{\dagger}|m
angle e^{-tE_k}e^{-(t_f-t)E_n}e^{-(L_t-t_f)E_m}
ight)$$

First sum is OK for the ground state pion since $E_0 = 0$ and $E_2 \gtrsim 2E_1$. But we are not interested in the σ -term of the scalar/ $\pi\pi$ (second sum)! Neglecting $n \geq 2$ one easily obtains:

$$rac{C_{
m 3pt}(t_f,t)}{C_{
m 2pt}(t_f)} - \langle 0|S|0
angle = \underbrace{(\langle 1|S|1
angle - \langle 0|S|0
angle)}_{\sigma-{
m term}} rac{1}{1+e^{(2t_f-L_t)E_1}}$$

Unfortunately, n = 2 is not always negligible.

Connected contribution to the pion σ -term

We compute two- and three-point functions with antiperiodic and with mixed BCs in time (one propagator antiperiodic, one periodic).

We then add/subtract these depending on whether t is "inside"/"outside", thereby removing wrong-parity contributions.

 $m_{\pi} pprox 425 \text{ MeV}$ $m_{\pi} pprox 290 \text{ MeV}$ $m_{\pi} pprox 150 \text{ MeV}$ $m_{\pi} L_t pprox 9.8$ $m_{\pi} L_t pprox 6.7$ $m_{\pi} L_t pprox 3.5$

Question to the audience for my write-up: we experimented with this since the late 90s. So it is an old idea but who invented it?

Disconnected contributions

Stochastic sources every 8 timeslices \Rightarrow no overhead for extra *t*-values.

Motivation	Set-up	Proton: $\langle x \rangle_{u-d}$ and g_A	The pion	Mixed boundaries	Summary
Summa	iry				

- g_A seems to approach the physical value, once $m_{\pi}L > 4$.
- Finite volume effects for $m_{\pi}L < 4$ are not well described by χPT .
- ▶ Possibly little above $m_{\pi} = 150$ MeV is well described by χ PT.
- ► ⟨x⟩_{u-d} comes out 20% bigger than expected. *a*-effects? Renormalization?
- At light pion masses, the lattice needs to be "long" for mesonic observables, in particular for the *σ*-term of the pion.
- We worked with mixed boundary conditions to alleviate this problem.
- The resulting σ-term of the pion agrees with the theoretical expectation.