Chiral dynamics in the low temperature phase of QCD

Daniel Robaina

Institute of Nuclear Physics

Johannes Gutenberg University, Mainz

June 26, 2014

"The 32nd International Symposium on Lattice Field Theory" - NYC 23-28 June '14

Based on the publication by Bastian B. Brandt, Anthony Francis, Harvey B. Meyer and D.R., "Chiral dynamics in the low temperature phase of QCD" [arXiv:1406.5602]

Introduction...

Initial thoughts ...

- The theory of strong interactions put into thermal media may behave completely different than at zero temperature (states, vacuum, ...).
- \rightarrow In particular, it is worth asking what becomes out of the relevant degrees of freedom that dominate the low-temperature regime $(T < T_C) \rightarrow \pi$ states

Goals.

- Study the dispersion relation of (quasi)-particles carrying pion quantum numbers.
- Test the chiral expansion around (T = 0, m_q = 0) (Ordinary ChPT at finite T)

Introduction...

Initial thoughts ...

- The theory of strong interactions put into thermal media may behave completely different than at zero temperature (states, vacuum, ...).
- \rightarrow In particular, it is worth asking what becomes out of the relevant degrees of freedom that dominate the low-temperature regime $(T < T_C) \rightarrow \pi$ states

Goals...

- Study the dispersion relation of (quasi)-particles carrying pion quantum numbers.
- Test the chiral expansion around $(T = 0, m_q = 0)$ (Ordinary ChPT at finite T)

Pion dispersion relation...

- The ordinary pion dispersion relation dictated by Lorentz symmetry is $E = \sqrt{\mathbf{k}^2 + m_{\pi}^2}$.
- We want to derive and study a modified dispersion relation that takes the following form:

$$\omega_{\mathbf{k}}^2 = u^2(T)(\mathbf{k}^2 + m_\pi^2)$$

where u(T) may be interpreted as the *pion velocity* in the chiral limit (massless pions) and m_{π} is the *screening mass*.

Notice..

ω_k should be understood as a pole in the retarded Green-function carrying pion quantum numbers. Equivalently as a "narrow" peak in the corresponding spectral function.

(ロ) (四) (注) (注) (注) (注) (注)

Pion dispersion relation...

- The ordinary pion dispersion relation dictated by Lorentz symmetry is $E = \sqrt{\mathbf{k}^2 + m_{\pi}^2}$.
- We want to derive and study a modified dispersion relation that takes the following form:

$$\omega_{\mathbf{k}}^2 = u^2(T)(\mathbf{k}^2 + m_\pi^2)$$

where u(T) may be interpreted as the *pion velocity* in the chiral limit (massless pions) and m_{π} is the *screening mass*.

Notice...

• $\omega_{\mathbf{k}}$ should be understood as a pole in the retarded Green-function carrying pion quantum numbers. Equivalently as a "narrow" peak in the corresponding spectral function.

Lattice approach

A priori it looks like a very simple problem ...

If k = 0 we should measure nothing but the pion mass at finite temperature.

But the real problem is ...

- Because of how finite temperature is implemented on the Lattice, there is no hope on doing spectroscopy along the very short time direction ($N_{\tau} \sim 16$).
- The kernel appearing in equal-time correlators $K(\omega, x_0) = \frac{\cosh(\omega(\beta/2 x_0))}{\sinh(\omega\beta/2)}$ falls off very slowly with x_0 . $\beta \equiv 1/T$

Solutions..

- $\bullet
 ightarrow {\sf Use}$ screening correlators
- Other approaches like spectral function reconstruction: Maximum Entropy Method (MEM).

Lattice approach

A priori it looks like a very simple problem ...

If k = 0 we should measure nothing but the pion mass at finite temperature.

But the real problem is ...

- Because of how finite temperature is implemented on the Lattice, there is no hope on doing spectroscopy along the very short time direction ($N_{\tau} \sim 16$).
- The kernel appearing in equal-time correlators $K(\omega, x_0) = \frac{\cosh(\omega(\beta/2 x_0))}{\sinh(\omega\beta/2)}$ falls off very slowly with x_0 . $\beta \equiv 1/T$

Solutions...

- $\bullet \rightarrow \mathsf{Use}\ \mathit{screening}\ \mathit{correlators}$
- Other approaches like spectral function reconstruction: Maximum Entropy Method (MEM).

Pion dispersion relation derivation: D.T. Son et al.

We got inspired by the approach from D.T. Son and M. Stephanov:

Real-time pion propagation in finite temperature QCD, Phys Rev. D **66** (2002), [arXiv:hep-ph/0204226]

- They demonstrate that the dispersion relation of the pion is fully determined by *static quantities*.
- The results are enforced with both a lagrangian and hydrodynamic approach.

\rightarrow Suitable for a Lattice approach!

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Pion dispersion relation derivation: D.T. Son et al.

We got inspired by the approach from D.T. Son and M. Stephanov:

Real-time pion propagation in finite temperature QCD, Phys Rev. D **66** (2002), [arXiv:hep-ph/0204226]

- They demonstrate that the dispersion relation of the pion is fully determined by *static quantities*.
- The results are enforced with both a lagrangian and hydrodynamic approach.

 \rightarrow Suitable for a Lattice approach!

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Our work: logic

Ingredients

- **1** We exploit Ward Identities arising from the PCAC relation.
- $2 \rightarrow$ This enables us to fully determine correlators in the chiral limit (its residues).
- **3** The idea is then to use those at small but finite quark mass supported by Goldstone's theorem.

Limitations...

- Well separated from the crossover region $T < T_C$
- Quark condensate is assumed to be different from zero.
- The quark mass has to be small.
- Correlation functions containing pion states have to be dominated by the pion itself.

Nothing is said about temperature but $T < T_C$.

A more detailed derivation ...

In the massless theory (m = 0) we notice that $\langle P \mathbf{A} \rangle$ is fully determined by WI's:

$$G_{AP}(x_0, \mathbf{0}) = \int d^3x \langle P(x) A_0(0) \rangle = rac{\langle \psi \psi \rangle}{2\beta} (x_0 - \beta/2)$$

$$G_{\rm AP}(x_0,\mathbf{k}) = \int d^3x e^{-i\mathbf{k}\mathbf{x}} \left\langle P(x)A_0(0)\right\rangle = \int_0^\infty d\omega \rho_{\rm AP}(\omega,k) \frac{\sinh(\omega(\beta/2-x_0))}{\sinh(\omega\beta/2)}$$

One conclude easily that at zero momentum:

$$ho_{\mathsf{AP}}(\omega,\mathsf{0})=-rac{ig\langlear\psi\psiig
angle}{2}\delta(\omega)$$

a massless excitation persists at finite temperature for any temperature below $T_{\rm C}.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

We define the screening mass m_{π} at *small but finite quark mass*, by making use of the results for the $\langle PA \rangle$ correlator and the GOR relation:

$$f_{\pi}^2 m_{\pi}^2 = -m \left\langle \bar{\psi} \psi \right\rangle$$

Chiral Ward Identities imply for the static $\langle PP \rangle$ correlator:

$$\int dx_0 \left\langle P(0)P(x)\right\rangle = -\frac{\left\langle \bar{\psi}\psi\right\rangle^2}{4f_\pi^2} \frac{\exp(-m_\pi r)}{4\pi r} \qquad r \to \infty$$

Now, we use the following Ansatz

$$\rho_{\mathsf{P}}(\omega, k) = \operatorname{sgn}(\omega) C(k^2) \delta(\omega^2 - \omega_{\mathbf{k}}^2) + \dots$$

$$\int dx_0 \langle P(0)P(x) \rangle = 2 \lim_{\epsilon \to 0} \int \frac{d^3k}{(2\pi)^3} e^{i\mathbf{k}\mathbf{x}} \int_0^\infty \frac{d\omega}{\omega} e^{-\epsilon\omega} \rho_{\mathsf{P}}(\omega, k)$$
$$= \int \frac{d^3k}{(2\pi)^3} e^{i\mathbf{k}\mathbf{x}} \frac{\mathcal{C}(k^2)}{\omega_{\mathsf{k}}^2} + \dots$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�(

One last observation ...

By comparing the last two equation one concludes easily that

$$\omega_{f k}^2 \propto ({f k}^2 + m_\pi^2)$$

with

$$C(k^2) = -\frac{\left\langle \bar{\psi}\psi\right\rangle^2 u^2}{4f_\pi^2}$$

and f_{π} is defined by

$$\int dx_0 d^2 x_{\perp} \langle A_3(x) A_3(0) \rangle = \frac{1}{2} f_{\pi}^2 m_{\pi} e^{-m_{\pi} |x_3|} \qquad |x_3| \to \infty$$

Conclusion:

We have proven our formula for the modified dispersion relation and showed that it is compatible with chiral WI's in the limit of small quark mass.

Lattice estimators for u(T)

Working a little bit harder one can calculate the residue for the last correlator:

$$\rho_{\mathsf{A}}(\omega,0) = \operatorname{sgn}(\omega) f_{\pi}^2 m_{\pi}^2 \delta(\omega^2 - \omega_0^2) + \dots$$

and finally by using:

$$\omega_{\mathbf{0}}^{2} = \left. \frac{\partial_{0}^{2} G_{\mathsf{A}}(x_{0}, \mathbf{0})}{G_{\mathsf{A}}(x_{0}, \mathbf{0})} \right|_{x_{0} = \beta/2} = -4m^{2} \left. \frac{G_{\mathsf{P}}(x_{0}, \mathbf{0})}{G_{\mathsf{A}}(x_{0}, \mathbf{0})} \right|_{x_{0} = \beta/2}$$

$$u_{f} = \frac{f_{\pi}^{2} m_{\pi}}{2G_{A}(\beta/2, \mathbf{0}) \sinh(u_{f} m_{\pi}\beta/2)}$$
$$u_{m} = -\frac{4m^{2}}{m_{\pi}^{2}} \left. \frac{G_{P}(x_{0}, \mathbf{0})}{G_{A}(x_{0}, \mathbf{0})} \right|_{x_{0}=\beta/2}$$

Relevant quantities...

$$f_{\pi}, m_{\pi}$$

$$m \leftrightarrow \overline{m}^{\overline{MS}}(\mu = 2 \text{GeV})$$

$$G_{A}(\beta/2, \mathbf{0}), \ G_{P}(\beta/2, \mathbf{0})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

 $\longrightarrow u(T)$ is a RGI quantity!!

Lattice setup ...

- Two temperature scans (C_1, D_1) at constant renormalized awi-mass with $N_f = 2 \mathcal{O}(a)$ improved Wilson fermions.
- \blacksquare Lattice sizes are 16 \times 32 3 covering a temperature range from 150 MeV to 235 MeV.

 \rightarrow Additional CLS zero temperature ensemble (**A**₅) 64 × 32³ equivalent to **C**₁ at $m_{\pi} = 290$ MeV: *test ensamble*.

Pion velocity results in the C_1 scan. ...

Figure : Left: Pion velocitiy u(T) Lattice estimators. Right: Ratio of estimators to test the chiral approximation as a function of temperature.

Well in the deconfined phase $u_f/u_m \sim \mathcal{O}(T/m)$.

イロト イヨト イヨト イヨト

Test of chiral predictions (A₅ comparison) ...

	$ \begin{array}{l} m_{\pi} \; [\text{MeV}] \\ f_{\pi} \; [\text{MeV}] \\ \left \left\langle \bar{\psi}\psi \right\rangle_{\text{GOR}}^{\text{MS}} \right ^{1/3} (\mu = 2 \text{GeV}) \; [\text{MeV}] \end{array} $	305(5) 93(2) 364(7)	
-	$ \begin{array}{c} \omega_{\pmb{0}} \; [\text{MeV}] \\ f_{\pi,\pmb{0}} \; [\text{MeV}] \\ \left\langle \bar{\psi}\psi \rangle \overline{\frac{\text{MS}}{\text{GOR},\pmb{0}}} \right ^{1/3} \; (\mu = 2 \text{GeV}) \; [\text{MeV}] \end{array} $	294(4) 97(3) 368(9)	$\begin{array}{c} 0.9\\ 0.8\\ 0.7\\ 0.6 \end{array} \begin{bmatrix} \left(\left\langle \bar{\psi}\psi \right\rangle \overline{\sum} \left\langle \psi \right\rangle \right\rangle \right)^{1/3} \\ \hline \end{array} \end{bmatrix}$
	u_f u_m u_f / u_m ω_0 / m_π	0.96(2) 0.92(6) 1.04(4) 0.96(2)	$\begin{array}{c} \begin{array}{c} 0.5 \\ 0.5 \\ 0.4 \\ 0.3 \\ 1.5 \\ 1.6 \\ 1.6 \\ 1.7 \\ 1.8 \\ 1.6 \\ 1.7 \\ 1.8 \\ 1.9 \\ 2 \\ 2.1 \\ 2.2 \\ 2.3 \\ 7/f \\ 2.3 \\ 7/f \\ 2.3 \\ 7/f \\ 2.3 \\ 2.1 \\ 2.2 \\ 2.3 \\ 7/f \\ 2.3 \\ 2.1 \\ 2.2 \\ 2.3 \\ 2.$
1		f_{π}	$\ell_{\pi}^{0.9} = m_{\pi}^{-1}$
0.6	H I	ł	
0.2	$\begin{array}{c c} & & & \\ \hline 1 & \\$		$\begin{array}{c} 0.5 \\ 0.4 \\ \hline 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$
	$T/f_{\pi,0}$		$T/f_{\pi,0}$

Cross check. Maximum Entropy Method (MEM) ...

<u>Goal</u>: To reproduce the spectral function from the Euclidean correlator via different models:

Recalling the form of the spectral function for G_A :

$$\rho_{\mathsf{A}}(\omega,\mathbf{0}) = \frac{f_{\pi}^2 m_{\pi}}{2u} \delta(\omega - \omega_{\mathbf{0}}) + \dots \implies \mathcal{A}(\mathsf{A}) \equiv 2 \int_0^{\mathsf{A}} \frac{d\omega}{\omega} \rho_{\mathsf{A}}(\omega,\mathbf{0}) = \frac{f_{\pi}^2}{u^2}$$

One introduces a strong systematic with MEM. One has to check the model independency of the results very carefully!

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Summary of MEM results ...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Conclusions & Outlook

- Reasonable agreement of the two u(T) estimators up to T ~ 190MeV + MEM cross check indicates the validity of the chiral expansion and of its assumptions.
- $u_f(T \simeq 150 \text{MeV}) = 0.88(2)$ suggests a violation of boost invariance because of the presence of the thermal medium.

 \blacksquare \rightarrow May have implications for the HRG gas model.

The screening pion decay constant f_{π} and the mass of the pion quasiparticle $\omega_0(T) = um_{\pi}$ at $T \simeq 150$ MeV differ very little from the predictions of χPT around $(T = 0, m_q = 0)$.

- Extend the calculation to lighter quark mass and maybe lower temperatures.
- Further test the functional form of the pion dispersion relation by analyzing data at nonzero momentum k.
- Detailed study of finite size effects and cutoff dependence.

Figure : Cutoff Λ -dependence of $\mathcal{A}(\Lambda, m(\omega))$

◆□→ ◆□→ ◆三→ ◆三→

- 2

Figure: Left: $\langle PP \rangle (x_0)$ channel. Right: $\langle A_0 A_0 \rangle (x_0)$ channel.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - の々で

Figure: $\langle A_0 A_0 \rangle$ reconstruction for the 3 different default models.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで