Chiral dynamics in the low temperature phase of QCD

Daniel Robaina

Institute of Nuclear Physics
Johannes Gutenberg University, Mainz

June 26, 2014

“The 32nd International Symposium on Lattice Field Theory” - NYC 23-28 June ’14

Based on the publication by Bastian B. Brandt, Anthony Francis, Harvey B. Meyer and D.R., “Chiral dynamics in the low temperature phase of QCD” [arXiv:1406.5602]
Introduction...

Initial thoughts...

- The theory of strong interactions put into thermal media may behave completely different than at zero temperature (states, vacuum, ...).

 → In particular, it is worth asking what becomes out of the relevant degrees of freedom that dominate the low-temperature regime ($T < T_C$) → π states

Goals...

- Study the dispersion relation of (quasi)-particles carrying pion quantum numbers.
- Test the chiral expansion around ($T = 0$, $m_q = 0$) (Ordinary ChPT at finite T)
Introduction...

Initial thoughts...

- The theory of strong interactions put into thermal media may behave completely different than at zero temperature (states, vacuum, ...).
- In particular, it is worth asking what becomes out of the relevant degrees of freedom that dominate the low-temperature regime ($T < T_c$) → π states

Goals...

- Study the dispersion relation of (quasi)-particles carrying pion quantum numbers.
- Test the chiral expansion around ($T = 0, m_q = 0$) (Ordinary ChPT at finite T)
The ordinary pion dispersion relation dictated by Lorentz symmetry is \(E = \sqrt{k^2 + m_{\pi}^2} \).

We want to derive and study a modified dispersion relation that takes the following form:

\[\omega_k^2 = u^2(T)(k^2 + m_{\pi}^2) \]

where \(u(T) \) may be interpreted as the pion velocity in the chiral limit (massless pions) and \(m_{\pi} \) is the screening mass.

Notice...

\(\omega_k \) should be understood as a pole in the retarded Green-function carrying pion quantum numbers. Equivalently as a “narrow” peak in the corresponding spectral function.
The ordinary pion dispersion relation dictated by Lorentz symmetry is $E = \sqrt{k^2 + m_{\pi}^2}$.

We want to derive and study a modified dispersion relation that takes the following form:

$$\omega_k^2 = u^2(T)(k^2 + m_{\pi}^2)$$

where $u(T)$ may be interpreted as the pion velocity in the chiral limit (massless pions) and m_{π} is the screening mass.

Notice...

- ω_k should be understood as a pole in the retarded Green-function carrying pion quantum numbers. Equivalently as a “narrow” peak in the corresponding spectral function.
Lattice approach

A priori it looks like a very simple problem...

- If $k = 0$ we should measure nothing but the pion mass at finite temperature.

 \[K(\omega, x_0) = \frac{\cosh(\omega(\beta/2 - x_0))}{\sinh(\omega\beta/2)} \]

 falls off very slowly with x_0. \(\beta \equiv 1/T\)

But the real problem is...

- Because of how finite temperature is implemented on the Lattice, there is no hope on doing spectroscopy along the very short time direction (\(N_T \sim 16\)).

Solutions...

- Use screening correlators
- Other approaches like spectral function reconstruction: Maximum Entropy Method (MEM).
Lattice approach

A priori it looks like a very simple problem...

- If $k = 0$ we should measure nothing but the pion mass at finite temperature.

But the real problem is...

- Because of how finite temperature is implemented on the Lattice, there is no hope on doing spectroscopy along the very short time direction ($N_T \sim 16$).

- The kernel appearing in equal-time correlators

 \[
 K(\omega, x_0) = \frac{\cosh(\omega(\beta/2 - x_0))}{\sinh(\omega \beta/2)}
 \]

 falls off very slowly with x_0. $\beta \equiv 1/T$

Solutions...

- → Use screening correlators

- Other approaches like spectral function reconstruction: Maximum Entropy Method (MEM).
We got inspired by the approach from D.T. Son and M. Stephanov:

Real-time pion propagation in finite temperature QCD,

They demonstrate that the dispersion relation of the pion is fully determined by *static quantities*.

The results are enforced with both a lagrangian and hydrodynamic approach.

→ Suitable for a Lattice approach!
Pion dispersion relation derivation: D.T. Son et al.

We got inspired by the approach from D.T. Son and M. Stephanov:

Real-time pion propagation in finite temperature QCD,

- They demonstrate that the dispersion relation of the pion is fully determined by *static quantities*.
- The results are enforced with both a lagrangian and hydrodynamic approach.

→ Suitable for a Lattice approach!
Our work: logic

Ingredients

1. We exploit Ward Identities arising from the PCAC relation.
2. This enables us to fully determine correlators in the chiral limit (its residues).
3. The idea is then to use those at small but finite quark mass supported by Goldstone’s theorem.

Limitations...

- Well separated from the crossover region $T < T_C$
- Quark condensate is assumed to be different from zero.
- The quark mass has to be small.
- Correlation functions containing pion states have to be dominated by the pion itself.

Nothing is said about temperature but $T < T_C$.
A more detailed derivation ...

In the massless theory \((m = 0)\) we notice that \(\langle PA \rangle\) is fully determined by WI’s:

\[
G_{AP}(x_0, 0) = \int d^3x \langle P(x)A_0(0) \rangle = \frac{\langle \bar{\psi}\psi \rangle}{2\beta} (x_0 - \beta/2)
\]

\[
G_{AP}(x_0, k) = \int d^3xe^{-ikx} \langle P(x)A_0(0) \rangle = \int_0^\infty d\omega \rho_{AP}(\omega, k) \frac{\sinh(\omega(\beta/2 - x_0))}{\sinh(\omega\beta/2)}
\]

One conclude easily that at zero momentum:

\[
\rho_{AP}(\omega, 0) = -\frac{\langle \bar{\psi}\psi \rangle}{2} \delta(\omega)
\]

a massless excitation persists at finite temperature for any temperature below \(T_C\).
We define the screening mass m_π at \textit{small but finite quark mass}, by making use of the results for the $\langle PA \rangle$ correlator and the GOR relation:

$$f_\pi^2 m_\pi^2 = -m \langle \bar{\psi} \psi \rangle$$

Chiral Ward Identities imply for the static $\langle PP \rangle$ correlator:

$$\int dx_0 \langle P(0)P(x) \rangle = -\frac{\langle \bar{\psi} \psi \rangle^2}{4f_\pi^2} \frac{\exp(-m_\pi r)}{4\pi r} \quad r \to \infty$$

Now, we use the following Ansatz

$$\rho_P(\omega, k) = \text{sgn}(\omega) C(k^2) \delta(\omega^2 - \omega_k^2) + \ldots$$

$$\int dx_0 \langle P(0)P(x) \rangle = 2 \lim_{\epsilon \to 0} \int \frac{d^3 k}{(2\pi)^3} e^{ikx} \int_0^\infty \frac{d\omega}{\omega} e^{-\epsilon\omega} \rho_P(\omega, k)$$

$$= \int \frac{d^3 k}{(2\pi)^3} e^{ikx} \frac{C(k^2)}{\omega_k^2} + \ldots$$
By comparing the last two equation one concludes easily that

$$\omega_k^2 \propto (k^2 + m^2)$$

with

$$C(k^2) = -\langle \bar{\psi}\psi \rangle^2 \frac{u^2}{4f^2}$$

and f_π is defined by

$$\int d_{x_0} d^2x_\perp \langle A_3(x)A_3(0) \rangle = \frac{1}{2} f_\pi^2 m_\pi e^{-m_\pi |x_3|} \quad |x_3| \to \infty$$

Conclusion:
We have proven our formula for the modified dispersion relation and showed that it is compatible with chiral WI’s in the limit of small quark mass.
Lattice estimators for $u(T)$

Working a little bit harder one can calculate the residue for the last correlator:

$$\rho_A(\omega, 0) = \text{sgn}(\omega) f_\pi^2 m_\pi^2 \delta(\omega^2 - \omega_0^2) + \ldots$$

and finally by using:

$$\omega_0^2 = \frac{\partial^2 G_A(x_0, 0)}{G_A(x_0, 0)} \bigg|_{x_0=\beta/2} = -4m^2 \frac{G_P(x_0, 0)}{G_A(x_0, 0)} \bigg|_{x_0=\beta/2}$$

\[u_f = \frac{f_\pi^2 m_\pi}{2G_A(\beta/2, 0) \sinh(u_f m_\pi \beta/2)} \]

\[u_m = -\frac{4m^2}{m_\pi^2} \frac{G_P(x_0, 0)}{G_A(x_0, 0)} \bigg|_{x_0=\beta/2} \]

\[
\rightarrow u(T) \text{ is a RGI quantity!!}
\]
Lattice setup ...

- Two temperature scans \((C_1, D_1)\) at constant renormalized awi-mass with \(N_f = 2\) \(\mathcal{O}(a)\) improved Wilson fermions.
- Lattice sizes are \(16 \times 32^3\) covering a temperature range from 150 MeV to 235 MeV.

\[\rightarrow\] Additional CLS zero temperature ensemble \((A_5)\) \(64 \times 32^3\) equivalent to \(C_1\) at \(m_\pi = 290\text{MeV}:\) test ensamble.
Pion velocity results in the C_1 scan. ...

Figure: Left: Pion velocity $u(T)$ Lattice estimators. Right: Ratio of estimators to test the chiral approximation as a function of temperature.

Well in the deconfined phase $u_f / u_m \sim \mathcal{O}(T/m)$.
Test of chiral predictions (A_5 comparison) ...

<table>
<thead>
<tr>
<th>m_π [MeV]</th>
<th>305(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_π [MeV]</td>
<td>93(2)</td>
</tr>
<tr>
<td>$\left</td>
<td>\langle \bar{\psi}\psi\rangle_{\text{MS GOR}}^{1/3} (\mu = 2\text{GeV})\right</td>
</tr>
<tr>
<td>ω_0 [MeV]</td>
<td>294(4)</td>
</tr>
<tr>
<td>$f_{\pi,0}$ [MeV]</td>
<td>97(3)</td>
</tr>
<tr>
<td>$\left</td>
<td>\langle \bar{\psi}\psi\rangle_{\text{MS GOR},0}^{1/3} (\mu = 2\text{GeV})\right</td>
</tr>
</tbody>
</table>

u_f	0.96(2)
u_m	0.92(6)
u_f / u_m	1.04(4)
ω_0 / m_π	0.96(2)

\[f_\pi (T) / f_\pi (0) \]

\[l_\pi = m_\pi^{-1} \]
Goal: To reproduce the spectral function from the Euclidean correlator via different models:

Recalling the form of the spectral function for G_A:

$$
\rho_A(\omega, 0) = \frac{f^2 \pi m}{2u} \delta(\omega - \omega_0) + \ldots \implies A(\Lambda) \equiv 2 \int_0^\Lambda \frac{d\omega}{\omega} \rho_A(\omega, 0) = \frac{f^2}{u^2}
$$

One introduces a strong systematic with MEM. One has to check the model independency of the results very carefully!
Summary of MEM results …
Conclusions & Outlook

- Reasonable agreement of the two \(u(T) \) estimators up to \(T \approx 190 \text{MeV} \) +
MEM cross check indicates the validity of the chiral expansion and of its
assumptions.

- \(u_f(T \approx 150 \text{MeV}) = 0.88(2) \) suggests a violation of boost invariance
because of the presence of the thermal medium.

 → May have implications for the HRG gas model.

- The screening pion decay constant \(f_\pi \) and the mass of the pion
quasiparticle \(\omega_0(T) = um_\pi \) at \(T \approx 150 \text{ MeV} \) differ very little from the
predictions of \(\chi PT \) around \((T = 0, m_q = 0) \).

- Extend the calculation to lighter quark mass and maybe lower
temperatures.

- Further test the functional form of the pion dispersion relation by
analyzing data at nonzero momentum \(k \).

- Detailed study of finite size effects and cutoff dependence.
Figure: Cutoff Λ-dependence of $\mathcal{A}(\Lambda, m(\omega))$
Figure: Left: $\langle PP \rangle (x_0)$ channel. Right: $\langle A_0 A_0 \rangle (x_0)$ channel.
Figure: $\langle A_0 A_0 \rangle$ reconstruction for the 3 different default models.