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Introduction...

Initial thoughts...

The theory of strong interactions put into thermal media may behave
completely different than at zero temperature (states, vacuum, ...).

→ In particular, it is worth asking what becomes out of the relevant
degrees of freedom that dominate the low-temperature regime
(T < TC ) → π states

Goals...

Study the dispersion relation of (quasi)-particles carrying pion
quantum numbers.

Test the chiral expansion around (T = 0,mq = 0) (Ordinary ChPT
at finite T)
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Pion dispersion relation...

The ordinary pion dispersion relation dictated by Lorentz symmetry
is E =

√
k2 + m2

π.

We want to derive and study a modified dispersion relation that
takes the following form:

ω2
k = u2(T )(k2 + m2

π)

where u(T ) may be interpreted as the pion velocity in the chiral limit
(massless pions) and mπ is the screening mass.

Notice...

ωk should be understood as a pole in the retarded Green-function
carrying pion quantum numbers. Equivalently as a “narrow” peak in
the corresponding spectral function.
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Lattice approach

A priori it looks like a very simple problem...

If k = 0 we should measure nothing but the pion mass at finite
temperature.

But the real problem is...

Because of how finite temperature is implemented on the Lattice,
there is no hope on doing spectroscopy along the very short time
direction (Nτ ∼ 16).

The kernel appearing in equal-time correlators

K (ω, x0) = cosh(ω(β/2−x0))
sinh(ωβ/2) falls off very slowly with x0. β ≡ 1/T

Solutions...

→ Use screening correlators

Other approaches like spectral function reconstruction: Maximum
Entropy Method (MEM).
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Pion dispersion relation derivation: D.T. Son et al.

We got inspired by the approach from D.T. Son and M.
Stephanov:

Real-time pion propagation in finite temperature QCD,
Phys Rev. D 66 (2002), [arXiv:hep-ph/0204226]

They demonstrate that the dispersion relation of the pion
is fully determined by static quantities.

The results are enforced with both a lagrangian and
hydrodynamic approach.

→ Suitable for a Lattice approach!
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Our work: logic

Ingredients

1 We exploit Ward Identities arising from the PCAC relation.

2 → This enables us to fully determine correlators in the chiral limit
(its residues).

3 The idea is then to use those at small but finite quark mass
supported by Goldstone’s theorem.

Limitations...

Well separated from the crossover region T < TC

Quark condensate is assumed to be different from zero.

The quark mass has to be small.

Correlation functions containing pion states have to be dominated
by the pion itself.

Nothing is said about temperature but T < TC .



A more detailed derivation ...

In the massless theory (m = 0) we notice that 〈PA〉 is fully determined
by WI’s:

GAP(x0, 0) =

∫
d3x 〈P(x)A0(0)〉 =

〈
ψ̄ψ
〉

2β
(x0 − β/2)

GAP(x0, k) =

∫
d3xe−ikx 〈P(x)A0(0)〉 =

∫ ∞

0

dωρAP(ω, k)
sinh(ω(β/2− x0))

sinh(ωβ/2)

One conclude easily that at zero momentum:

ρAP(ω, 0) = −
〈
ψ̄ψ
〉

2
δ(ω)

a massless excitation persists at finite temperature for any temperature
below TC.



We define the screening mass mπ at small but finite quark mass, by
making use of the results for the 〈PA〉 correlator and the GOR relation:

f 2
πm

2
π = −m

〈
ψ̄ψ
〉

Chiral Ward Identities imply for the static 〈PP〉 correlator:

∫
dx0 〈P(0)P(x)〉 = −

〈
ψ̄ψ
〉2

4f 2
π

exp(−mπr)

4πr
r →∞

Now, we use the following Ansatz

ρP(ω, k) = sgn(ω)C (k2)δ(ω2 − ω2
k) + ...

∫
dx0 〈P(0)P(x)〉 = 2 lim

ε→0

∫
d3k

(2π)3
e ikx

∫ ∞

0

dω

ω
e−εωρP(ω, k)

=

∫
d3k

(2π)3
e ikx

C (k2)

ω2
k

+ ...



One last observation ...

By comparing the last two equation one concludes easily that

ω2
k ∝ (k2 + m2

π)

with

C (k2) = −
〈
ψ̄ψ
〉2

u2

4f 2
π

and fπ is defined by

∫
dx0d

2x⊥ 〈A3(x)A3(0)〉 =
1

2
f 2
πmπe

−mπ|x3| |x3| → ∞

Conclusion:
We have proven our formula for the modified dispersion relation and
showed that it is compatible with chiral WI’s in the limit of small quark
mass.



Lattice estimators for u(T )

Working a little bit harder one can calculate the residue for the last
correlator:

ρA(ω, 0) = sgn(ω)f 2
πm

2
πδ(ω2 − ω2

0) + ...

and finally by using:

ω2
0 =

∂2
0GA(x0, 0)

GA(x0, 0)

∣∣∣∣
x0=β/2

= −4m2 GP(x0, 0)

GA(x0, 0)

∣∣∣∣
x0=β/2

uf =
f 2
πmπ

2GA(β/2, 0) sinh(ufmπβ/2)

um = −4m2

m2
π

GP(x0, 0)

GA(x0, 0)

∣∣∣∣
x0=β/2

Relevant quantities...

fπ,mπ

m↔ mMS(µ = 2GeV)

GA(β/2, 0), GP(β/2, 0)

−→ u(T ) is a RGI quantity!!



Lattice setup ...

Two temperature scans (C1, D1) at constant renormalized awi-mass
with Nf = 2 O(a) improved Wilson fermions.

Lattice sizes are 16× 323 covering a temperature range from 150
MeV to 235 MeV.

−→ Additional CLS zero temperature ensemble (A5) 64× 323 equivalent
to C1 at mπ = 290MeV: test ensamble.



Pion velocity results in the C1 scan. ...
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Figure : Left: Pion velocitiy u(T ) Lattice estimators. Right: Ratio of
estimators to test the chiral approximation as a function of temperature.

Well in the deconfined phase uf /um ∼ O(T/m).



Test of chiral predictions (A5 comparison) ...

mπ [MeV] 305(5)

fπ [MeV] 93(2)∣∣∣∣〈ψ̄ψ〉MS
GOR

∣∣∣∣1/3
(µ = 2GeV) [MeV] 364(7)

ω0 [MeV] 294(4)

fπ,0 [MeV] 97(3)∣∣∣∣〈ψ̄ψ〉MS
GOR,0

∣∣∣∣1/3
(µ = 2GeV) [MeV] 368(9)

uf 0.96(2)

um 0.92(6)

uf /um 1.04(4)

ω0/mπ 0.96(2)

〈
ψ̄ψ
〉

1-loop χPT L = ∞

1-loop χPT LT = 2

[
〈ψ̄ψ〉MS

GOR
(T )

〈ψ̄ψ〉MS

GOR
(0)

]1/3
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Cross check. Maximum Entropy Method (MEM) ...

Goal: To reproduce the spectral function from the Euclidean correlator
via different models:

Recalling the form of the spectral function for GA:

ρA(ω, 0) =
f 2
πmπ

2u
δ(ω − ω0) + ... =⇒ A(Λ) ≡ 2

∫ Λ

0

dω

ω
ρA(ω, 0) =

f 2
π

u2

One introduces a strong systematic with MEM. One has to check the
model independency of the results very carefully!



Summary of MEM results ...



Conclusions & Outlook

Reasonable agreement of the two u(T ) estimators up to T ' 190MeV +
MEM cross check indicates the validity of the chiral expansion and of its
assumptions.

uf (T ' 150MeV) = 0.88(2) suggests a violation of boost invariance
because of the presence of the thermal medium.

→ May have implications for the HRG gas model.

The screening pion decay constant fπ and the mass of the pion
quasiparticle ω0(T ) = umπ at T ' 150 MeV differ very little from the
predictions of χPT around (T = 0,mq = 0).

Extend the calculation to lighter quark mass and maybe lower
temperatures.

Further test the functional form of the pion dispersion relation by
analyzing data at nonzero momentum k.

Detailed study of finite size effects and cutoff dependence.



Figure : Cutoff Λ-dependence of A(Λ,m(ω))



Figure: Left: 〈PP〉 (x0) channel. Right: 〈A0A0〉 (x0) channel.



Figure: 〈A0A0〉 reconstruction for the 3 different default models.


