Anisotropy of the quark anti-quark potential in a magnetic field

Francesco Negro

25 June 2014

New York XXXII International Symposium on Lattice Field Theory

Based on: PRD 89 (2014) 114502 C. Bonati, M. D'Elia, M. Mariti, M. Mesiti, F. Negro, F. Sanfilippo,

F. Negro

- Phenomenological Motivation
- Lattice QCD & Magnetic Fields (*eB*)
- Static $Q\overline{Q}$ potential in the presence of (eB)

э

2 / 15

Lattice 2014

• Summary and Perspectives

ElectroWeak corrections are often small if compared to the Strong int. But: what happens if we consider the presence of an external magnetic field, eB, large enough to be comparable with the scale Λ_{QCD} ?

- Astrophysics in a class of neutron stars, called magnetars: $eB \sim 10^{10}$ T [Duncan and Thompson, '92]
- Cosmology during the ElectroWeak phase transition: $eB \sim 10^{16}$ T [Vachaspati, '91]
- Heavy ion collisions at LHC in non-central HIC: $eB \sim 10^{15} \text{ T} \sim 15m_{\pi}^2$ [Skokov, Illarionov and Toneev, '09]

```
1~\text{GeV}^2\sim 5\cdot 10^{15}~\text{T}
```


The static $Q\overline{Q}$ -Potential

 $V_{Q\overline{Q}}$ is a non-perturbative feature of QCD. A property of gauge fields only.

 $\mathsf{Parameterization} \to \textbf{Cornell Potential}$

 $V_{Q\overline{Q}}(\vec{r}) = C + \sigma |\vec{r}| + \frac{\alpha}{|\vec{r}|}$

- $\sigma \equiv$ String Tension
- $\alpha \equiv \text{Coulomb Parameter}$
- A description of confinement
- Spectrum for heavy mesons \rightarrow NR bound states of heavy quarks $(c\overline{c},b\overline{b})$
- Sommer parameter r_0 for scale setting

POSSIBLE DEPENDENCE ON *eB*? PRESENCE OF ANISOTROPIES?

Lattice QCD & magnetic field

A background QED field enters the Lagrangian by modifying the covariant derivative:

$$D_{\mu} = \partial_{\mu} + igA^{a}_{\mu}T^{a} \longrightarrow \partial_{\mu} + igA^{a}_{\mu}T^{a} + iqa_{\mu}$$

On the lattice:

- ► Gluon field $A^a_\mu(x)T^a \longrightarrow U_\mu(n)$, SU(3) link variables (integration variables) ► Photon field $a_\mu(x) \longrightarrow u_\mu(n)$, U(1) link variables (fixed)
- Quantization of $(eB) \longrightarrow$ IR Effect due to periodic b.c.

$$u_{y}(n) = e^{ia^{2}qBn_{x}}$$
 $u_{x}(n)|_{n_{x}=N_{x}} = e^{-ia^{2}qBN_{x}n_{y}}$

The lattice discrete derivative will read:

$$D_{\mu}\overline{\psi}\longrightarrow rac{1}{2a}\left(U_{\mu}(n)u_{\mu}(n)\psi(n+\hat{\mu})-U^{\dagger}_{\mu}(n-\hat{\mu})u^{*}_{\mu}(n-\hat{\mu})\psi(n-\hat{\mu})
ight)$$

• The magnetic field can influence the gluon field through quark loops! HOW MUCH?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Effects of (eB) on the gluon fields

- Quark condensate vs (eB) = valence + sea [D'Elia and N, PRD 83 (2011) 114028]
- Effective θ term induced by CP-odd e.m. fields [D'Elia, Mariti and N, PRL '13]
- Topological charge correlators [Bali, Bruckmann et al., JHEP 1304 (2013) 130]
- Polyakov loop dependence on (eB)
 [D'Elia, Mukherjee, Sanfilippo, PRD 82 051501 2010]
- Inverse catalysis [Bruckmann, Endrődi and Kovács, JHEP 1304 (2013) 112]
- The Pseudo Critical Temperature decreases [Bali et al., JHEP 1202 (2012) 044]

Moreover, the magnetic field direction can induce anisotropies:

 Anisotropy of the plaquettes [Ilgenfritz, Muller-Preussker et al., PRD 89 (2014); Bali, Bruckmann et al., JHEP 1304 (2013) 130]

... what about the static potential?

The static potential can be extracted from the Wilson Loop observable:

$$aV(an_s) = \lim_{n_t \to \infty} \log\left(\frac{\langle W(an_s, a(n_t+1)) \rangle}{\langle W(an_s, an_t) \rangle}\right)$$

Since we expect to see anisotropies, we cannot average all the possible Wilson Loops. We build two classes of Wilson Loops:

$$W_{\perp} = W_{XY} = (W(an_x, an_t) + W(an_y, an_t))/2$$

$$W_{||} = W_Z = W(an_z, an_t)$$

The potentials obtained from the two classes (V_{\perp} and $V_{||}$) at $eB \neq 0$ are different. We fitted the potentials separately, according to the standard Cornell potential:

$$aV_{\perp}(an_{\perp}) = aV_{XY}(an_{XY}) = ac_{XY} + \frac{\alpha_{XY}}{n_{XY}} + \sigma_{XY}a^2n_{XY}$$
$$aV_{\parallel}(an_Z) = aV_Z(na_Z) = ac_Z + \frac{\alpha_Z}{n_Z} + \sigma_Za^2n_Z$$

Then we compute ratios $\mathcal{O}(B)/\mathcal{O}(B=0)$.

イロト 不得下 イヨト イヨト 三日

Numerical Setup

The Lattice approach consists in a discretization of the Euclidean Feynman path integral:

$$\mathcal{Z} = \int \mathcal{D}U \ \mathcal{D}\overline{\psi} \ \mathcal{D}\psi \ e^{-S_{\mathbf{YM}}[U] - \overline{\psi}_{\mathbf{f}} M_{\mathbf{f}}^{\mathbf{D}} \psi_{\mathbf{f}}} = \int \mathcal{D}U \ e^{-S_{\mathbf{YM}}[U]} \prod_{\mathbf{f}} (\det M_{\mathbf{f}}^{\mathbf{D}}[U])^{1/4}$$

We adopt a state-of-art discretization for QCD with $N_f = 2 + 1$:

- Gauge sector: tree level improved Symanzik action [Weisz, Nucl Phys B '83; Curci, Menotti and Paffuti, Phys Lett B '83]
- Fermionic sector: rooted staggered fermions ⊕ stout smearing improvement [Morningstar and Peardon, PRD '04]

The bare parameters we adopted in our simulations have been taken from [Borsanyi, Endrodi, Fodor et al., JHEP '10].

They correspond to the "physical" line of constant physics ($m_{\pi}^{LAT} = m_{\pi}^{PHYS}$).

Simulations have been performed on the BlueGene/Q machine at CINECA, Italy.

Lattices

 $\begin{array}{l} a = 0.2173 \ \text{fm} \longrightarrow 24^4 \\ a = 0.1535 \ \text{fm} \longrightarrow 32^4 \\ a = 0.1249 \ \text{fm} \longrightarrow 40^4 \\ \end{array}$ The physical volume is kept \sim fixed at $V_4 = (5 \ \text{fm})^4$

Anisotropic potential

An example: 40⁴ with a lattice spacing a = 0.1249 fm The modification can be ascribed to a modification of both σ and α .

PS: If we do not distinguish between the XY and the Z directions, we almost loose any dependence of the potential on (eB).

Lattice 2014 9 / 15

Isotropic smearing for noise reduction

Typically, Wilson Loops (ratios) are noisy observables \longrightarrow we need to smooth the configurations

• Temporal links: 1 single HYP smearing.

• Spatial links: *n* levels of spatial APE smearing (n = 8, 16, 24, 32, 40).

Example: 32^4 lattice at $(eB) \simeq 0.97$ GeV², $R = 3a \simeq 0.46$ fm

String Tension and Coulomb Term

 $\alpha_Z > \alpha_{XY}$

 $\sigma_{XY} > \sigma_Z$

We fit our data at the finest lattice $\longrightarrow Ratio = 1 + A(eB)^{C}$

Obs	A	С	χ^2/dof
αχγ	-0.24(3)	0.7(2)	1.5
α_Z	0.24(3)	1.7(4)	0.3

Obs	A	С	$\chi^2/{ m dof}$
σχγ	0.29(2)	0.9(1)	1.1
σ_Z	-0.34(1)	1.5(1)	0.9

< 口 > < 同

Sommer Parameter

We evalute the Sommer parameter by means of its definition

• Emergence of a possible anisotropy of the lattice spacings? $\longrightarrow a_{ZT} < a_{XY}$

- It can be excluded by means of the determination of the pion mass at finite magnetic field. [Bali et al., JHEP 1202 (2012) 044]
- We expect nothing weird to happen up to $(eB) \sim 0.4 {
 m GeV}^2$

< ロ > < 同 > < 回 > < 回 >

- Simulation of QCD at the physical point at non-zero (eB)
- Gauge fields gets modified by the magnetic field
- Determination of $V_{Q\overline{Q}} \longrightarrow$ anisotropy
- Determination of σ , α and r_0 ratios at 3 lattice spacings

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Lattice 2014

13 / 15

Perspectives and open questions

- Finer lattice spacing ($N_t = 10$) to go towards the continuum limit
- Complete angular dependence of $V_{Q\overline{Q}}$: still missing
- Vanishing string tension along Z for large enough eB?
- What happens at finite temperature T?
- Heavy meson spectrum in the presence of (eB)
 - In the NR limit one can solve the Schroedinger equation
 - Spin-Spin interaction + Cornell [Alford and Strickland, '13] Mass modification ⊕ triplet and singlet mixings
 - Further effect due to the anisotropic static potential Work in progress with A. Rucci
- Need for a direct lattice computation of the meson spectrum

• Possible influence on the physics of HIC.

(日) (四) (日) (日)

Thank you for the attention!

Image: A matrix and a matrix

э

15 / 15

Lattice 2014