E 1 1.		

Flavored tetraquark spectroscopy

Andrea L. Guerrieri

Università di Roma Tor Vergata & INFN

in collaboration with M. Papinutto, A. Pilloni, A. D. Polosa, N. Tantalo

Lattice 2014 Columbia University – June 25, 2014

Outline

Introduction

Flavored tetraquarks

Simulation strategy

Numerical results

Conclusions

Introduction ●○			
Introduction	on		

- The recent confirmation of the charged resonance Z(4430) by *LHCb* strongly suggests the existence of genuine tetraquark mesons in the *QCD* spectrum
- The diquark-antidiquark model in its type II version can accomodate in a unified description the puzzling spectrum of the exotics

Maiani, Piccinini, Polosa, Riquer, arXiv:1405.1551 [hep-ph]

We recently proposed a mechanism à la Feshbach to explain the experimental lack of many tetraquark states

ALG, Piccinini, Pillloni, Polosa, arXiv:1405.7929 [hep-ph]

The puzzle of the X, Z resonances

$X(3872), J^{PC} = 1^{++}$

- ► Γ_X < 1.2MeV</p>
- ▶ strong breaking of isospin symmetry $BR(X \rightarrow J/\psi\rho) \sim BR(X \rightarrow J/\psi\omega)$

 $Z(3900), J^{PC} = 1^{+-}$

- charged resonance discovered in $Z \rightarrow J/\psi \pi^+$
- found \sim 20MeV above the DD^* threshold

 $Z(4430), J^{PC} = 1^{+-}$

- charged resonance discovered in $Z \rightarrow \psi' \pi^+$
- found far from any open charm threshold
- it can be the radial excitation of the Z(3900)

Motivation of our lattice study

We will focus on flavored (doubly charmed) operators with flavor content

$$[cc] [\bar{q}_1 \bar{q}_2] q_1, q_2 = u, d$$

with four valence quarks

Esposito, Papinutto, Pilloni, Polosa, Tantalo, Phys.Rev. D88 (2013) 5, 054029

In this framework we cannot have disconnected diagrams

A lattice confirmation of such exotic states could give the start to an experimental search

Flavored tetraquarks	Simulation strategy	
00		

Good and bad tetraquark structures

Charmed diquark is fixed by symmetry

$$[cc] = \left| \overline{3}_c(A), J^P = 1^+(S) \right\rangle$$

For light antidiquark we have two choices

$$\begin{split} & [\bar{q}_1\bar{q}_2]_G = \left| \mathbf{3}_c(A), \, \mathbf{3}_f(A), \, J^P \!=\! \mathbf{0}^+(A) \right\rangle \\ & [\bar{q}_1\bar{q}_2]_B = \left| \mathbf{3}_c(A), \, \bar{\mathbf{6}}_f(S), \, J^P \!=\! \mathbf{1}^+(S) \right\rangle \end{split}$$

The good state is expected to be lighter than the bad one

Phys.Rev. D88 (2013) 5, 054029

		Simulation strategy ●○○	
Lattice s	setup		

We use a set of 128 CLS configurations with $V \times T = 32^3 \times 64$ non perturbatively O(a) improved

 $\beta=5.2$ with a corresponding lattice spacing of $a\sim0.075\,{\rm fm}$

 $N_f=2$ light sea flavors $k_{sea}=0.13580,\ m_\pi\sim 490\,{
m MeV}$

 $L \sim 2.4 \,\mathrm{fm}$ and the smallest momentum is $p = 520 \,\mathrm{MeV}$

 $k_c = 0.13022$ but it's not a physical charm

Interpolating operators I = 0 channel

We consider a set of five operators in the I = 0 , $J^P = 1^+$ channel

$$\begin{split} \mathcal{O}_{1} &= \varepsilon^{ijk} \varepsilon^{lmk} \bar{c}_{c}^{i}(x) \gamma^{A} c^{j}(x) \quad (\bar{u}^{l}(x) \gamma^{5} d_{c}^{m}(x) - \bar{d}(x)^{l} \gamma^{5} u_{c}^{m}(x)) \quad \text{good} \ \mathcal{T}^{+} \\ \mathcal{O}_{2} &= \bar{u}(x) \gamma^{A} c(x) \ \bar{d}(x) \gamma^{5} c(x) - \bar{d}(x) \gamma^{A} c(x) \ \bar{u}(x) \gamma^{5} c(x) \quad D^{0} D^{*+} - D^{*0} D^{+} \\ \mathcal{O}_{3} &= \bar{u} \gamma^{A} c \left[\vec{p} = \vec{0} \right] \ \bar{d} \gamma^{5} c - \bar{d} \gamma^{A} c \left[\vec{p} = \vec{0} \right] \ \bar{u} \gamma^{5} c \quad D^{0} D^{*+} - D^{*0} D^{+} \\ \mathcal{O}_{4} &= \varepsilon^{ABC} \overline{u}(x) \gamma^{B} c(x) \ \bar{d}(x) \gamma^{C} c(x) \quad D^{*0} D^{*+} \\ \mathcal{O}_{5} &= \varepsilon^{ABC} \overline{u} \gamma^{B} c \left[\vec{p} = \vec{0} \right] \ \bar{d} \gamma^{C} c \quad D^{*0} D^{*+} \end{split}$$

All operators O_i are projected onto the states with zero total momentum We solve separately the generalized eigenvalue problem for two sets of operators

- $\blacktriangleright \mathcal{O}_1, \mathcal{O}_2, \mathcal{O}_3$
- $\blacktriangleright \ \mathcal{O}_2, \mathcal{O}_3, \mathcal{O}_4, \mathcal{O}_5$

	Simulation strategy	
	000	

Generalized eigenvalue problem (GEP)

We construct the correlator matrix

$$\mathcal{C}_{ij}(t) = ra{0} \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) \ket{0}$$

The spectrum of the states is extracted using the GEP

$$C(t)\psi = \lambda(t,t_0)C(t_0)\psi$$

It can be shown that the ordered eigenvalues satisfy

$$\lambda_{lpha}(t,t_0) \sim e^{-E_{lpha}(t-t_0)}$$

Luscher, Wolff Nucl.Phys. B339(1990)

Each operator is doubled using a gaussian smearing (50 steps)

$$\frac{1+\alpha\Delta}{1+6\alpha}, \ \alpha = 0.5$$

Determination of thresholds

We solve a 2 \times 2 GEP to determine the *DD*^{*} and *D*^{*}*D*^{*} thresholds

We use both pointlike and stochastic sources and perform the jackknife sum of the eigenvalues

Heavy light sector with isospin I = 0

GEP with the operators $\mathcal{O}_1, \mathcal{O}_2, \mathcal{O}_3$

I = 0 spectrum

The less accuracy in the second set of operators comes from the off diagonal elements between DD^* and D^*D^* operators

These contain a diagram which is zero at tree level

Interpolating operators I=1 channel

We consider a set of three operators in the I = 1, $J^P = 1^+$ channel

$$\begin{aligned} \mathcal{O}_1 &= \varepsilon^{ijk} \varepsilon^{lmk} \bar{c}_c^i(x) \gamma^A c^j(x) \quad (\bar{u}^l(x) \gamma^B d_c^m(x) + \bar{d}^l(x) \gamma^B u_c^m(x)) \varepsilon^{ABC} \quad \text{bad} \, \mathcal{T}^+ \\ \mathcal{O}_2 &= \bar{u}(x) \gamma^A c(x) \quad \bar{d}(x) \gamma^5 c(x) + \bar{d}(x) \gamma^A c(x) \quad \bar{u}(x) \gamma^5 c(x) \quad D^0 D^{*+} + D^{*0} D^+ \\ \mathcal{O}_3 &= \bar{u} \gamma^A c \left[\vec{p} = \vec{0} \right] \quad \bar{d} \gamma^5 c + \bar{d} \gamma^A c \left[\vec{p} = \vec{0} \right] \quad \bar{u} \gamma^5 c \quad D^0 D^{*+} + D^{*0} D^+ \end{aligned}$$

	Numerical results 0000●	

Heavy light sector with isospin I = 1

GEP with the operators $\mathcal{O}_1, \mathcal{O}_2, \mathcal{O}_3$

		Simulation strategy	Numerical results	Conclusions
Conclusi	0.00			
Conclusi	0115			

- We have set up a theoretical and lattice framework to study QCD states with four valence quarks
- We have studied the two channels I = 0 and I = 1 but no exotic states have been found
- Our analysis is incomplete and we plane to introduce operators with external momenta and to solve the *GEP* with a larger basis
- We plan to study in this framework also the channel J^{PC} = 1^{+−} I = 1 with the c̄c as in Prelovsek et al. arXiv:1405.7623

		Simulation strategy	Conclusions
Conclusi	onc		
Conclusi	0115		

- We have set up a theoretical and lattice framework to study QCD states with four valence quarks
- We have studied the two channels I = 0 and I = 1 but no exotic states have been found
- Our analysis is incomplete and we plane to introduce operators with external momenta and to solve the *GEP* with a larger basis
- We plan to study in this framework also the channel J^{PC} = 1^{+−} I = 1 with the cc̄ as in Prelovsek et al. arXiv:1405.7623

Thank you