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Can the Higgs be a composite resonance?

•A composite resonance is a natural mechanism, as e.g. in superconductivity

•Avoids fine-tuning of the scalar mass

• Likely requires a “walking” theory near a conformal infrared fixed point (IRFP)

→ Light Higgs could be the dilaton of broken conformal symmetry

→Walking coupling leads to enhanced chiral condensate needed for precision EW constraints

• Strongly coupled model requires non-perturbative studies

→ exploratory lattice results [1]

The conformal window

• Seek a model with “walking” behavior

→ close to the conformal window

→ still in chirally broken phase

•Does such a model with integer flavor number exist?

→ Even if so, hard to study with typical lattice methods
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Alternative model: 4+8 flavors

• Study SU(3) with Nl + Nh flavors

→Nl massless (light) flavors

→Nh heavy flavors of mass mh

• Infrared: system is chirally broken for amh = O(1) (4 light flavors);
system is chirally symmetric for amh→ 0 (12 light flavors) [2,3]

• Tuning mass mh allows interpolation between chirally symmetric and broken phases

The phase diagram
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•Renormalized trajectory (RT) emerges from the IRFP of 12-flavor system (mh = 0)

→ runs to the trivial β = 0 point at mh =∞
• For amh� 1 the RG flow lines approach this IRFP

– hover around it, then run to trivial FP along the renormalized trajectory

• If original gauge coupling is close to RT, IR behavior of the system is characterized by mh

→ investigate the system as a function of mh with fixed β

•At finite temperature the chiral condensate 〈ψψ̄〉l serves as order parameter

Numerical setup

• nHYP smeared staggered fermions, fundamental-adjoint gauge action [4]

• Code based on FUEL [5]

Energy scale µ = Zmλ

→UV: λa & O(1),
perturbative

→ IR: λa� 1, γeff & 1
chiral broken

Anomalous Dimension from the mode number
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PRELIMINARY

• Large anomalous dimension with walking coupling leads to enhancement of the condensate, important
for phenomenological applications

• The scale dependent anomalous dimension can be determined from the mode number [2]

→Nf = 4: γeff = 0 in the UV (perturbative), increases to γeff = O(1) when chiral symmetry breaks

→Nf = 4 + 8: γeff is large in the investigated energy range

→As mh→ 0 γeff → γ?(≈ 0.28) before chiral symmetry breaking sets in

Determination of the running coupling using Wilson flow

• Extrapolate Wilson flow data to the chiral limit

•Define an improved renormalized coupling using the the gradient flow [6,3]
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• The t-shift in 〈E(t + τ0)〉 reduces the O(a2) cut-off errors of g̃2
GF (µ)

•Determine Wilson flow scale t0 for shifted data: t2〈E(t + τ0)〉
∣∣∣∣
t=t0

= 0.3

•Optimize τ0 by requiring consistency of g̃2
GF (t) near t ≈ t0 between different mh

(talk by A. Hasenfratz Wednesday, 9:00am)

→ Control finite volume effects by restricting
√

8t/a ≤ 0.2L, L = 32

→ Control cut-off effects by restricting
√

8t/a > 2 (indicated by solid lines)

(Data at β = 4.0 on 323 × 64 lattices)
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τ0 = 0 τ0 = 0.1

• In the infrared this yields agreement of g̃2
GF (µ;mh) for all mh

Running coupling for different masses mh
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Gradient flow scale:

mh = 0.060 :
√
t0 =2.963(51)

mh = 0.080 :
√
t0 =2.339(15)

mh = 0.100 :
√
t0 =1.875(10)

Nf = 4 :
√
t0 =1.853(12)

• Plot g2
GF vs. µ/µ0 =

√
8t0/
√

8t and normalize x-axis by c0 = 1/
√

8t0|mh=0.060

•Dashed lines indicate
√

8t < 2 (cut-off effects)

• Statistical errors are smaller or comparable to the line width

•We show amh = 0.060, 0.080, and 0.100

→ amh =∞ (Nf = 4): QCD-like running coupling

→ amh = 0.100 shows very little “walking” (almost QCD-like)

→ amh = 0.080 shows the emergence of “walking”

→ amh = 0.060 and below has extended “walking” range

• Tuning mh controls the energy dependence of the gauge coupling

Summary and outlook

• The Nf = 4 + 8 flavor system allows controlled study of the emergence of the conformal window

• First results are promising and follow expectations:

→ The coupling shows signs of “walking” as mh→ 0

→ The anomalous dimension is large across a wide energy range

→ The 0++ scalar Mσ decreases as mh→ 0 (talk by E. Weinberg Monday, 5:30pm)

• The 4 + 8 flavor system presents new challenges:

→ The phase diagram is complicated and the continuum limit requires mh→ 0 in addition to β →∞
→Heavy and light flavors mix, complicating spectrum studies

• Future plans:

→Numerical exploration of the finite temperature phase diagram

→ Study of the fermion condensate and the ratio Σ/f3
π

→ Spectrum studies, including the disconnected scalar, with smaller mh, larger volumes
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