Targeting the Conformal Window: Determining the Running Coupling

Can the Higgs be a composite resonance?

- A composite resonance is a natural mechanism, as e.g. in superconductivity
- Likely avoids a “walking” theory near a conformal infrared fixed point (IRFP)
- Light Higgs could be the dilution of broken conformal symmetry
- Walking coupling leads to enhanced chiral condensate needed for precision EW constraints
- Strongly coupled model requires non-perturbative studies
- Exploratory lattice results [1]

The conformal window

- Seek a model with “walking” behavior
- IRFP of 12-flavor system (Nf = 0)
- System is chirally broken for m⊙ = 0
- Infrared: system is chirally broken for m⊙ = 0
- The anomalous dimension is large across a wide energy range
- The coupling shows signs of “walking” as β→∞
- Controls the energy dependence of the gauge coupling
- Tuning mass m⊙ controls the energy dependence of the gauge coupling

Alternative model: 4+8 flavors

- Study SU(3) with Nc = 4; Nf = 8 flavors
- Renormalized trajectory (RT) emerges from the IRFP of 12-flavor system (m⊙ = 0)
- For small m⊙ ≪ 1 the RG flow lines approach this IRFP
- If original gauge coupling is close to RT, IR behavior of the system is characterized by m⊙
- Investigate the system as a function of m⊙ with fixed β
- At finite temperature the chiral condensate ⟨ψiψi⟩ serves as order parameter

Numerical setup

- Fit the Wilson flow scale to a given value of m⊙
- Dash lines indicate δ(0) as cut-off effects
- Statistical errors are smaller or comparable to the line width
- Compute average ⟨ψiψi⟩ with m⊙ = 0, 0.060, 0.080, and 0.100
- m⊙ = 0.060 shows very little “walking” (almost QCD-like)
- m⊙ = 0.080 shows some “walking”
- m⊙ = 0.100 shows the “walking” range
- Timings m⊙ controls the energy dependence of the gauge coupling

The phase diagram

- Study SU(3) with Nc = 4; Nf = 8 flavors
- Determine Wilson flow scale by shifting to the IRFP
- Compute average ⟨ψiψi⟩ with m⊙ = 0, 0.060, 0.080, and 0.100
- m⊙ = 0.060 shows very little “walking” (almost QCD-like)
- m⊙ = 0.080 shows some “walking”
- m⊙ = 0.100 shows the “walking” range
- Timings m⊙ controls the energy dependence of the gauge coupling

Anomalous Dimension from the Mode number

- Large anomalous dimension with walking coupling leads to enhancement of the condensate, important for phenomenological applications
- The scale dependent anomalous dimension can be determined from the mode number [2]
- Large anomalous dimension with walking coupling leads to enhancement of the condensate, important for phenomenological applications
- The scale dependent anomalous dimension can be determined from the mode number [2]
- Large anomalous dimension with walking coupling leads to enhancement of the condensate, important for phenomenological applications
- The scale dependent anomalous dimension can be determined from the mode number [2]

Determination of the running coupling using Wilson flow

- Extrapolate Wilson flow data to the chiral limit
- Define an improved renormalized coupling using the gradient flow [6, 3]
- The lattice in (K(t) + m⊙) reduces the O(a 2) cut-off errors of 2g2φ2
- Determine Wilson flow scale for shifted data: K(t) = 0.3
- Optimize m⊙ by requiring consistency of 2g2φ2(t) near t = 8 between different m⊙
- Control finite volume effects by restricting 2g2φ2 ≤ 0.2L; L = 32
- Control cut-off effects by restricting 2g2φ2(t) > 2 (indicated by solid lines)
- Data at β = 4.0 on 323 × 64 lattices

Running coupling for different masses m⊙

- Plot 2g2φ2 vs. µ/βm⊙ and normalize on-axis by τ1/2 = 1/√2m⊙ (0.090)
- Dashed lines indicate 2g2φ2 > 2 (cut-off effects)
- Statistical errors are smaller or comparable to the line width
- Check validity of results with m⊙ = 0.060, 0.080, and 0.100
- τ1/2 = 1/√2m⊙ (0.090) shows very little “walking” (almost QCD-like)
- τ1/2 = 0.080 shows the “walking” range
- τ1/2 = 0.100 and below has extended “walking” range

Summary and outlook

- The Nc = 4 + 8 flavor system allows controlled study of the emergence of the conformal window
- First results are promising and follow expectations
- The coupling shows signs of “walking” as m⊙ → 0
- The anomalous dimension is large across a wide energy range
- The O(a 2) scale M⊙ decreases as m⊙ → 0 (talk by E. Weinberg, Monday, 5:30pm)
- The 4 + 8 flavor system presents new challenges
- The phase diagram is complicated and the continuum limit requires m⊙ → 0 in addition to β→∞
- Heavy and light flavors mix, complicating spectrum studies
- Future plans:
 - Numerical exploration of the finite-temperature phase diagram
 - Study of the fermion condensate and the ratio Lτ/EF
 - Spectral studies, including the disconnected scalar, with smaller m⊙, larger volumes

References

Acknowledgment

Computations for this work were carried out in part on facilities of the USQCD Collaboration, which are funded by the Office of Science of the U.S. Department of Energy, and on computers at the MGRIDPOC in part founded by the National Science Foundation. We thank BNL, Boston University, Fermilab, the NSF and the U.S. DOE for providing the facilities essential for the completion of this work.