actions 000 decay constant

outlook & conclusion

B-physics with domain-wall light quarks and nonperturbatively tuned relativistic *b*-quarks RBC and UKQCD collaborations

Oliver Witzel Center for Computational Science

Lattice 2014, New York, USA

Motivation: CKM unitarity triangle fit

- ▶ $B^0 \overline{B^0}$ mixing enables precise constraint on apex of the CKM unitarity triangle
- ► Requires nonperturbative determination of the ratio of *B*-meson mixing matrix elements $\xi^2 = f_{B_s}^2 B_{B_s} / f_{B_d}^2 B_{B_d}$
- Lattice still the dominant source of error

[http://ckmfitter.in2p3.fr, http://utfit.roma1.infn.it, http://www.latticeaverages.org]

outlook & conclusion

Motivation: rare *B*-decays

- B
 ightarrow au
 u [UTfit Phys.Lett. B687 (2010) 61]
 - ▶ f_B is needed for the Standard-Model prediction of $BR(B \rightarrow \tau \nu)$
 - \blacktriangleright Potentially sensitive to charged-Higgs exchange due to large τ mass

 $B_s
ightarrow \mu_+\mu_-$ [Buras et al. Eur.Phys.J. C72 (2012) 2172, Buras et al. arXiv:1303.3820 [hep-ph]]

- \blacktriangleright f_{B_s} is needed for Standard-Model prediction of $BR(B_s \rightarrow \mu_+ \mu_-)$
- Strong sensitivity to NP because FCNC processes are suppressed by the Glashow-Iliopoulos-Maiani (GIM)-mechanism in the SM
- ▶ Measured by LHCb with 3.5σ significance [LHCb Phys.Rev.Lett. 110 (2013) 02180], at EPS2013: combination of LHCb and CMS results gives > 5σ significance
 - in agreement with SM

Both are sensitive to new physics!

Our project

- Use domain-wall light quarks and nonperturbatively tuned relativistic b-quarks to compute at few-percent precision
 - ▶ B⁰−B⁰ mixing
 - Decay constants f_B and f_{B_s}
 - ▶ $B \rightarrow \pi \ell \nu$ and $B_s \rightarrow K \ell \nu$ form factors [T. Kawanai, Fri. 16:50]
 - ▶ $g_{B^*B\pi}$ coupling constant [PoS(Lattice 2013)408]

▶ Provides important cross-check of other *N_f* = 2 + 1 determinations using the MILC staggered ensembles

outlook & conclusion

2+1 flavor domain-wall gauge field configurations

- Domain-wall fermions for the light quarks (u, d, s) [Kaplan Phys.Lett. B288 (1992) 342] [Shamir Nucl.Phys. B406 (1993) 90]
- Iwasaki gauge action [Iwasaki UTHEP-118(1983)]
- Configurations generated by RBC and UKQCD collaborations [C. Allton et al. Phys.Rev. D78 (2008) 114509, Y. Aoki et al. Phys.Rev. D83 (2011) 074508]

					approx.	# time
L	<i>a</i> (fm)	m_l	m _s	$M_{\pi}({ m MeV})$	# configs.	sources
24	pprox 0.11	0.005	0.040	329	1636	1
24	pprox 0.11	0.010	0.040	422	1419	1
32	pprox 0.08	0.004	0.030	289	628	2
32	pprox 0.08	0.006	0.030	345	889	2
32	pprox 0.08	0.008	0.030	394	544	2

Relativistic heavy quark action for the *b*-quarks

- ► Relativistic Heavy Quark action developed by Christ, Li, and Lin [Christ et al. Phys.Rev. D76 (2007) 074505; Lin and Christ Phys.Rev. D76 (2007) 074506]
- Builds upon Fermilab approach [EI-Khadra et al. Phys.Rev. D55 (1997) 3933] by tuning all parameters of the clover action non-perturbatively; close relation to the Tsukuba formulation [S. Aoki et al. Prog.Theor.Phys. 109 (2003) 383]
- Heavy quark mass is treated to all orders in $(m_b a)^n$
 - Applies for all values of the quark mass
- **•** Expand in powers of the spatial momentum through $O(\vec{p}a)$
 - Resulting errors will be of $O(\vec{p}^2 a^2)$
 - Allows computation of heavy-light quantities with discretization errors of the same size as in light-light quantities
- ► Tune parameters to physical *b*-quarks i.e. require:
 - ▶ Spin-averaged mass and hyperfine splitting of the *B_s*-meson agree with experiment
 - ▶ B_s-meson rest and kinetic masses are equal
- \blacktriangleright Validated by computing $b\bar{b}$ masses and splittings [Phys.Rev. D86 (2012) 116003]

actions

decay constant •000000 outlook & conclusion

B-meson decay constant

- Use point-source light quark and generate
 Gaussian smeared-source heavy quark
- \blacktriangleright On the lattice we compute $\Phi_{B_q}~f_B=\Phi_{B_q}^{\mathsf{ren}}\cdot a_{32}^{-3/2}\!/\!\sqrt{M_{B_q}}$

outlook & conclusion

O(*a*) improvement and operator renormalization [arXiv:1404.4670 [hep-lat]]

- Axial current is 1-loop $O(\alpha_{S}a)$ improved
 - Coefficient computed at one-loop in mean-field improved LPT
- ▶ Use mostly-nonperturbative renormalization scheme for f_B , f_{B_s} and $B \rightarrow \pi \ell \nu$ [El-Khadra et al. Phys.Rev. D64 (2001) 014502]

$$Z_V^{bl} = \varrho^{bl} \cdot \sqrt{Z_V^{bb} Z_V^{ll}}$$

- ► Nonperturbative computation for Z^{II}_V [Y. Aoki et al. Phys.Rev. D83 (2011) 074508] and Z^{bb}_v [arXiv:1404.4670 [hep-lat]]
- ▶ Flavor-diagonal factors Z_V^{bb} and Z_V'' account for the bulk of the renormalization factor
- ► Use one-loop mean-field improved LPT for small correction *e^{bl}* [C. Lehner http://physyhcal.lhnr.de]

Strategy for combined chiral-continuum extrapolation [arXiv:1404.4670 [hep-lat]]

▶ Perform analysis in terms of dimensionless ratios over M_{B_s}

- ▶ Preferred fit: NLO SU(2) heavy meson chiral perturbation theory
- ▶ Alternative fit to estimate systematic error: linear fit
- **>** Restrict to data points with $M_{\pi}^{\mathsf{val}} <$ 420 MeV
- $g_{B^*B\pi} = 0.57(8)$ [PoS(Lattice 2013)408]
- ▶ *f*_π = 130.4 MeV [PDG]
- ▶ $\Lambda_{\chi} = 1$ GeV

actions 000 decay constant

outlook & conclusion

Chiral-continuum extrapolation of f_B and f_{B_s}/f_B

[arXiv:1404.4670 [hep-lat]]

 \blacktriangleright Only data points with filled symbols included in the fit ($M_\pi <$ 420 MeV)

Statistical errors only

actions 000 decay constant

outlook & conclusion

Error budget [arXiv:1404.4670 [hep-lat]]

	$f_{B^0}(\%)$	$f_{B^+}(\%)$	$f_{B_s}(\%)$	$f_{B_s}/f_{B^0}(\%)$	$f_{B_s}/f_{B^+}(\%)$
statistics	3.2	3.2	2.2	1.3	1.4
chiral-continuum extrapolation	6.5	6.6	3.1	4.5	6.3
lattice-scale uncertainty	1.5	1.5	1.5	0.1	0.1
light- and strange-quark mass	0.1	0.2	0.9	1.0	1.1
uncertainty					
RHQ parameter tuning	1.2	1.2	1.2	0.1	0.1
HQ discretization errors	1.7	1.7	1.7	0.3	0.3
LQ and gluon disc. errors	1.1	1.1	1.2	0.6	0.6
renormalization factor	1.7	1.7	1.7	0.0	0.0
finite volume	0.4	0.4	0.0	0.7	0.7
isospin-breaking and EM	0.7	0.7	0.7	0.1	0.7
total	8.0	8.1	5.2	4.9	6.7

motivation	actions	decay constant	outlook & conclusion
00	000	000000	0000

Comparison with other results [arXiv:1404.4670 [hep-lat]]

▶ Good agreement with other results

FLAG: S. Aoki et al. arXiv:1310.8555 [hep-lat]

- [1] Carrasco et al. arXiv:1311.2837 [hep-lat]
- [2] Dowdall et al. Phys.Rev.Lett. 110 (2012) 222003
- [3] Na et al. Phys.Rev.D86 (2012) 034506
- [4] McNeile et al. Phys.Rev.D85 (2012) 031503
- [5] Bazavov et al. Phys.Rev.D85 (2012) 114506
- [6] Albertus et al. Phys.Rev.D82 (2010) 014505
- [7] Bernardoni et al. arXiv:1404.3590 [hep-lat]
- [8] Carrasco et al. PoS LATTICE2012 (2012) 104

outlook & conclusion •000

Future plan: physical pions

	$f_{B^0}(\%)$	$f_{B^+}(\%)$	$f_{B_s}(\%)$	$f_{B_s}/f_{B^0}(\%)$	$f_{B_s}/f_{B^+}(\%)$
statistics	3.2	3.2	2.2	1.3	1.4
chiral-continuum extrapolation	6.5	6.6	3.1	4.5	6.3
lattice-scale uncertainty	1.5	1.5	1.5	0.1	0.1
light- and strange-quark mass	0.1	0.2	0.9	1.0	1.1
uncertainty					
RHQ parameter tuning	1.2	1.2	1.2	0.1	0.1
HQ discretization errors	1.7	1.7	1.7	0.3	0.3
LQ and gluon disc. errors	1.1	1.1	1.2	0.6	0.6
renormalization factor	1.7	1.7	1.7	0.0	0.0
finite volume	0.4	0.4	0.0	0.7	0.7
isospin-breaking and EM	0.7	0.7	0.7	0.1	0.7
total	8.0	8.1	5.2	4.9	6.7

To reduce errors we have to shorten or eliminate the chiral-extrapolation to the physical point

▶ This will also decrease the statistical uncertainties

actions 000 decay constant

outlook & conclusion 0000

Work in progress

Physical pion masses with Möbius DWF

- ho 48 $^3 imes$ 96, $L_s=$ 24 at $a^{-1}pprox$ 1.73 GeV
- MDWF light quark propagators are generated
- Improving statistics using all-mode averaging [Blum et al. Phys.Rev.D88 (2013) 094503]
- Tuning of RHQ parameters is in progress
- First result for f_{B_s} using 80% of the desired number of measurements

Finer lattice $a^{-1} \approx 3.1$ GeV > $32^3 \times 64$, $L_s = 12$, $M_{\pi} \approx 360$ MeV

motivation	actions
00	000

outlook & conclusion

$B^0 - \overline{B^0}$ mixing matrix element calculation

- Location of four-quark operator is fixed
- ▶ Location of *B*-mesons is varied over all possible time slices
- ► Need: one point-source light quark and one point-source heavy quark originating from operator location
- Project out zero-momentum component using a Gaussian sink
- ▶ Tree-level O(a)-improvement of operators via HQ field rotation
- Finally we have a first set of data ready to be analyzed!

actions 000 decay constant

outlook & conclusion

Conclusion

- \blacktriangleright Results for $f_B,~f_{B_s}$ and f_{B_s}/f_B are posted and submitted to PRD
 - ▶ Good agreement with results in the literature
 - Errors dominated by chiral-continuum extrapolation
- Already improving our errors by simulating with physical pion mass
- Another ensemble with finer lattice spacing will be added
- Measurements for $B \overline{B}$ mixing are in progress
- Friday: $B \to \pi \ell \nu$ and $B_s \to K \ell \nu$ form factors