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Motivation
• Leptonic heavy meson decays are sensitive to both strong and weak physics:

The decay of  B and D mesons into purely leptonic final states in 
the standard model is sensitive to both weak and strong physics, 
providing important tests of  the standard model.  For example, 
the decay width of  a charged meson is proportional to the meson 
decay constant and to the CKM mixing angle:
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TABLE XIII. Error budget. Uncertainties in decay constants are in MeV. The total combines
errors in quadrature. Errors in parentheses are approximate sub-parts of errors that are computed
in combination.

source fD+ (MeV) fDs (MeV) fDs/fD+ fB+ (MeV) fBs (MeV) fBs/fB+

statistics, heavy-quark
discretization, & generic
lt.-quark discretization

8.1 7.8 0.013 6.2 5.7 0.015

(statistics) (2.5) (2.6) (0.005) (4.6) (4.2) (0.013)

(heavy-quark discr.) (7.1) (7.2) (0.006) (3.1) (3.1) (0.006)

(lt.-quark discr.) (2.7) (1.4) (0.011) (2.8) (1.9) (0.009)

chiral extrapolation 3.2 2.2 0.014 4.7 3.4 0.018

excited states/fitting 4.0 2.9 0.008 8.3 4.9 0.027

scale 1.0 1.0 0.001 1.4 1.4 0.001

light quark masses 0.3 1.4 0.005 0.0 0.9 0.005

heavy quark tuning 2.8 2.8 0.003 3.8 3.9 0.004

finite volume 0.6 0.0 0.003 0.5 0.1 0.003

ZV 4
QQ

and ZV 4
qq

2.2 2.6 0.000 2.0 2.5 0.000

higher order �Qq
A4

0.7 0.8 0.002 0.8 1.0 0.001

Total Error 10.3 9.6 0.022 12.3 9.7 0.036

e�ects: The curvature at small mass for ⇥D+ is slightly greater without the splittings, which980

results in a decrease of fD+ of 3.2 MeV. Note that the confidence levels of the two fits are981

almost identical, so cannot be used to choose one version of the chiral extrapolation over982

the other983

Modifications of f and/or g� produce the largest changes in the other quantities, namely984

fDs , fB+ and fBs . In particular, putting f = fK and g� = 0.31 results in a increase of985

+3.4 for fBs (the largest change) and +3.7 MeV for fB+ (close to the largest change). The986

modified fit is shown in Fig. 12, and may be compared with Fig. 7 to see the e�ects of the987

changes. Increasing f and decreasing g� both suppress the chiral logarithms (see Eq. (6.15))988

and give fit functions with less curvature and reduced slope at low quark mass.989

The largest change in fB+ (+4.7 MeV) comes from putting g� = 0.71 and making f a990

Bayesean fit parameter. This results in a rather large value for f , namely f � 1.4fK , which is991

the largest value we have seen in our fits. Such a large value is possible because a significant992

part of its e�ect is canceled by the large value of g� = 0.71. An argument could be made993

that this fit should be dropped because such a large value for f is unphysical. We keep it994

to be conservative, though, and quote 4.7 MeV as the chiral error on fB+ in Table XIII.995

Since the rS⇤PT fit functions we are using explicitly include one-loop discretization e�ects996

coming from taste violations in the (rooted) staggered light quark action, the chiral error es-997

timates we describe here inherently include taste-violating discretization errors. However, it998

seems unlikely that the current data can accurately distinguish between such taste-violating999

errors (which areO(�2
sa

2)) and generic light-quark discretization e�ects (which areO(�sa2)),1000

or even heavy-quark discretization e�ects. Indeed, the taste-violating LEC La (see Eq. (6.7))1001

is not well constrained by our fits and is consistent with zero with large errors. The central1002

39
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Table 1: (This is a stand-in for the table of  gauge 
configurations used, old/new analysis.)

Table 2: Estimated error budget for the B and D decay 
constants, and their dimensionless ratios.

I. Motivation

II. Simulation Details

III. Analysis and Fitting

The quantity φ is proportional to the ground-state amplitude of  
the two-point function between the axial vector current and a 
heavy-light pseudoscalar operator.  To extract φ, we fit to this two-
point function and the two-point correlator of  a pair of  
pseudoscalars simultaneously:

IV. Results

The continuum extrapolation and extrapolation of  the light quark 
masses to the physical point are carried out simultaneously by the 
use of  rooted staggered chiral perturbation theory (rSχPT).  
Various effects such as finite-volume corrections and hyperfine 
splittings are taken into account.

The plots below show the chiral/continuum extrapolations for the 
quantity φ.  Data for which the sea and valence light quark masses 
differ are used in the fits, but not shown here.

Below we show the estimated error budget for the various decay 
constants.  We also consider dimensionless ratios of  the D and B 
decay constants, which can be more precisely determined due to 
partial cancellation of  some systematic effects.

V. Outlook

(new data vs. old, projected improvements in error budget)
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The meson decay constants can be readily and accurately 
determined on the lattice, due to the absence of  final-state 
hadrons.  The decay constants are necessary to fix the CKM 
angles from experimental results, and precise computations may 
reveal the presence of  new physics through tensions in the CKM 
unitarity triangle.  Furthermore, certain leptonic decays (such as 
the Bs decay shown below) are loop suppressed in the standard 
model, and so may be particularly sensitive to new flavor-violating 
interactions.

After chiral/continuum extrapolation, we find the following 
results for the decay constants and their ratios:

The following plots compare these values to results from other 
recent lattice calculations (HPQCD, ETMC) and to experimental 
values (CLEO, Belle, BaBar).

(there will be a plot/table for the error improvement here)

(rooted staggered fermions, Fermilab clover for the heavy quarks, 
etc.  Details of  configs used in table.)

The heavy meson decay constant relates the overlap of  the meson 
wavefunction with the axial vector current:

The source and sink type s can be either point-like or smeared.  
Joint fits to several source/sink combinations are carried out, 
using Bayesian constrained fitting techniques to obtain stable fits 
to sums of  exponentials. 

�(H ! `⌫) / f2
HG2

F |VQq|2

• Accurate fH (from lattice) is crucial for 
precise CKM matrix elements!


• Aside from determining CKM, decay 
constants are needed for rare leptonic 
decays - whether mediated by standard 
model or by new physics

meson decay constant
weak coupling

CKM matrix element



Bs/d→P+P- 

� CMS (25 fb-1) and LHCb (3 fb-1) both found evidence for the very rare decay 
Bs→P+P- , in agreement with SM 

� Combining CMS and LHCb: first observation of Bs→P+P-  
 

Rare decays @ LHCb Justine Serrano 20 
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CMS PAS BPH-13-007, LHCb-CONF-2013-012 

From D. Straub, arXiv:1205.6094 

See A. Morda talk for more details! 

� We are entering the precision era 
 

� The current SM BR(Bs→P+P-) has 
a 10% uncertainty � crucial to 
improve theoretical errors 

(from talk by J. Serrano (LHCb), La Thuille 2014)

dominant source of SM error is fBs and CKM 
elements - see plenary by C. Bouchard



Simulation details

• MILC asqtad ensembles (see 
right), clover heavy quarks w/
Fermilab interpretation 

• Open discs show the 
ensembles used in last 
iteration of this analysis, filled 
circles are new; circle area ~ 
statistics 

• New analysis has more lattice 
spacings, more stats, lower 
accessible quark masses.  4 
time-sources per config.

I. INTRODUCTION

The Cabibbo-Kobayashi-Maskawa (CKM) matrix element |Vcb| is one of the fundamental
parameters of the Standard Model (SM). Together with |Vus|, |Vub|, and arg V ⇤

ub, it allows
for a full SM determination of flavor and CP violation via processes that proceed at the
tree level of the electroweak interaction. In the case of |Vcb|, one requires a measurement
of the di↵erential rate of B mesons decaying semileptonically to a charmed final state. The
hadronic part of the final state can be exclusive—e.g., a D⇤ or D meson—or inclusive.

The 2012 edition of the Review of Particle Physics by the Particle Data Group (PDG) [1]
notes that the exclusive and inclusive values of |Vcb| are marginally consistent with each other.
Furthermore, global fits to a comprehensive range of flavor- and CP -violating observables
tend to prefer the inclusive value [2–4]: when direct information on |Vcb| is omitted from the
fit, one of the outputs of the fit is a value of |Vcb| that agrees better with the inclusive than
the exclusive value. One should bear in mind that some tension in the global fits to the
whole CKM paradigm has been seen [5]. A full discussion of the possible resolutions of the
discrepancy lies beyond the scope of this article. We conclude merely that it is important
and timely to revisit the theoretical and experimental ingredients of both determinations.

In this paper, we improve the lattice-QCD calculation [6–8] of the zero-recoil form factor
for the exclusive decay B̄ ! D⇤`⌫̄ (and isopin-partner and charge-conjugate modes). Our
analysis strategy is very similar to our previous work [7], but the lattice-QCD data set is
much more extensive, with higher statistics on all ensembles, smaller lattice spacings (as
small as a ⇡ 0.045 fm) and light-quark masses as small as m̂0 = ms/20 (at lattice spacing
a ⇡ 0.09 fm). Figure 1 provides a simple overview of the new and old data sets; further details
are given in Sec. II. Our preliminary status report [8] encompassed the higher statistics but
not yet four of the ensembles in the lower left-hand corner of Fig. 1.

With this work, we improve the precision of |Vcb| as determined from exclusive decays
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FIG. 1. (color online) Range of lattice spacings and light-quark masses used here (colored or gray
discs) and in Ref. [7] (black circles). The area is proportional to the size of the ensemble. The
lattice spacings are a ⇡ 0.15, 0.12, 0.09, 0.06, and 0.045 fm. Reference [8] did not yet include the
ensembles with (a, m̂0/ms) = (0.045 fm, 0.20), (0.06 fm, 0.14), (0.06 fm, 0.10), and (0.09 fm, 0.05).
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(from arXiv:1403.0635)



Two-point correlators

• Decay constant comes from two-point function of pseudoscalar (PS) 
source, axial-vector sink.  Calculate PS-PS correlator as well to fix 
normalization.

2

A. Light-quark current renormalization

B. Heavy-quark current renormalization

C. Perturbative computation of heavy-light renormalization

V. CORRELATOR FITTING

For a correlation function with source type i and sink type j, the expected “factorized” functional form is given by

Cij(t) =
NXX

n=0

h
Ai,nAj,n

⇣
e�Ent + e�En(Nt�t)

⌘
� (�1)tA0

i,nA
0
j,n

⇣
e�E0

nt + e�E0
n(Nt�t)

⌘i
(1)

where NX denotes the number of excited states included. Primed amplitudes A0 accompany the opposite-parity,
oscillating state. Source and sink types include point (“d”) and Gaussian smeared (“1S”).

The correlation function obeys the symmetry relation Cji(Nt � t) = Cij(t), which allows the use of “folding”,
i.e. averaging data at t and Nt � t and then fitting the range 0 < t  Nt/2; we make use of this procedure for all
pseudoscalar-pseudoscalar correlators. For the correlators with an axial-vector sink, the backwards-propagating state
has equal but opposite amplitude since the axial-vector current is odd under time reversal, so that the functional form
to be fit is

Ci,rot(t) =
NXX

n=0

h
Ai,nArot,n

⇣
e�Ent � e�En(Nt�t)

⌘
� (�1)tA0

i,nA
0
rot,n

⇣
e�E0

nt � e�E0
n(Nt�t)

⌘i
. (2)

From each correlator, we can construct the usual “e↵ective mass”,

me↵(t) ⌘ �1

2
log

✓
C(t+ 2)

C(t)

◆
, (3)

where separation by �t = 2 is required to cancel the oscillatory contribution. For large t the ground state will
dominate the correlator, so that me↵(t) ! E0. A simple estimate for E0 is therefore given by averaging over an
observed “plateau” [t1, t2] over which me↵ is approximately constant. Plateau determinations and resulting average
e↵ective masses are detailed in Appendix X; we will make use of these results as input to our fitting procedure.

The functional forms above are fit jointly to the two-point function data for various combinations of source and sink
type, as enumerated in table III. On each gauge configuration, the measurement of the correlator is repeated with the
source position translated to di↵erent timeslices, with even spacing in the temporal direction. The number of source
positions used per configuration is shown in Table XX. Results from all source positions on one gauge configuration
are shifted to t = 0 and then averaged together at the first stage of the analysis.

To improve numerical stability, fits are carried out to the rescaled correlation functions

Cexp(t) ⌘ C(t)emefft. (4)

We make use of the empirical Bayesian approach to carry out fits to the two-point correlators, incorporating
Bayesian priors.

(priors - relatively loose, results for low-lying states always well within prior widths. bootstrap. Add plots of fit

results vs. priors to show they’re not biasing anything.)
For the excited state parameters, a set of global prior constraints is used. Excited-state energy splittings log(�EH?)

are set for each lattice spacing a, as shown in table II. For the amplitudes log(Z), we set a prior mean (width) of �1(3)
for all source and sink types. All prior widths are set relatively loose, and are intended only to provide numerical
stability for the fitting procedure.

The use of prior constraints is most important for the ground-state parameters, particularly the energy E0. If these
parameters are tightly constrained, then stable convergence is observed for multi-exponential fits including several
excited states and down to tmin = 2. We therefore implement a “two-stage” fitting procedure. In the first stage, a
single-exponential fit is carried out restricted to data at large [tmin, tmax], in a region corresponding roughly to an
observed “plateau” in the e↵ective mass me↵(t). The first-stage fit is then used to set Bayesian prior constraints for
the second-stage fit, which includes data in the range t 2 [4, tmin � 1]. (The range t 2 [1, 4] contains contributions
from higher excited states which are di�cult to resolve numerically, and is therefore excluded.) The prior mean values

• Our procedure: fit uniformly down to small t (tmin=4) for all correlators, using as 
many excited states as necessary. 

• Nx=3 (4+4 states) for most ensembles, with 1 more state pair used on finest 
lattices 

• This approach is relatively simple (no tuning fit ranges) and doesn’t throw away 
statistics, but as a multi-exponential fit is highly prone to numerical instability!



Multi-exponential fits and instability

• Without additional constraints, 
multi-exponential fits suffer from 
ordering ambiguity: who says “E0” 
is the smallest energy?  N! minima 
in probability space! 

• Variable re-mapping can force a 
particular ordering, e.g.

E0, log(E1 � E0), log(E2 � E1), ...

• Still numerically challenging, many 
flat directions even if we lift the 
spurious minima 

• Getting the ground state right tends 
to stabilize the rest of the fit…



Two-stage constrained fits

• Lots of different methods out there 
for dealing with this problem; this 
isn’t a review talk so I’ll just focus on 
my approach 

• Constrained curve fitting (Lepage et 
al, arXiv:hep-lat/0110175) eliminates 
flat directions by use of Gaussian 
“prior” constraints on fit parameters 

• “Priors” tend to be set in a data-
driven way in many analyses, e.g. 
by looking at a subset of the data.  
So why not use the same correlator 
to set up the full fits?
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1) Fit ground state in plateau region

2) Use fit mean values and errors 
(scaled up) to set “priors”
3) Fit full correlator with Nx excited 
states

“Two-stage” constrained fits



Stability for replication methods (jackknife/bootstrap)!



“Two-stage” features and plans
• Very stable, insensitive to detailed choice of plateau or factor used to scale errors 

up.  (We picked one plateau on one correlator, then rescaled in terms of r1/a and 
got stable results almost everywhere.) 

• Method write-up to be included in finished paper; code to be publicly released 

• Fitter is implemented in Python, with the following features: 

• Bayesian constrained fits or unconstrained, interface to standard Python 
optimizers, MINUIT, and MCMC packages 

• Symbolic manipulation of model functions (no need to input derivatives by hand) 

• On-the-fly compilation to C or Fortran for quick fitting - useful for bootstrap and 
jackknife loops 

• Black-box implementation of two-stage fit procedure with “plateau finder” (user 
controllable)



Renormalization and tuning

• “Mostly non-perturbative” renormalization of results: ZV 
determined non-perturbatively, leftover piece computed 
in lattice PT. 

!

• Simulation values of heavy-quark mass parameter κ do 
not exactly match, so we have to re-tune:

�Q ! �Q +��Q = �Q +

✓
d�Q

d

◆
(sim � tune)

�Q =
p
2ZA4

Qq
AA4

Qq
=

p
2
⇣
⇢A4

Qq

q
ZV 4

qq
ZV 4

QQ

⌘
AA4

Qq

• Tuning factor calculated non-perturbatively from runs at various κ 
on same ensembles; numerically small (mistunings are O(10-3).)



Chiral/continuum extrapolation

• Fit to rooted staggered chiPT (rSxPT) to extrapolate to continuum and 
physical quark masses:

• Terms included for taste-breaking effects, finite-volume corrections in chiral 
logs, hyperfine/LQ flavor splitting of heavy-light mesons (details in arXiv:
1112.3051.)  Hyperfine splittings found to be important for good fits!


• Fits can be used to split out and quantify each discretization error.  Remaining 
systematic effects (mainly from exact form of chiral fit and scale-setting) are 
estimated by comparison with variant chiral fits.


• NNLO terms found necessary to fit points with valence mass near strange.

� = �0[1 + (chiral logs) + (NLO analytic) + (NNLO analytic)

+(LQ discretization) + (HQ discretization)]
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Conclusion

• Correlator fits and central chiral fits are done, unblinding 
after systematic error estimation is in place (explicit fit 
parameters and variant chiral fits) 

• Details on “two-stage” fitting method and Python fitting 
code to be released with paper 

• Competitive results for decay-constant ratios (preliminary: 
0.5% stats+discretization for fDs/fD, 0.8% for fBs/fB) 

• Combination of fB/fD with MILC HISQ results for D decay 
constants planned, may allow for more precise fB estimate


