Lattice Measurement of the $\Delta I=1/2$ Contribution to Standard Model Direct CP-Violation in $K \rightarrow \pi\pi$ Decays at Physical Kinematics: Part I

Christopher Kelly (RBC & UKQCD Collaboration)

Lattice 2014, June 23 2014

Research Center

Outline

- Motivation
- Obtaining physical kinematics
- G-parity boundary conditions
- Physical point ensemble
- Conclusions and Outlook

$\mathbf{K} \rightarrow \pi \pi$ Decays

- Direct CP-violation first observed in $K \to \pi \pi$ decays.
- Two types of decay:

$$\begin{array}{lll} \Delta I = 3/2 & :K^+ & \to (\pi^+ \pi^0)_{I=2} & \text{with} & A_2 \\ \Delta I = 1/2 & :K^0 & \to (\pi^+ \pi^-)_{I=0} & \text{amplitude} \\ & K^0 & \to (\pi^0 \pi^0)_{I=0} & \text{amplitude} \end{array} \quad A_0$$

• Direct CP-violation: where $\epsilon' = \frac{i\omega e^{i(\delta_2 - \delta_0)}}{\sqrt{2}} \left(\frac{\mathrm{Im}A_2}{\mathrm{Re}A_2} - \frac{\mathrm{Im}A_0}{\mathrm{Re}A_0}\right)$

 $\omega = \text{Re}A_2/\text{Re}A_0$ and δ_I are strong scattering phase shifts.

- ϵ' is highly sensitive to BSM sources of CPV.
- Strong interactions very important origin of the $\Delta I=1/2$ rule: preference to decay to I=0 final state.

[arXiv:1212.1474]

Obtaining Physical Kinematics

- Correct description of physical decay requires energy to be conserved.
- Lattice I=0 pi-pi ground state is vacuum. Must perform explicit subtraction.
- First excited pi-pi ground state comprises pions at rest: $E_{\pi\pi} \sim 2m_{\pi} \ll m_K$. Require 2nd or higher excited state with moving pions.
- Conventional approach requires multi-exponential fits, typically resolution of excited state contribution is poor.
- Instead modify spatial boundary conditions to impose momentum on the pion ground-state, after which only vacuum subtraction is required.

$\Delta I=1/2$ Decay

- Must measure $K^0 \to \pi^+\pi^-$ and $K^0 \to \pi^0\pi^0$ with I=0 final state. Boundary conditions must therefore:
 - \rightarrow Conserve isospin such that I=0 state can be isolated.
 - \rightarrow Give momentum to both charged and neutral pions.
- Conventional application of twisted BCs to the d-quark breaks both of these.
- Instead, we use G-parity:

$$\hat{G} = \hat{C}e^{i\pi\hat{I}_y} : \qquad \hat{G}|\pi^{\pm}\rangle = -|\pi^{\pm}\rangle$$
$$\hat{G}|\pi^0\rangle = -|\pi^0\rangle$$

• As a boundary condition:

 $\pi^i(x+L) = \hat{G}\pi^i(x) = -\pi^i(x)$

Discretized lattice momenta $|p| \in (\pi/L, 3\pi/L, 5\pi/L...)$ Moving ground-state

G-parity BCs

- At quark level: $\hat{G}\begin{pmatrix} u\\ d \end{pmatrix} = \begin{pmatrix} -C\bar{d}^T\\ C\bar{u}^T \end{pmatrix}$ where $C = \gamma^2\gamma^4$. in our conventions
- Gauge invariance requires gauge field to obey charge conjugation (complex conjugate) boundary conditions.
- New ensembles needed (true for all modifications of BCs due to disconnected diagrams).
- For stationary kaon eigenstates we must introduce a fictional partner to the strange quark; s'

 $|\tilde{K}^{0}\rangle = (|\bar{s}d\rangle + |\bar{u}s'\rangle)/\sqrt{2}$ is G-parity even

• Must take root of s/s' determinant to remove it from action; introduces non-locality that vanishes exponentially in L.

Implementation

- Dirac operator applied simultaneously to two fermion fields that mix at the global lattice boundary.
- Naively expect factor of 2 in cost due to two flavors. However fields are intrinsically two-flavor; use of M[†]M in HMC to ensure positive-definite matrix requires squareroot of light determinant (fourth-root for s/s')

RHMC needed throughout

- \bullet Standard double-precision multi-shift solver is quite slow due to linear algebra overheads coupled with finite BG/Q memory bandwidth.
- \bullet Developed optimized mixed-precision multi-shift inverter for RHMC in BFM/Bagel to optimize memory bandwidth usage on BG/Q.
- Alternative solution might be to use TWQCD's single-flavor action to avoid RHMC for light quarks.

Summary of code changes

- HMC and basic measurement code written in CPS, with modified BFM/Bagel solvers for BG/Q.
- Complex conjugate BCs on gauge fields required changes to virtually all aspects of the codebase:
 - Gauge fixing algorithms
 - Plaquette and rectangle, plus staples.
 - Momentum field CC BCs, gauge force.
 - Memory layout reordering code.
 - Modified CPS+BFM/Bagel Dirac ops: Shamir DWF, Mobius DWF, twisted mass (for DSDR).
 - Fermion forces.
 - Eigenvalue algorithms: Ritz, Lanczos.
 - CPS propagator code.
 - Standard measurements: twopoint correlators, B_K, Wilson flow, residual mass.
 - Multi-shift optimization

Demonstration

• $16^{3}x32$ DWF+Iwasaki $a^{-1} = 1.73(3)$ GeV with 420 MeV pion test configurations with GPBC in 0,1,2 directions.

Physical Ensemble

• Physical volume must be tuned to match kaon and pi-pi energy as closely as possible.

Effective Energies

• Results on previous slide obtained using A2A props. on 41 configs. cf. Daiqian's talk for details

Ensemble Generation

- Ensemble generated on USQCD 512-node BGQ machine at BNL. •
- ~ 660 configurations to date. →
- Approx 400 thermalized. →
- →
- 6.8 hours per configuration. 89% Metropolis acceptance (88% theor.) →

Dashed line: reduced quark mass Red line: measurements begin (286)

Conclusions and Outlook

- Energy conserving kinematics necessary to describe physical decay.
- \bullet For I=0, G-parity BCs impose momentum on ground state pion without breaking isospin symmetry.
- Stationary kaon requires new strange-quark partner field. Subsequent removal from gauge action introduces nonlocality that vanishes exponentially in volume.
- \bullet Highly optimized implementation and thorough testing / demonstration.
- Thermalized dynamical ensemble with large volume and physical pion mass.
- Kaon and pi-pi energies closely matched:

D. Zhang will follow this talk with his discussion of the $K \rightarrow \pi\pi$ measurement!