Introduction Simulations

QCD with Wilson fermions and isospin chemical potential at zero and finite temperature

Tobias Rindlisbacher¹ and Philippe de Forcrand^{1,2}

Lattice 2014

Endzürich Motivation

Introduction

- Isospin chemical potential
 - $\Rightarrow \text{ no sign problem: } \det(D(\mu))\det(D(-\mu)) = \det(D(\mu))\det(D(\mu))^* \in \mathbb{R}_{\geq 0}$
 - \Rightarrow interesting phenomena:
 - well known:
 - > π^+ condensation [Son & Stephanov, hep-ph/0011365]
 - > "rotation of condensate": $\langle \overline{\psi}\psi \rangle \longrightarrow \langle \overline{\psi}\gamma_5 i\tau_2\psi \rangle$ [Kogut & Sinclair, hep-lat/0202028]
 - new:
 - > hadron mass-spectrum as function of μ_l
 - > condensation of additional mesons?
 - > saturation effects on the lattice
- Wilson fermions
 - ⇒ hadron spectrum
 - ⇒ not used in previous studies with an isospin chemical potential [SU(2): S. Hands], [SU(3) Staggered: Kogut & Sinclair]

Isospin µ

- $N_f = 2, m_u = m_d$: isospin symmetry SU(2)_V
- Isospin chemical potential $\mu_I = \mu \tau_3$

explicitly breaks $SU(2)_V \rightarrow U(1)_V$

 $\mu_l = m_{\pi}/2 \Rightarrow U(1)_V$ breaks spontaneously, π^+ condenses

• Son & Stephanov:

$$\begin{array}{ll} \text{Chiral Lagrangian:} \quad \mathcal{L}_{eff} = \frac{f_{\pi}^2}{4} \mbox{ Tr} \left(\left(D_{\mu} \Sigma \right) \left(D_{\mu} \Sigma \right)^{\dagger} - 2m_{\pi}^2 \, \text{Re} \left(\Sigma \right) \right) \\ \\ \text{Isospin chemical potential:} \qquad D_{\mu} \Sigma = \partial_{\mu} \Sigma - \frac{\mu_l}{2} \delta_{0,\mu} \left(\tau_3 \Sigma - \Sigma \tau_3 \right) \end{array}$$

Effective potential minimized for $\overline{\Sigma} = \cos(\alpha) \mathbbm{1} + i \sin(\alpha) (\tau_1 \cos(\phi) + \tau_2 \sin(\phi))$

-
$$\mu < \mu_c = m_\pi/2 \rightarrow \alpha = 0$$

 $\mu = \mu_c = m_\pi/2 \quad
ightarrow \quad \cos{(lpha)} = m_\pi^2/4\mu_l^2$

ETHzürich

Isospin μ

- $N_f = 2, m_u = m_d$: isospin symmetry SU(2)_V
- Isospin chemical potential $\mu_I = \mu \tau_3$

explicitly breaks $SU(2)_V \rightarrow U(1)_V$

 $\mu_l = m_{\pi}/2 ~~\Rightarrow~~ U(1)_V$ breaks spontaneously, π^+ condenses

Son & Stephanov:

$$\begin{array}{ll} \mbox{Chiral Lagrangian:} & \mathcal{L}_{eff} = \frac{f_{\pi}^2}{4} \mbox{Tr} \left(\left(D_{\mu} \Sigma \right) \left(D_{\mu} \Sigma \right)^{\dagger} - 2m_{\pi}^2 \mbox{Re} \left(\Sigma \right) \right) \\ \mbox{Isospin chemical potential:} & D_{\mu} \Sigma = \partial_{\mu} \Sigma - \frac{\mu_l}{2} \delta_{0,\mu} \left(\tau_3 \Sigma - \Sigma \tau_3 \right) \\ \mbox{Effective potential minimized for } \overline{\Sigma} = \cos \left(\alpha \right) \mbox{1} + i \sin \left(\alpha \right) \left(\tau_1 \cos \left(\phi \right) + \tau_2 \sin \left(\phi \right) \right) \\ \mbox{-} & \mu < \mu_c = m_{\pi}/2 \quad \rightarrow \quad \alpha = 0 \\ \mbox{-} & \mu \geq \mu_c = m_{\pi}/2 \quad \rightarrow \quad \cos \left(\alpha \right) = m_{\pi}^2/4\mu_l^2 \\ \mbox{quark condensate } \left\langle \overline{\psi} \psi \right\rangle \mbox{ rotates into pion condensate } \left\langle \overline{\psi} \gamma_5 i \tau_2 \psi \right\rangle \\ \end{array}$$

EnHzürich Isospin µ

- $N_f = 2, m_u = m_d$: isospin symmetry SU(2)_V
- Isospin chemical potential $\mu_I = \mu \tau_3$

```
explicitly breaks SU(2)_V \rightarrow U(1)_V
```

 $\mu_l = m_{\pi}/2 \Rightarrow U(1)_V$ breaks spontaneously, π^+ condenses

• Son & Stephanov:

ETHzürich Isospin µ

- $N_f = 2, m_u = m_d$: isospin symmetry SU(2)_V
- Isospin chemical potential $\mu_I = \mu \tau_3$

```
explicitly breaks SU(2)_V \rightarrow U(1)_V
```

 $\mu_l = m_{\pi}/2 \Rightarrow U(1)_V$ breaks spontaneously, π^+ condenses

• Son & Stephanov: valid only for $\mu_l < m_p/2$

ETH zürich

Introduction

- Fixed lattice spacing: $\beta = 5.0, \kappa = 0.150 \rightarrow am_{\pi} \approx 1.84, am_{\rho} \approx 1.86$
- Expect Bose condensation of π^+ at $a\mu_I = am_\pi/2 \approx 0.92$
- U(1) symmetry breaking in $d = 4 \rightarrow$ mean-field

EIH zürich

Introduction

- Fixed lattice spacing: $\beta = 5.0, \kappa = 0.150 \rightarrow am_{\pi} \approx 1.84, am_{\rho} \approx 1.86$
- Expect Bose condensation of π^+ at $a\mu_I = am_\pi/2 \approx 0.92$
- U(1) symmetry breaking in $d = 4 \rightarrow$ mean-field

EIH zürich

Introduction

- Fixed lattice spacing: $\beta = 5.0, \kappa = 0.150 \rightarrow am_{\pi} \approx 1.84, am_{\rho} \approx 1.86$
- Expect Bose condensation of π^+ at $a\mu_I = am_\pi/2 \approx 0.92$
- U(1) symmetry breaking in $d = 4 \rightarrow$ mean-field

an zürich

Introduction

- Fixed lattice spacing: $\beta = 5.0, \kappa = 0.150 \rightarrow am_{\pi} \approx 1.84, am_{\rho} \approx 1.86$
- Expect Bose condensation of π^+ at $a\mu_I = am_\pi/2 \approx 0.92$
- U(1) symmetry breaking in $d = 4 \rightarrow$ mean-field

a Hzürich

Introduction Simulations

Bose Condensation at Zero Temperature

- Fixed lattice spacing: $\beta = 5.0, \kappa = 0.150 \rightarrow am_{\pi} \approx 1.84, am_{\rho} \approx 1.86$
- Expect Bose condensation of π^+ at $a\mu_I = am_\pi/2 \approx 0.92$
- U(1) symmetry breaking in $d = 4 \rightarrow$ mean-field (log corrections)
- isospin density and its derivative at zero T

ETH zürich

Introduction

Bose Condensation at Zero Temperature

- Fixed lattice spacing: $\beta = 5.0, \kappa = 0.150 \rightarrow am_{\pi} \approx 1.84, am_{\rho} \approx 1.86$
- Expect Bose condensation of π^+ at $a\mu_I = am_\pi/2 \approx 0.92$
- U(1) symmetry breaking in $d = 4 \rightarrow$ mean-field (log corrections)
- scaling collapse: $\xi \sim |\mu \mu_c|^{-1/2}$, $Q(\mu_c) \sim V^{1/2}$

ETH zürich

Introduction Simulations

Bose Condensation at Zero Temperature

- Fixed lattice spacing: $\beta = 5.0, \kappa = 0.150 \rightarrow am_{\pi} \approx 1.84, am_{\rho} \approx 1.86$
- Expect Bose condensation of π^+ at $a\mu_I = am_\pi/2 \approx 0.92$
- U(1) symmetry breaking in $d = 4 \rightarrow$ mean-field (log corrections)
- $\bullet \,$ comparison with complex $\phi^4 \quad \rightarrow \quad$ same universality class

a Hzürich

Introduction Simulations

Bose Condensation at Zero Temperature

- Fixed lattice spacing: $\beta = 5.0, \kappa = 0.150 \rightarrow am_{\pi} \approx 1.84, am_{\rho} \approx 1.86$
- Expect Bose condensation of π^+ at $a\mu_I = am_\pi/2 \approx 0.92$
- U(1) symmetry breaking in $d = 4 \rightarrow$ mean-field (log corrections)

quark condensate

Introduction Simulations

- Half filling at $\mu^* \approx$ 1.33, $n^* = 6$ ($\beta = 5.0, \kappa = 0.15$)
- > Volume independence

Introduction Simulations

- Half filling at $\mu^* \approx$ 1.33, $n^* = 6$ ($\beta = 5.0, \kappa = 0.15$)
- > Volume independence
- > Average sign: $\sim \langle \exp(2i\phi) \rangle \approx 1$ with ϕ : phase of single flavour fermion determinant

• Half filling at $\mu^* \approx$ 1.33, $n^* = 6$ ($\beta = 5.0, \kappa = 0.15$)

Introduction

Simulations

- > Volume independence
- > Average sign: $\sim \langle exp(2i\phi) \rangle \approx 1$ with ϕ : phase of single flavour fermion determinant
- > Particle-hole symmetry?

• Half filling at $\mu^* \approx$ 1.33, $n^* = 6$ ($\beta = 5.0, \kappa = 0.15$)

Introduction

Simulation

- > Volume independence
- > Average sign: ~ ⟨exp(2iφ)⟩ ≈ 1 with φ: phase of single flavour fermion determinant
- > Particle-hole symmetry?

- sign-problem is absent:
 - > interesting point for running simulations?
 - > base point about which to expand?

Heavy-Dense Limit

Heavy-dense limit

 \rightarrow turn off spatial hopping \rightarrow det $(D(\mu)) = \prod_{n=1}^{n_x n_y n_z} \det(D_s(\mu))$, (single site determinants)

Introduction

Simulations

$$\rightarrow \text{ temporal gauge} \rightarrow P = \text{diag}(e^{i\Theta_1}, e^{i\Theta_2}, e^{-i(\Theta_1 + \Theta_2)})$$

$$\Rightarrow \quad \det(D_{s}(\mu)) \rightarrow e^{-4i(\Theta_{1}+\Theta_{2})-6n_{t}\mu} \\ \times (e^{i\Theta_{1}+n_{t}\mu}+(2\kappa)^{n_{t}})^{2} (e^{i\Theta_{2}+n_{t}\mu}+(2\kappa)^{n_{t}})^{2} (e^{n_{t}\mu}+(2\kappa)^{n_{t}}e^{i(\Theta_{1}+\Theta_{2})})^{2} \\ \times (1+(2\kappa)^{n_{t}}e^{i\Theta_{1}+n_{t}\mu})^{2} (1+(2\kappa)^{n_{t}}e^{i\Theta_{2}+n_{t}\mu})^{2} ((2\kappa)^{n_{t}}e^{n_{t}\mu}+e^{i(\Theta_{1}+\Theta_{2})})^{2}$$

 $\rightarrow \text{ Haar measure: } H(\Theta_1,\Theta_2) = \frac{1}{6\pi^2} \left(\sin\left(\Theta_1 - \Theta_2\right) - \sin\left(2\Theta_1 + \Theta_2\right) + \sin\left(\Theta_1 + 2\Theta_2\right) \right)^2$

$$\Rightarrow \qquad Z_{s}(\mu) = \int_{0}^{2\pi} d\Theta_{1} \int_{0}^{2\pi} d\Theta_{2} H(\Theta_{1},\Theta_{2}) \det(D_{s}(\mu)) \det(D_{s}(\mu))^{*},$$
$$Z(\mu) \approx \prod_{s=1}^{n_{x} n_{y} n_{z}} Z_{s}(\mu) \quad \text{(neglecting plaquettes)}$$

Heavy-Dense Limit

Heavy-dense limit

 \rightarrow turn off spatial hopping \rightarrow det $(D(\mu)) = \prod_{n=1}^{n_x n_y n_z} \det(D_s(\mu))$, (single site determinants)

Introduction

Simulations

$$\rightarrow \text{ temporal gauge} \rightarrow P = \text{diag}(e^{i\Theta_1}, e^{i\Theta_2}, e^{-i(\Theta_1 + \Theta_2)})$$

$$\Rightarrow \quad \det(D_{s}(\mu)) \rightarrow e^{-4i(\Theta_{1}+\Theta_{2})-6n_{t}\mu} \\ \times \left(e^{i\Theta_{1}+n_{t}\mu}+(2\kappa)^{n_{t}}\right)^{2} \left(e^{i\Theta_{2}+n_{t}\mu}+(2\kappa)^{n_{t}}\right)^{2} \left(e^{n_{t}\mu}+(2\kappa)^{n_{t}}e^{i(\Theta_{1}+\Theta_{2})}\right)^{2} \\ \times \left(1+(2\kappa)^{n_{t}}e^{i\Theta_{1}+n_{t}\mu}\right)^{2} \left(1+(2\kappa)^{n_{t}}e^{i\Theta_{2}+n_{t}\mu}\right)^{2} \left((2\kappa)^{n_{t}}e^{n_{t}\mu}+e^{i(\Theta_{1}+\Theta_{2})}\right)^{2}$$

 $\rightarrow \text{ Haar measure: } H(\Theta_1,\Theta_2) = \tfrac{1}{6\pi^2} \left(\sin\left(\Theta_1 - \Theta_2\right) - \sin\left(2\Theta_1 + \Theta_2\right) + \sin\left(\Theta_1 + 2\Theta_2\right) \right)^2$

$$\Rightarrow \qquad Z_{s}(\mu) = \int_{0}^{2\pi} d\Theta_{1} \int_{0}^{2\pi} d\Theta_{2} H(\Theta_{1}, \Theta_{2}) \det(D_{s}(\mu)) \det(D_{s}(\mu))^{*}$$
$$Z(\mu) \approx \prod_{s=1}^{n_{x} n_{y} n_{z}} Z_{s}(\mu) \quad \text{(neglecting plaquettes)}$$

 \Rightarrow closed, analytic expressions for average Polyakov loop, isospin density, average sign, etc.

,

Introduction Simulations

Heavy-dense limit

half filling: $\mu_{cr} = -\log(2\kappa)$, for $(2\kappa)^{2n_t} << 1$, i.e. $T \approx 0$

fermion determinant symmetric about μ_{cr} up to terms of order $O\left((2\kappa)^{2n_t}\right)$:

 $\det(D(\mu,U))\det(D(\mu,U))^*\approx(2\kappa\,\mathrm{e}^{\mu})^{12\,n_t}\det(D(2\mu_{\mathrm{cr}}-\mu,U))\det(D(2\mu_{\mathrm{cr}}-\mu,U))^*$

Heavy-dense limit

half filling: $\mu_{cr} = -\log(2\kappa)$, for $(2\kappa)^{2n_t} << 1$, i.e. $T \approx 0$

fermion determinant symmetric about μ_{cr} up to terms of order $O\left((2\kappa)^{2n_t}\right)$:

 $\det(D(\mu,U))\det(D(\mu,U))^*\approx(2\kappa\,\mathrm{e}^{\mu})^{12\,n_l}\det(D(2\mu_{cr}-\mu,U))\det(D(2\mu_{cr}-\mu,U))^*$

 \Rightarrow expectation values invariant under $(\mu \rightarrow -2\log(2\kappa) - \mu)$ for sufficiently large n_t

Introduction

Heavy-dense limit

half filling: $\mu_{cr} = -\log(2\kappa)$, for $(2\kappa)^{2n_l} << 1$, i.e. $T \approx 0$

fermion determinant symmetric about μ_{cr} up to terms of order $O((2\kappa)^{2n_l})$:

$$\det(D(\mu,U))\det(D(\mu,U))^*\approx(2\kappa\,\mathrm{e}^{\mu})^{12\,n_t}\det(D(2\mu_{cr}-\mu,U))\det(D(2\mu_{cr}-\mu,U))^*$$

 \Rightarrow expectation values invariant under $(\mu \rightarrow -2\log(2\kappa) - \mu)$ for sufficiently large n_t

Introduction Simulations

Heavy-dense limit

half filling: $\mu_{cr} = -\log(2\kappa)$, for $(2\kappa)^{2n_l} << 1$, i.e. $T \approx 0$

fermion determinant symmetric about μ_{cr} up to terms of order $O((2\kappa)^{2n_l})$:

$$\det(D(\mu,U))\det(D(\mu,U))^*\approx(2\kappa\,\mathrm{e}^{\mu})^{12\,n_t}\det(D(2\mu_{cr}-\mu,U))\det(D(2\mu_{cr}-\mu,U))^*$$

 \Rightarrow expectation values invariant under $(\mu \rightarrow -2\log(2\kappa) - \mu)$ for sufficiently large n_t

Introduction Simulations

Heavy-dense limit

half filling: $\mu_{cr} = -\log(2\kappa)$, for $(2\kappa)^{2n_l} << 1$, i.e. $T \approx 0$

fermion determinant symmetric about μ_{cr} up to terms of order $O((2\kappa)^{2n_l})$:

$$\det(D(\mu,U))\det(D(\mu,U))^*\approx(2\kappa\,\mathrm{e}^{\mu})^{12\,n_t}\det(D(2\mu_{cr}-\mu,U))\det(D(2\mu_{cr}-\mu,U))^*$$

 $\Rightarrow~$ expectation values invariant under $(\mu o -2\log{(2\kappa)}-\mu)$ for sufficiently large n_t

Introduction

Heavy-dense limit

half filling: $\mu_{cr} = -\log(2\kappa)$, for $(2\kappa)^{2n_l} << 1$, i.e. $T \approx 0$

fermion determinant symmetric about μ_{cr} up to terms of order $O((2\kappa)^{2n_l})$:

$$\det(D(\mu,U))\det(D(\mu,U))^*\approx(2\kappa\,\mathrm{e}^{\mu})^{12\,n_t}\det(D(2\mu_{cr}-\mu,U))\det(D(2\mu_{cr}-\mu,U))^*$$

 \Rightarrow expectation values invariant under $(\mu
ightarrow -2\log{(2\kappa)} - \mu)$ for sufficiently large n_t

 $n_t = 2$ too small \Rightarrow asymmetric

Introduction Simulations

- Meson masses $-4^3 \times 12$ lattice, $\beta = 5.0$, $\kappa = 0.15 \Rightarrow am_{\pi} \approx 1.84$, $am_{p} \approx 1.86$
- Source and sink smearing, $\kappa_2 = 0.12$ (optimized)
- Pion: π^0 and $\pi^{+/-}$ masses

π⁰ correlators (incl. disconnected part)

ETHzürich Meson Masses

Introduction Simulations

- Meson masses $4^3 \times 12$ lattice, $\beta = 5.0$, $\kappa = 0.15 \Rightarrow am_{\pi} \approx 1.84$, $am_{\rho} \approx 1.86$ _
- Source and sink smearing, $\kappa_2 = 0.12$ (optimized)
- Pion: π^0 and $\pi^{+/-}$ masses

π⁰ correlators (incl. disconnected part)

au=0.0 +++ au=0.6

> 10 11

Introduction Simulations

- Meson masses $-4^3 \times 12$ lattice, $\beta = 5.0$, $\kappa = 0.15 \Rightarrow am_{\pi} \approx 1.84$, $am_{p} \approx 1.86$
- Source and sink smearing, $\kappa_2 = 0.12$ (optimized)
- Pion: π^0 and $\pi^{+/-}$

 π^0 and $\pi^{+/-}$ masses

π⁰ correlators (incl. disconnected part)

Introduction Simulations

- Meson masses $4^3 \times 12$ lattice, $\beta = 5.0$, $\kappa = 0.15 \Rightarrow am_{\pi} \approx 1.84$, $am_0 \approx 1.86$
- Source and sink smearing, $\kappa_2 = 0.12$ (optimized)
- Pion: π^0 and $\pi^{+/-}$ masses

π⁰ correlators (incl. disconnected part)

Introduction

- Meson masses $-4^3 \times 12$ lattice, $\beta = 5.0$, $\kappa = 0.15 \Rightarrow am_{\pi} \approx 1.84$, $am_{p} \approx 1.86$
- Source and sink smearing, $\kappa_2 = 0.12$ (optimized)
- Pion: π^0 and $\pi^{+/-}$ masses

 π^0 and $\pi^{+/-}$ masses from Son & Stephanov

Introduction

- Meson masses $-4^3 \times 12$ lattice, $\beta = 5.0$, $\kappa = 0.15 \Rightarrow am_{\pi} \approx 1.84$, $am_{p} \approx 1.86$
- Source and sink smearing, $\kappa_2 = 0.12$ (optimized)
- Pion: π^0 and $\pi^{+/-}$ masses

 π^0 and $\pi^{+/-}$ masses from Son & Stephanov

Em zürich Simulations Meson Masses

- Meson masses $4^3 \times 12$ lattice, $\beta = 5.0$, $\kappa = 0.15 \Rightarrow am_{\pi} \approx 1.84$, $am_0 \approx 1.86$
- Source and sink smearing, $\kappa_2 = 0.12$ (optimized)
- Rho: $$\rho^0$ and $\rho^{+/-}$ masses$

 ρ^0 correlators (incl. disconnected part)

ETHzürich Meson Masses

Introduction Simulations

- Meson masses $-4^3 \times 12$ lattice, $\beta = 5.0$, $\kappa = 0.15 \Rightarrow am_{\pi} \approx 1.84$, $am_{p} \approx 1.86$
- Source and sink smearing, $\kappa_2 = 0.12$ (optimized)
- Rho: $$\rho^0$ and $\rho^{+/-}$ masses$

 ρ^0 correlators (incl. disconnected part)

End zürich Meson Masses

Introduction Simulations

- Meson masses $-4^3 \times 12$ lattice, $\beta = 5.0$, $\kappa = 0.15 \Rightarrow am_{\pi} \approx 1.84$, $am_0 \approx 1.86$
- Source and sink smearing, $\kappa_2 = 0.12$ (optimized)
- Rho: $$\rho^0$ and $\rho^{+/-}$ masses$

ρ⁰ correlators (incl. disconnected part)

Introduction Simulations

- Meson masses $4^3 \times 12$ lattice, $\beta = 5.0$, $\kappa = 0.15 \Rightarrow am_{\pi} \approx 1.84$, $am_0 \approx 1.86$
- Source and sink smearing, $\kappa_2 = 0.12$ (optimized)
- Rho: $$\rho^0$ and $\rho^{+/-}$ masses$

 ρ^0 correlators (incl. disconnected part)

Baryon Masses

• Baryon masses $-4^3 \times 12$ lattice, $\beta = 5.0, \kappa = 0.15$

Introduction

Simulations

• Protons and neutrons:

 $p^{+/-}$, $n^{+/-}$ masses:

correlators n^+ and p^- :

ETHzürich Baryon Masses

Introduction Simulations

- Baryon masses $-4^3 \times 12$ lattice, $\beta = 5.0, \kappa = 0.15$
- Protons and neutrons:

 $p^{+/-}, n^{+/-}$ masses:

correlators n^+ and p^- :

good fits with small masses at large isospin chemical potential

Dirac Operator Spectrum

• Typical eigenvalue distribution of single flavor Wilson Dirac operator $D(\mu)$

 $\mu = 0.00$

 Emilizarich
 Introduction

 Dirac Operator Spectrum
 Simulations

• Typical eigenvalue distribution of single flavor Wilson Dirac operator $D(\mu)$

 $\mu = 0.60$

 Emilizarich
 Simulations

 Dirac Operator Spectrum

• Typical eigenvalue distribution of single flavor Wilson Dirac operator $D(\mu)$

 $\mu = 0.80$

Dirac Operator Spectrum

• Typical eigenvalue distribution of single flavor Wilson Dirac operator $D(\mu)$

 $\mu = 0.90$ ($\mu_{cr} = 0.92$) full analytic heavy-dense Im(A) Im(J) --2 -3 -1 0 1 2 3 -2 -10 1 2 3 $Re(\lambda)$ $Re(\lambda)$

Dirac Operator Spectrum

• Typical eigenvalue distribution of single flavor Wilson Dirac operator $D(\mu)$

 $\mu = 0.95$ ($\mu_{cr} = 0.92$) full analytic heavy-dense Im(A) Im(J) --2 -3 -1 0 1 2 3 -2 -10 1 2 3 $Re(\lambda)$ $Re(\lambda)$

ETHzürich Simulations
Dirac Operator Spectrum

• Typical eigenvalue distribution of single flavor Wilson Dirac operator $D(\mu)$

 ETH zürich
 Introduction Simulations

 Dirac Operator Spectrum
 Simulations

• Typical eigenvalue distribution of single flavor Wilson Dirac operator $D(\mu)$

ETHzürich Simulations Dirac Operator Spectrum

• Typical eigenvalue distribution of single flavor Wilson Dirac operator $D(\mu)$

ETHzürich Simulations Dirac Operator Spectrum

• Typical eigenvalue distribution of single flavor Wilson Dirac operator $D(\mu)$

ETHzürich Simulations

• Typical eigenvalue distribution of single flavor Wilson Dirac operator $D(\mu)$

Dirac Operator Spectrum

• Typical eigenvalue distribution of single flavor Wilson Dirac operator $D(\mu)$

Introduction

 $\mu = 2.00$

- > T= 0: Bose condensation for $\mu_I
 ightarrow m_\pi/2$ as expected
- > Half-filling point $n_l = 6$:
 - particle-hole symmetry
 - no sign-problem! (interesting for simulations with Baryon chemical potential?)
- > Mass of iso-neutral mesons rather decrease than increase for $\mu_l > m_\pi/2$

Introduction

Simulation

- > Analytic results from heavy-dense limit
- In progress:
 - > Larger $\kappa = 0.175 \quad \Rightarrow \quad$ larger mass separation: $m_{\pi} \approx 1.48, m_{\rho} \approx 1.70$
 - > Finite temperature
 - > Condensation of p⁺? Heavier mesons?
 - > Baryon spectrum