THE STATE UNIVERSITY
OF NEW JERSEY

Lattice 2014

Causal Space-Time on a Null Lattice with Hypercubic Coordination Martin Schaden

Rutgers University - Newark
Department of Physics
I. Introduction: Two discretizations of causal manifolds

- Causal Dynamical Regge Triangulation (CDT) of Ambjørn and Loll
- or on a topological lattice
II. Topological Null Lattice
- Discretization of a causal 2,3 ,and 4 dimensional manifold
III. The Manifold Constraint
- Construction of the Topological Lattice Theory (TLT)
- for tetrads
- for spinors

IV. Outlook

- Invariant integration measures and observables
- Regularization

Foliated Gravity as QM of space histories (Ambjørn and Loll):

- Foliated space-time with spatial submanifolds at fixed temporal separation. Triangulation of spatial manifolds by simplexes of fixed size, but varying coordination number.
- Can be "rotated" to Euclidean space, but contrary to Regge QG simulates a subset of causal manifolds only.
- There exist 3 distinct phases: A, B and C that depend on the coupling constants (κ, λ).

Critical Continuum Limit?

local \# d.o.f. ?

Ambjørn,Jurkiewicz, Loll 2010
\square Light-like signals naturally foliate a causal manifold:
The (future) light cones of a spatial line segment (in $\mathrm{d}=1$), a spatial triangle (in $\mathrm{d}=2$) and of a spatial tetrahedron (in $\mathrm{d}=3$) intersect at a unique point:

$d=3$

$$
d=2
$$

\square Each spatial triangle (tetrahedron) maps to a point on a spatial (hyper-)surface with time-like separation

- if each vertex is common to 3 (4) otherwise disjoint triangles (tetrahedrons), the mapping between points of two timelike separated spatial surfaces is 1 to 1 !!!!
- the (spatial) coordination of a spatial vertex in $d=1,2,3$ dimensions thus is 2,6,12.

In 2 (3) spatial dimensions the (spatial) triangulation is hexagonal (tetrahedral) and fixed! LENGTHS ARE VARIABLE: LATTICE IS TOPOLOGICALLY (HYPER)CUBIC ONLY

Deformed: Actual geometry determined by "fields" $E_{\mu}(\boldsymbol{n}), \xi_{\mu}(\boldsymbol{n}) ; U_{\mu}(\boldsymbol{n})$ on lattice.

Spatial Triangulation in $\mathrm{d}=1,2,3$

Linear in $\mathrm{d}=1$
Coordination=2

Hexagonal in d=2
Coordination=6

Coordination $=\mathrm{d}(\mathrm{d}+1)$

Tetrahedral in $d=3$ Coordination=12

The tetrahedra in this triangulation of spatial hypersurfaces in general are neither equal nor regular!

$$
\text { Co-frame, } e^{\alpha}=e_{\mu}^{\alpha} d x^{\mu} \text { is a } 1 \text {-form }
$$

Introducing a basis of anti-hermitian 2×2 matrices σ_{α}, this 1 -form corresponds to an anti-hermitian matrix,

$$
E_{\mu}^{A \dot{B}}(\boldsymbol{n})=\frac{1}{l_{P}} \sigma_{\alpha}^{A \dot{B}} \int_{\boldsymbol{n}}^{\boldsymbol{n}+\mu} e^{\alpha}
$$

where the line-integral is along the geodesic $[\boldsymbol{n}, \boldsymbol{n}+\mu]$. The lattice nodes have light-like or null separation

$$
\Leftrightarrow \operatorname{det} E_{\mu}(\boldsymbol{n})=0 \Leftrightarrow E_{\mu}^{A \dot{B}}(\mathbf{n})=i\left(\xi_{\mu} \otimes \xi_{\mu}^{*}\right)^{A \dot{B}}=i \xi_{\mu}^{A}(\mathbf{n}) \xi_{\mu}^{* \dot{B}}(\mathbf{n})
$$

Null links thus are described by complex bosonic spinors $\xi_{\mu}^{A}(\boldsymbol{n})$.
d.o.f. per site: spinors: $2 \times 2 \times 4-6[s(2, C)]=10,10-4$ phases $=6$ metric d.o.f.

Local (spatial) lengths on the null lattice are given by the scalar product :
$\ell_{\mu \nu}^{2}(\mathbf{n})=-2 E_{\mu}(\mathbf{n}) \cdot E_{\nu}(\mathbf{n})=\operatorname{Tr} \varepsilon E_{\mu}^{T}(\mathbf{n}) \varepsilon E_{\nu}(\mathbf{n})=\left|f_{\mu \nu}(\mathbf{n})\right|^{2} \geq 0$
with the $\mathrm{SL}(2, \mathrm{C})$ invariant skew-symmetric tensor $\quad \varepsilon=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$
and the invariant skew product

$$
f_{\mu \nu}(\mathbf{n})=-f_{\nu \mu}(\mathbf{n})=\xi_{\mu}^{A}(\mathbf{n}) \varepsilon_{A B} \xi_{\nu}^{B}(\mathbf{n})
$$

The latter algebraically satisfies:

$$
\operatorname{Pf}(f(\mathbf{n}))=\frac{1}{8} \sum_{\mu \nu \rho \sigma} \varepsilon(\mu \nu \rho \sigma) f_{\mu \nu}(\mathbf{n}) f_{\rho \sigma}(\mathbf{n})=f_{12}(\mathbf{n}) f_{34}(\mathbf{n})+f_{13}(\mathbf{n}) f_{42}(\mathbf{n})+f_{14}(\mathbf{n}) f_{23}(\mathbf{n})=0
$$

The $\left|\ell_{\mu \nu}\right|$ for $\mu \neq v$ are the 6 spatial lengths of the tetrahedron whose sides are $E_{\mu}(\boldsymbol{n})-E_{v}(\boldsymbol{n})$. These vectors are all given in the same inertial system at \boldsymbol{n}. The lengths are invariant under local $\mathrm{SL}(2, \mathrm{C})$ transformations $\xi_{\mu}^{A}(\boldsymbol{n}) \rightarrow g_{B}^{A}(\boldsymbol{n}) \xi_{\mu}^{B}(\boldsymbol{n})$.
Since $\operatorname{Pf}\left[f_{\mu \nu}(\boldsymbol{n})\right]=0, \exists$ two vectors ξ_{A}^{μ} for which $\sum_{\nu} f_{\mu \nu}(\mathbf{n}) \xi_{A}^{\nu}=0$, for $A=1,2$
skew form: $2 \times 6-2$ constraints $=10,10-4=6$ only $\left|f_{\mu \nu}\right|$ related to metric

Any causal manifold can be discretized on a topological null-lattice with hypercubic coordination.

Example: Minkowski space-time with null coframes,
$e_{1}^{\text {Mink }}=(-1,1,1, \sqrt{3}), e_{2}^{\text {Mink }}=(1,-1,1, \sqrt{3}), e_{3}^{\text {Mink }}=(1,1,-1, \sqrt{3}), e_{4}^{\text {Mink }}=(-1,-1,-1, \sqrt{3})$
Independent of the node \boldsymbol{n} (scaled and Lorentz-transformed frames here are equivalent). The Minkowski metric (distances) in these coordinates is:

$$
-\ell_{\mu \nu}^{2}=g_{\mu \nu}=e_{\mu}^{a} \eta_{a b} e_{\nu}^{b}=-4 \text { for } \mu \neq \nu, \text { vanishing for } \mu=\nu
$$

and $\operatorname{det}\left(e_{\mu}^{a}\right)=16 \sqrt{3}>0$, preserving orientation.
BUT: NOT EVERY orientation-preserving configuration of null-frames on a lattice with hypercubic orientation represents a discretized manifold !!

Since the \#d.o.f. is correct \Leftrightarrow the additional conditions are topological and do not alter the \#d.o.f.

For a lattice configuration to be the triangulation of a manifold, distances between events common to two inertial systems ("overlapping atlases") must be the same:

$$
-E_{\mu}(\boldsymbol{n}) \cdot E_{v}(\boldsymbol{n})=\ell_{\mu \nu}^{2}=-\tilde{E}_{\mu}\left(\boldsymbol{n}^{\prime}\right) \cdot \tilde{E}_{v}\left(\boldsymbol{n}^{\prime}\right)
$$

Forward null coframe In inertial system at \boldsymbol{n}

Backward null coframe In inertial system at \boldsymbol{n}^{\prime}

For a fixed event \boldsymbol{n}^{\prime}, the six spatial lengths $\mu \neq v$

$$
0<\ell_{\mu \nu}^{2}\left(\boldsymbol{n}^{\prime}\right)=-E_{\mu}\left(\boldsymbol{n}^{\prime}-\mu-v\right) \cdot E_{v}\left(\boldsymbol{n}^{\prime}-\mu-v\right)
$$

are the sides of a spatial tetrahedron (the one formed by the 4 events $\boldsymbol{n}^{\prime}-\mu, \mu=1, \ldots, 4$ in the backward light cone of $\left.\boldsymbol{n}^{\prime}\right)$. They can be assembled to a tetrahedron \Leftrightarrow the lengths satisfy triangle inequalities. A configuration of (forward) null frames on this lattice is the discretization of a manifold if and only if:

$$
0<\ell_{\mu \nu}(\mathbf{n})<\ell_{\mu \rho}(\mathbf{n})+\ell_{\rho \nu}(\mathbf{n}), \text { for all } \mu, \nu, \rho \text { at every site } \mathbf{n}
$$

RUTGERS The eBRST and TLT of the Manifold Condition

The manifold condition can be enforced by a local TLT with an equivariant BRST. The action of this TLT is:

$$
\begin{aligned}
& S_{T L T}= s \sum_{\mu, \nu, \mathbf{n}}\left[c^{\mu \nu}(\mathbf{n})\left(E_{\mu}(\mathbf{n}-\mu-\nu) \cdot E_{\nu}(\mathbf{n}-\mu-\nu)-\tilde{E}_{\mu}(\mathbf{n}) \cdot \tilde{E}_{\nu}(\mathbf{n})\right)+2 b^{\mu \nu}(\mathbf{n}) \tilde{E}_{\mu}(\mathbf{n}) \cdot c_{\nu}(\mathbf{n})\right] \\
&=\sum_{\mu, \nu, \mathbf{n}} g^{\mu \nu}(\mathbf{n})\left[E_{\mu}(\mathbf{n}-\mu-\nu) \cdot E_{\nu}(\mathbf{n}-\mu-\nu)-\tilde{E}_{\mu}(\mathbf{n}) \cdot \tilde{E}_{\nu}(\mathbf{n})\right]+ \\
& \quad+2\left[c^{\mu \nu}(\mathbf{n})+\bar{\omega}^{\mu \nu}(\mathbf{n})\right] \tilde{E}_{\mu}(\mathbf{n}) \cdot c_{\nu}(\mathbf{n})+2 b^{\mu \nu}(\mathbf{n})\left[\tilde{E}_{\mu}(\mathbf{n}) \cdot \phi(\mathbf{n}) \cdot \tilde{E}_{\nu}(\mathbf{n})+c_{\mu}(\mathbf{n}) \cdot c_{\nu}(\mathbf{n})\right]
\end{aligned}
$$

with real bosonic Lagrange multiplier fields $g^{\mu \nu}=g^{\nu \mu}$ enforcing 10 constraints on 16 (backward) tetrads $\tilde{E}_{\mu}^{\alpha}, 16$ anti-ghosts $\bar{c}^{\mu \nu}=\bar{c}^{\nu \mu}$ and $\bar{\omega}^{\mu \nu}=-\bar{\omega}^{\nu \mu}$, an equal number of 16 ghosts c_{μ}^{α} and 6 bosonic topological ghosts $\phi^{\alpha \beta}=-\phi^{\alpha \beta}$ (ghost\#=2) and an equal number of topological antighosts $b^{\mu \nu}=-b^{\nu \mu}$ (ghost\#=-2) and an additional bosonic $\widetilde{\mathrm{SL}}(2, \mathrm{C})$ symmetry.
The TLT therefore has $10+16+6+6-6(\widetilde{\mathrm{SL}}(2, \mathrm{C}))=32$ bosonic d.o.f. and $16+16=32$ fermionic d.o.f. , or a total of 0 d.o.f. . The eBRST is :

$$
\begin{aligned}
s \tilde{E}_{\mu}^{\alpha}(\mathbf{n}) & =c_{\mu}^{\alpha}(\mathbf{n})+\omega^{\alpha}(\mathbf{n}) \tilde{E}_{\mu}^{\beta}(\mathbf{n}) \\
s c_{\mu}^{\alpha}(\mathbf{n}) & =\phi^{\alpha}{ }_{\beta}(\mathbf{n}) \tilde{E}_{\mu}^{\beta}(\mathbf{n})+\omega^{\alpha}(\mathbf{n}) c_{\mu}^{\beta}(\mathbf{n}) \\
s \phi_{\beta}^{\alpha}(\mathbf{n}) & =\omega^{\alpha}(\mathbf{n}) \phi_{\beta}^{\gamma}(\mathbf{n})-\phi_{\gamma}^{\alpha}(\mathbf{n}) \omega^{\gamma}(\mathbf{n}) \\
s \omega_{\beta}^{\alpha}(\mathbf{n}) & =\omega^{\alpha}(\mathbf{n}) \omega_{\beta}^{\gamma}(\mathbf{n})-\phi_{\beta}^{\alpha}(\mathbf{n})
\end{aligned}
$$

$$
\begin{aligned}
& s \bar{c}^{\mu \nu}(\mathbf{n})=g^{\mu \nu}(\mathbf{n})=g^{\nu \mu}(\mathbf{n}) \\
& s g^{\mu \nu}(\mathbf{n})=0 \\
& s b^{\mu \nu}(\mathbf{n})=\bar{\omega}^{\mu \nu}(\mathbf{n})=-\bar{\omega}^{\nu \mu}(\mathbf{n}) \\
& s \bar{\omega}^{\mu \nu}(\mathbf{n})=0
\end{aligned}
$$

The additional fields of the TLT can in fact be integrated out to give the triangle inequality constraints:

$$
Z_{T L T}[E] \propto \prod_{\mathbf{n}} \prod_{\mu, \nu, \rho} \Theta\left[\ell_{\mu \rho}(\mathbf{n})+\ell_{\rho \nu}(\mathbf{n})-\ell_{\mu \nu}(\mathbf{n})\right]
$$

The manifold condition for the spinors is: $\tilde{f}_{\mu v}(\boldsymbol{n}):=\xi_{\mu}^{A}(\boldsymbol{n}-\mu-v) \varepsilon_{A B} \xi_{v}^{B}(\boldsymbol{n}-\mu-v)$

$$
\left|\tilde{f}_{\mu \nu}(\boldsymbol{n})\right|=\left|\tilde{\xi}_{\mu}^{A}(\boldsymbol{n}) \varepsilon_{A B} \tilde{\xi}_{v}^{B}(\boldsymbol{n})\right| \text { or } \quad \tilde{\xi}_{\mu}^{A}(\boldsymbol{n}) \varepsilon_{A B} \tilde{\xi}_{v}^{B}(\boldsymbol{n})=e^{i \varphi_{\mu \nu}(\boldsymbol{n})} \tilde{f}_{\mu \nu}(\boldsymbol{n})
$$

where the 6 real phases $\varphi_{\mu \nu}(\boldsymbol{n})=\varphi_{\nu \mu}(\boldsymbol{n})$ for $\mu \neq v$ are not all independent, because $\operatorname{Pf}\left[e^{i \varphi_{\mu \nu}(\boldsymbol{n})} \tilde{f}_{\mu \nu}(\boldsymbol{n})\right]=\mathbf{0}$.

Proposition:

If $P f\left[e^{i \varphi_{\mu \nu}(\boldsymbol{n})} \tilde{f}_{\mu \nu}(\boldsymbol{n})\right]=\mathbf{0} \Leftrightarrow \exists \mathrm{a}^{4}(1)$ transformation $\xi_{\mu}^{A}(\boldsymbol{n}) \rightarrow e^{-i \psi_{\mu}(\boldsymbol{n})} \xi_{\mu}^{A}(\boldsymbol{n})$ such that $P f\left[\widetilde{f}^{\prime}{ }_{\mu \nu}(\boldsymbol{n})\right]=\mathbf{0}$.

Proof: Choose $\psi_{1}(\boldsymbol{n})=-\psi_{2}(\boldsymbol{n}) ; \psi_{3}(\boldsymbol{n})=-\psi_{4}(\boldsymbol{n})$ and denote $\psi_{1}(\boldsymbol{n}) \pm \psi_{3}(\boldsymbol{n})=\psi_{ \pm}(\boldsymbol{n})$
The 2 relations decouple and can be solved uniquely (modulo b.c.):

$$
\begin{aligned}
& \psi_{+}(\boldsymbol{n}-\mathbf{2}-\mathbf{4})-\psi_{+}(\boldsymbol{n}-\mathbf{1}-\mathbf{3})=\varphi_{12}(\boldsymbol{n})+\varphi_{34}(\boldsymbol{n})-\varphi_{13}(\boldsymbol{n})-\varphi_{42}(\boldsymbol{n}) \\
& \psi_{-}(\boldsymbol{n}-\mathbf{2}-\mathbf{3})-\psi_{-}(\boldsymbol{n}-\mathbf{1}-\mathbf{4})=\varphi_{12}(\boldsymbol{n})+\varphi_{34}(\boldsymbol{n})-\varphi_{14}(\boldsymbol{n})-\varphi_{23}(\boldsymbol{n})
\end{aligned}
$$

manifold condition $\Leftrightarrow \exists U^{4}(1)$ transformation $\ni \operatorname{Pf}\left(\tilde{f}_{\mu \nu}(\boldsymbol{n})\right)=0$

The Manifold TLT for Spinors

The TLT of the manifold condition is obtained by using it to fix (part of) the $\mathrm{U}^{4}(1)$.
BRST: $s \xi_{1}^{A}(\boldsymbol{n})=\frac{-i}{2} \psi_{1}(\boldsymbol{n}) \xi_{1}^{A}(\boldsymbol{n}) \quad s \xi_{1}^{* A}(\boldsymbol{n})=\frac{i}{2} \psi_{1}(\boldsymbol{n}) \xi_{1}^{* A}(\boldsymbol{n})$

$$
\begin{array}{ll}
S \xi_{2}^{A}(\boldsymbol{n})=\frac{i}{2} \psi_{1}(\boldsymbol{n}) \xi_{2}^{A}(\boldsymbol{n}) & S \xi_{2}^{* A}(\boldsymbol{n})=\frac{-i}{2} \psi_{1}(\boldsymbol{n}) \xi_{2}^{* A}(\boldsymbol{n}) \quad ; s^{2}=0 \\
S \xi_{3}^{A}(\boldsymbol{n})=\frac{-i}{2} \psi_{3}(\boldsymbol{n}) \xi_{3}^{A}(\boldsymbol{n}) & S \xi_{3}^{* A}(\boldsymbol{n})=\frac{i}{2} \psi_{3}(\boldsymbol{n}) \xi_{3}^{* A}(\boldsymbol{n}) \\
S \xi_{4}^{A}(\boldsymbol{n})=\frac{i}{2} \psi_{3}(\boldsymbol{n}) \xi_{4}^{A}(\boldsymbol{n}) & S \xi_{4}^{* A}(\boldsymbol{n})=\frac{-i}{2} \psi_{3}(\boldsymbol{n}) \xi_{4}^{* A}(\boldsymbol{n}) \\
S \bar{\psi}_{+}(\boldsymbol{n})=b_{+}(\boldsymbol{n}) & S \bar{\psi}_{-}(\boldsymbol{n})=b_{-}(\boldsymbol{n})
\end{array}
$$

$$
\begin{aligned}
& \tilde{f}_{\mu v}(\boldsymbol{n}):=\xi_{\mu}^{A}(\boldsymbol{n}-\mu-v) \varepsilon_{A B} \xi_{v}^{B}(\boldsymbol{n}-\mu-v) \\
& \operatorname{Pf}(\tilde{f}(\boldsymbol{n}))=\tilde{f}_{12}(\boldsymbol{n}) \tilde{f}_{34}(\boldsymbol{n})+\tilde{f}_{13}(\boldsymbol{n}) \tilde{f}_{42}(\boldsymbol{n})+\tilde{f}_{14}(\boldsymbol{n}) \tilde{f}_{32}(\boldsymbol{n}) \\
& \quad \psi_{+}(\boldsymbol{n})=\psi_{1}(\boldsymbol{n}-4-2)+\psi_{3}(\boldsymbol{n}-4-2)-\psi_{1}(\boldsymbol{n}-\mathbf{1}-3)-\psi_{3}(\boldsymbol{n}-\mathbf{1}-\mathbf{3}) \\
& \psi_{-}(\boldsymbol{n})=\psi_{1}(\boldsymbol{n}-\mathbf{3}-\mathbf{2})-\psi_{3}(\boldsymbol{n}-\mathbf{3}-\mathbf{2})-\psi_{1}(\boldsymbol{n}-\mathbf{1}-\mathbf{4})+\psi_{3}(\boldsymbol{n}-\mathbf{1}-\mathbf{4})
\end{aligned}
$$

$S_{\mathrm{TLT}}=s \sum_{\boldsymbol{n}}\left(\bar{\psi}_{+}(\boldsymbol{n})+i \bar{\psi}_{-}(\boldsymbol{n})\right) \operatorname{Pf}(\tilde{f}(\boldsymbol{n}))+\left(\bar{\psi}_{+}(\boldsymbol{n})-i \bar{\psi}_{-}(\boldsymbol{n})\right) \operatorname{Pf}\left(\tilde{f}^{*}(\boldsymbol{n})\right)+\alpha b_{+}(\boldsymbol{n}) \bar{\psi}_{-}(\boldsymbol{n})$
$=\sum_{\boldsymbol{n}} b_{+}(\boldsymbol{n})\left(\operatorname{Pf}(\tilde{f}(\boldsymbol{n}))+\operatorname{Pf}\left(\tilde{f}^{*}(\boldsymbol{n})\right)\right)+i b_{-}(\boldsymbol{n})\left(\operatorname{Pf}(\tilde{f}(\boldsymbol{n}))-\operatorname{Pf}\left(\tilde{f}^{*}(\boldsymbol{n})\right)\right)+\alpha b_{+}(\boldsymbol{n}) b_{-}(\boldsymbol{n})$
$+2\left[\bar{\psi}_{+}(\boldsymbol{n}) \operatorname{lm}\left(\tilde{f}_{13}(\boldsymbol{n}) \tilde{f}_{42}(\boldsymbol{n})\right)+\bar{\psi}_{-}(\boldsymbol{n}) \operatorname{Re}\left(\tilde{f}_{14}(\boldsymbol{n}) \tilde{f}_{32}(\boldsymbol{n})\right)\right] \psi_{+}(\boldsymbol{n})$
$+2\left[\bar{\psi}_{+}(\boldsymbol{n}) \operatorname{Im}\left(\tilde{f}_{14}(\boldsymbol{n}) \tilde{f}_{32}(\boldsymbol{n})\right)+\bar{\psi}_{-}(\boldsymbol{n}) \operatorname{Re}\left(\tilde{f}_{13}(\boldsymbol{n}) \tilde{f}_{42}(\boldsymbol{n})\right)\right] \psi_{-}(\boldsymbol{n})$

One can integrate out the real bosonic fields b_{+}, b_{-}as well as the fermionic ghosts $\bar{\psi}_{+}, \bar{\psi}_{-}, \psi_{+}$and ψ_{-}to arrive at the TLT contribution to the measure:

$$
d \mu_{\mathrm{TLT}}=\prod_{\boldsymbol{n}} \tilde{V}(\boldsymbol{n}) \exp \left[-\frac{i}{\alpha}|\operatorname{Pf}(\tilde{f}(\boldsymbol{n}))|^{2}\right] \prod_{\mu=1}^{4} d \psi_{\mu}
$$

with

$$
\operatorname{Pf}(\tilde{f}(\boldsymbol{n}))=\tilde{f}_{12}(\boldsymbol{n}) \tilde{f}_{34}(\boldsymbol{n})+\tilde{f}_{13}(\boldsymbol{n}) \tilde{f}_{42}(\boldsymbol{n})+\tilde{f}_{14}(\boldsymbol{n}) \tilde{f}_{32}(\boldsymbol{n})
$$

and

$$
\tilde{V}(\boldsymbol{n})=\frac{-i}{48} \sum_{\mu \nu \rho \sigma} \epsilon(\mu \nu \rho \sigma) \tilde{f}_{\mu \nu}(\boldsymbol{n}) \tilde{f}_{\nu \rho}^{*}(\boldsymbol{n}) \tilde{f}_{\rho \sigma}(\boldsymbol{n}) \tilde{f}_{\sigma \mu}^{*}(\boldsymbol{n})
$$

where

$$
\tilde{f}_{\mu v}(\boldsymbol{n}):=\xi_{\mu}^{A}(\boldsymbol{n}-\mu-v) \varepsilon_{A B} \xi_{v}^{B}(\boldsymbol{n}-\mu-v)
$$

Note: Observables of the lattice theory do NOT DEPEND on the parameter α, but lattice configurations generally are triangulations of causal manifolds for $\alpha \rightarrow 0$ only!

The dependence on a particular "direction" used in the construction of the TLT has disappeared (as it must).

Conclusion and Outlook

Summary:

$>$ Causal description of discretized space-time on a null lattice with fixed hypercubic coordination.
$>$ Local eBRST actions that encode the topological manifold condition.

Outlook:
> Integration Measures and Regularization
> Invariants and Observables
$>$ eBRST localization to compact $\mathrm{SU}(2)$ structure group of spatial rotations.

Hope You Enjoyed the Talk. Thank You.

RUTGERS Invariant Integral Measures \& Regularization

The integration measures for the spinors and $\operatorname{SL}(2, \mathrm{C})$ transport matrices are dictated by $\mathrm{SL}(2, \mathrm{C})$ invariance: $\quad E_{\mu}(\mathbf{n}) \longrightarrow g(\mathbf{n}) E_{\mu}(\mathbf{n}) g^{\dagger}(\mathbf{n})$ with $g(\mathbf{n}) \in S L(2, \mathbb{C})$
or $\xi_{\mu}^{A}(\mathbf{n}) \longrightarrow g_{B}^{A}(\mathbf{n}) \xi_{\mu}^{B}(\mathbf{n})$, and $\xi_{\mu A}^{c}(\mathbf{n}) \longrightarrow \xi_{\mu B}^{c}(\mathbf{n}) g^{-1 B}(\mathbf{n})$
Parameterizing: $\quad \xi_{\mu}(\mathbf{n})=\sqrt{\tau_{\mu}(\mathbf{n})} e^{i \psi_{\mu}(\mathbf{n}) / 2}\left(\begin{array}{c}e^{-i \varphi_{\mu}(\mathbf{n}) / 2} \cos \left(\theta_{\mu}(\mathbf{n}) / 2\right) \\ e^{i \varphi_{\mu}(\mathbf{n}) / 2} \\ \sin \left(\theta_{\mu}(\mathbf{n}) / 2\right)\end{array}\right)$

$$
E_{\mu}(\mathbf{n})=i \xi_{\mu}(\mathbf{n}) \otimes \bar{\xi}_{\mu}(\mathbf{n})=i \tau_{\mu}(\mathbf{n}) P_{\mu}(\mathbf{n})=i \tau_{\mu}(\mathbf{n}) \frac{1}{2}\left(\mathbb{1}-i \vec{\sigma} \hat{r}_{\mu}(\mathbf{n})\right)
$$

The $\operatorname{SL}(2, C)$ invariant measure for the tetrads is:

$$
d \mu\left[E_{\mu}(\mathbf{n})\right] \propto d^{4} E_{\mu} \delta^{+}\left(E_{\mu} \cdot E_{\mu}\right) \propto \tau_{\mu} d^{+} \tau_{\mu} d \Omega\left(\hat{r}_{\mu}\right)
$$

The invariant measure of $\operatorname{SL}(2, \mathrm{C})$ matrices: $U_{\mu B}^{A}(\mathbf{n}) \rightarrow g_{C}^{A}(\mathbf{n}) U_{\mu D}^{C}(\mathbf{n}) g^{-1 D}{ }_{B}(\mathbf{n}+\mu)$ is the (non-compact) $\operatorname{SL}(2, \mathrm{C})$ Haar measure: $d \mu\left[U_{\mu}(\boldsymbol{n})\right]=d \mu_{S L(2, C)}$

So far NO UV-Regularization: the discretization can locally be arbitrary fine.
Coordinate invariant local regularization: $V(\boldsymbol{n}) \geq \varepsilon \rightarrow 0^{+}$

Invariants and Observables

Basic SL(2,C) invariants
Closed loops: $\quad C^{(r)}\left(\mathbf{n}_{1}, \mathbf{n}_{2}, \ldots, \mathbf{n}_{r}\right):=\operatorname{Tr} U\left[\mathbf{n}_{1}, \mathbf{n}_{2}\right] U\left[\mathbf{n}_{2}, \mathbf{n}_{3}\right] \ldots U\left[\mathbf{n}_{r}, \mathbf{n}_{1}\right]$,
Open strings: $\quad O_{\mu \nu}^{(r)}\left(\mathbf{n}_{0}, \mathbf{n}_{1}, \ldots, \mathbf{n}_{r}\right):=\xi_{\mu}^{c}\left(\mathbf{n}_{0}\right) U\left[\mathbf{n}_{0}, \mathbf{n}_{1}\right] U\left[\mathbf{n}_{1}, \mathbf{n}_{2}\right] \ldots U\left[\mathbf{n}_{r-1}, \mathbf{n}_{r}\right] \xi_{\nu}\left(\mathbf{n}_{r}\right)$ SL(2,C) parallel transport

Most local

$$
\begin{array}{lrl}
\text { Most local } & f_{\mu \nu}(\mathbf{n}) & :=\xi_{\mu A}^{c}(\mathbf{n}) \xi_{\nu}^{A}(\mathbf{n})=\xi_{\mu}^{A}(\mathbf{n}) \varepsilon_{A B} \xi_{\nu}^{B}(\mathbf{n})=: O_{\mu \nu}^{(0)}(\mathbf{n}), \\
& \text { examples: } & \psi_{\mu \nu \rho}(\mathbf{n}) \\
& \chi_{\mu \nu \rho \sigma}(\mathbf{n}) & :=\xi_{\mu A}^{c}(\mathbf{n}) U_{\rho B}^{A}(\mathbf{n}) \xi_{\nu}^{B}(\mathbf{n}) U_{\rho B}^{A}(\mathbf{n}) U_{\sigma C}^{B}(\mathbf{n}+\rho)=: O_{\mu \nu}^{(1)}(\mathbf{n}, \mathbf{n}+\rho), \\
& (\mathbf{n}+\rho+\sigma)=: O_{\mu \nu}^{(2)}(\mathbf{n}, \mathbf{n}+\rho, \mathbf{n}+\rho+\sigma)
\end{array}
$$

Observables are real scalars of $\operatorname{SL}(2, \mathrm{C})$ invariant densities. Some are:
4-volume

$$
\mathcal{V}_{\mu \nu \rho \sigma}(\mathbf{n}):=-i f_{\mu \nu}^{*}(\mathbf{n}) f_{\nu \rho}(\mathbf{n}) f_{\rho \sigma}^{*}(\mathbf{n}) f_{\sigma \mu}(\mathbf{n})=2 \varepsilon(\mu \nu \rho \sigma) \operatorname{det}\left[E_{\tau}^{\alpha}\right]
$$

Hilbert-Palatini term
$\mathcal{P}_{\mu \nu \rho \sigma}(\mathbf{n}):=i \chi_{\mu \nu \rho \sigma}(\mathbf{n}) \chi_{\mu \nu \sigma \rho}^{*}(\mathbf{n})=i \operatorname{Tr} \varepsilon E_{\mu}^{T}(\mathbf{n}) \varepsilon U_{\rho}(\mathbf{n}) U_{\sigma}(\mathbf{n}+\rho) E_{\nu}(\mathbf{n}+\rho+\sigma) U_{\rho}^{\dagger}(\mathbf{n}+\sigma) U_{\sigma}^{\dagger}(\mathbf{n})$

No matter what the invariant action, we must factor the infinite volume of the non-compact SL(2,C) structure group!

We localize to the compact $\operatorname{SU}(2)$ subgroup of spatial rotations by requiring:

$$
\tau_{1}(\mathbf{n})=\tau_{2}(\mathbf{n})=\tau_{3}(\mathbf{n})=\tau_{4}(\mathbf{n})=: \tau(\mathbf{n})
$$

Physically we are choosing a local inertial system at \mathbf{n} where the 4 non-collinear events on the forward light cone are simultaneous. This local inertial system always exists and is unique up to spatial rotations.
The partial gauge fixing is local and ghost-free. It is unique and the Jacobian can be evaluated explicitly. The residual $\mathrm{SU}(2)$ structure group is compact!

The partially gauge-fixed lattice integration measure in polar parametrization becomes:

$$
d \mu_{L A T}=\prod_{\mathbf{n}} \tau^{7}(\mathbf{n})|\hat{V}(\mathbf{n})| d^{+} \tau(\mathbf{n}) \prod_{\mu} d \Omega\left(\hat{r}_{\mu}(\mathbf{n})\right) d U_{\mu}(\boldsymbol{n})
$$

where $\hat{V}(\mathbf{n})=\frac{1}{16} \operatorname{det}\left(\begin{array}{c}\hat{r}_{1}-\hat{r}_{4} \\ \hat{r}_{2} \\ \hat{r}_{3}-\hat{r}_{4}\end{array}\right)_{\mathbf{n}}$ is the 3 -volume of the (spatial) tetrahedron and is
related to the 4-volume by: $\quad V(\mathbf{n})=\frac{1}{48} \sum_{\mu \nu \rho \sigma} \varepsilon(\mu \nu \rho \sigma) \mathcal{V}_{\mu \nu \rho \sigma}(\mathbf{n})=\operatorname{det} E_{\mu}^{\alpha}(\mathbf{n}) \underset{\text { p.g.f. }}{\longrightarrow} \tau^{4}(n) \widehat{V}(\mathbf{n})$

Lattice Actions

volume

Hilbert-Palatini

Holst

$$
S_{\mathrm{HP}}^{L}=\sum_{\mu \nu \rho \sigma} \varepsilon(\mu \nu \rho \sigma) \sum_{\mathbf{n} \in \Lambda}\left[\mathcal{P}_{\mu \nu \rho \sigma}(\mathbf{n})+\frac{\lambda}{12} \mathcal{V}_{\mu \nu \rho \sigma}(\mathbf{n})\right]
$$

Letting $\xi \rightarrow \lambda^{-1 / 4} \xi$, the Hilbert-Palatini action is proportional to

$$
\beta=12 / \lambda=12 / \Lambda \ell_{P}^{2}=3 c^{3} /(4 G h \Lambda) \approx 2 \times 10^{120}
$$

Is the only dimensionless coupling of the lattice model.
Without cosmological constant - no critical limit!
In units $c=\hbar=\ell_{P}=1$, critical and thermodynamic limits coincide if the average 4 -volume of the universe is fixed (λ is the Lagrange multiplier).

RUTGERS Hilbert-Palatini GR with Null Co-Frames

$$
S_{\mathrm{HP}}=\frac{1}{l_{P}^{2}} \int_{M} e^{\alpha} \wedge e^{\beta} \wedge\left[\frac{\Lambda}{6} e^{\gamma} \wedge e^{\delta}-R^{\gamma \delta}(\omega)\right] \varepsilon_{\alpha \beta \gamma \delta}
$$

Co-frame, $e^{\alpha}=e_{\mu}^{\alpha} d x^{\mu}$ is a 1-form
so $(3,1)$ curvature $R^{\alpha \beta}(\omega)=d \omega^{\alpha \beta}+\omega^{\alpha}{ }_{\gamma} \wedge \omega^{\gamma \beta}$ is a 2-form constructed from an $\operatorname{SL}(2, \mathrm{C})$ connection 1-form $\omega^{\alpha \beta}=-\omega^{\beta \alpha}$

Introducing a basis of anti-hermitian 2×2 matrices σ_{α}, the co-frame 1 -form corresponds to an anti-hermitian matrix,

$$
E_{\mu}^{A \dot{B}}(\boldsymbol{n})=\frac{1}{l_{P}} \sigma_{\alpha}^{A \dot{B}} \int_{\boldsymbol{n}}^{\boldsymbol{n}+\mu} e^{\alpha}
$$

line-integral on geodesic $[\boldsymbol{n}, \boldsymbol{n}+\mu]$. The lattice nodes have light-like separation

$$
\Leftrightarrow \operatorname{det} E_{\mu}(\boldsymbol{n})=0 \Leftrightarrow E_{\mu}^{A \dot{B}}(\mathbf{n})=i\left(\xi_{\mu} \otimes \xi_{\mu}^{*}\right)^{A \dot{B}}=i \xi_{\mu}^{A}(\mathbf{n}) \xi_{\mu}^{* \dot{B}}(\mathbf{n})
$$

Null links thus are described by complex bosonic spinors $\xi_{\mu}^{A}(\boldsymbol{n})$.

RUTGERS Hilbert-Palatini GR with Null Co-Frames

First order formulation for a scalar:

$$
S_{\phi}=\operatorname{Tr} \int_{M} e^{\alpha} \wedge e^{\beta} \wedge e^{\gamma} \wedge\left[B^{\delta} d \phi-\frac{1}{2} B^{\sigma} B_{\sigma} e^{\delta}\right] \varepsilon_{\alpha \beta \gamma \delta}
$$

and a spinor: $S_{\psi}=\int_{M} e^{\alpha} \wedge e^{\beta} \wedge e^{\gamma} \wedge \bar{\psi} \sigma^{\delta} \mathcal{D} \psi \varepsilon_{\alpha \beta \gamma \delta}=\int_{M} d^{4} x \operatorname{det}\left(e_{\mu}^{\gamma}\right) \bar{\psi} \sigma^{\alpha} e_{\alpha}^{\mu} \mathcal{D}_{\mu} \psi$
Co-frame, $e^{\alpha}=e_{\mu}^{\alpha} d x^{\mu}$ is a 1 -form
so $(3,1)$ curvature $R^{\alpha \beta}(\omega)=d \omega^{\alpha \beta}+\omega^{\alpha}{ }_{\gamma} \wedge \omega^{\gamma \beta}$ is a 2-form constructed from an $\operatorname{SL}(2, \mathrm{C})$ connection 1-form $\omega^{\alpha \beta}=-\omega^{\beta \alpha}$

Introducing a basis of anti-hermitian 2×2 matrices σ_{α}, the co-frame 1 -form corresponds to an anti-hermitian matrix,

$$
E_{\mu}^{A \dot{B}}(\boldsymbol{n})=\frac{1}{\ell_{P}} \sigma_{\alpha}^{A \dot{B}} \int_{\boldsymbol{n}}^{\boldsymbol{n}+\mu} e^{\alpha}
$$

on the link $[\boldsymbol{n}, \boldsymbol{n}+\mu]$. The separation between these nodes is light-like or null

$$
\Leftrightarrow \operatorname{det} E_{\mu}(\boldsymbol{n})=0 \Leftrightarrow E_{\mu}^{A \dot{B}}(\mathbf{n})=i\left(\xi_{\mu} \otimes \xi_{\mu}^{*}\right)^{A \dot{B}}=i \xi_{\mu}^{A}(\mathbf{n}) \xi_{\mu}^{* \dot{B}}(\mathbf{n})
$$

Null links are described by bosonic spinors $\xi_{\mu}^{A}(\boldsymbol{n})$.

