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I. Introduction: Two discretizations of causal manifolds

• Causal Dynamical Regge Triangulation (CDT) of Ambjørn and Loll

• or on a topological lattice

II. Topological Null Lattice

• Discretization of a causal 2,3,and 4 dimensional manifold 

III. The Manifold Constraint

• Construction of the Topological Lattice Theory (TLT)

• for tetrads

• for spinors

IV. Outlook

• Invariant integration measures and observables

• Regularization

Outline



Causal Dynamical triangulation (CDT)

Foliated Gravity as QM of space histories (Ambjørn and Loll):

• Foliated space-time with spatial submanifolds at fixed

temporal separation. Triangulation of spatial manifolds by

simplexes of fixed size, but varying coordination number.

• Can be “rotated” to Euclidean space, but contrary to

Regge QG simulates a subset of causal manifolds only.

• There exist 3 distinct phases: A, B and C that depend on

the coupling constants 𝜅, 𝜆 .

A

B
C

Critical Continuum Limit ?

local # d.o.f.  ? 

t

Ambjørn,Jurkiewicz, Loll 2010

Too restrictive ?



Null Lattice Combinatorics

 Light-like signals naturally foliate a causal manifold:

The (future) light cones of a spatial line segment (in d=1), a spatial triangle (in d=2) and

of a spatial tetrahedron (in d=3) intersect at a unique point:

d=1

d=2

d=3

 Each spatial triangle (tetrahedron) maps to a point on a spatial (hyper-)surface with  

time-like separation

- if each vertex is common to 3 (4) otherwise disjoint triangles (tetrahedrons), the 

mapping between points of two timelike separated spatial surfaces is 1 to 1 !!!!

- the (spatial) coordination of a spatial vertex in d=1,2,3 dimensions thus is 2,6,12.

In 2 (3) spatial dimensions the (spatial) triangulation is hexagonal (tetrahedral) and fixed!  

LENGTHS ARE VARIABLE: LATTICE IS TOPOLOGICALLY (HYPER)CUBIC ONLY



Null Lattices in 1+1 and 2+1 dimensions

d=1
d=2

d=3

t

𝐸𝜇, 𝜉𝜇; 𝑈𝜇

Deformed: Actual geometry determined by “fields” 𝐸𝜇(𝒏), 𝜉𝜇(𝒏); 𝑈𝜇(𝒏) on lattice. 



Spatial Triangulation in d=1,2,3

Hexagonal in d=2

Coordination=6

Tetrahedral in d=3

Coordination=12

Linear in d=1

Coordination=2

The tetrahedra in this triangulation of 

spatial hypersurfaces in general are 

neither equal nor regular !

Coordination=d(d+1)



Null Coframes

Co-frame, is a  1-form 

Introducing a basis of anti-hermitian 2x2 matrices  𝜎𝛼, this 1-form

corresponds to an anti-hermitian matrix,

𝐸𝜇
𝐴  𝐵 𝒏 =

1

𝑙𝑃
𝜎𝛼
𝐴  𝐵 

𝒏

𝒏+𝜇

𝑒𝛼

where the line-integral is along the geodesic [𝒏, 𝒏 + 𝜇]. The lattice nodes 

have light-like or null separation

 det𝐸𝜇 𝒏 = 0 

Null links thus are described by complex bosonic spinors 𝜉𝜇
𝐴(𝒏).

d.o.f. per site: spinors: 2x2x4-6[sl(2,C)]=10, 10-4 phases=6 metric d.o.f.



The Metric and a Skew Spinorial Form  

Local (spatial) lengths on the null lattice are given by the scalar product :

with the SL(2,C) invariant skew-symmetric tensor 

and the invariant skew product 

The latter algebraically satisfies:

The |ℓ𝜇𝜈| for 𝜇 ≠ 𝜈 are the 6 spatial lengths of the tetrahedron whose sides are 

𝐸𝜇 𝒏 − 𝐸𝜈 𝒏 . These vectors are all given in the same inertial system at 𝒏.

The lengths are invariant under local SL(2,C) transformations 𝜉𝜇
𝐴(𝒏) → 𝑔𝐵

𝐴 (𝒏)𝜉𝜇
𝐵(𝒏). 

skew form: 2x6-2constraints=10,10-4 =6  only |𝑓𝜇𝜈| related to metric

Since 𝑃𝑓 𝑓𝜇𝜈(𝒏) = 0, ∃ two vectors 𝜉𝐴
𝜇

for which



The Manifold Condition

Any causal manifold can be discretized on a topological null-lattice with hypercubic

coordination.

Example: Minkowski space-time with null coframes,

Independent of the node 𝒏 (scaled and Lorentz-transformed frames here are 

equivalent). The Minkowski metric (distances) in  these coordinates is:

and                                          , preserving orientation.

−ℓ𝝁𝝂
𝟐 =

BUT: NOT EVERY orientation-preserving configuration of null-frames on a lattice 

with hypercubic orientation represents a discretized manifold !!

Since the #d.o.f. is correct   the additional conditions are topological and 

do not alter the #d.o.f.   



The Manifold Condition for Coframes

For a lattice configuration to be the triangulation of a manifold, distances 

between events common to two inertial systems (“overlapping atlases”) must 

be the same:

−𝐸𝜇(𝒏) ∙ 𝐸𝜈(𝒏)=ℓ𝜇𝜈
2 = −  𝐸𝜇(𝒏

′) ∙  𝐸𝜈(𝒏
′)

Backward null coframe

In inertial system at 𝒏′

For a fixed event 𝒏′, the six spatial lengths 𝜇 ≠ 𝜈

0 < ℓ𝜇𝜈
2 𝒏′ = −𝐸𝜇(𝒏

′ − 𝜇 − 𝜈) ∙ 𝐸𝜈(𝒏
′ − 𝜇 − 𝜈)

are the sides of a spatial tetrahedron (the one formed by the  4 events 

𝒏′ − 𝜇, 𝜇 = 1,… , 4 in the backward light cone of 𝒏′). They can be assembled to a 

tetrahedron  the lengths satisfy triangle inequalities. A configuration of (forward) null 

frames on this lattice is the discretization of a manifold if and only if: 

Forward null coframe

In inertial system at 𝒏



The eBRST and TLT of the Manifold Condition

The manifold condition can be enforced by a local TLT with an equivariant BRST.

The action of this TLT is:

with real bosonic Lagrange multiplier fields  𝑔𝜇𝜈 = 𝑔𝜈𝜇 enforcing 10 constraints on 

16 (backward) tetrads   𝐸𝜇
𝛼, 16 anti-ghosts  𝑐𝜇𝜈 =  𝑐𝜈𝜇 and  𝜔𝜇𝜈 = −  𝜔𝜈𝜇,  an equal 

number of 16 ghosts 𝑐𝜇
𝛼 and 6 bosonic topological ghosts 𝜙𝛼𝛽 = −𝜙𝛼𝛽 (ghost#=2) 

and an  equal number of topological antighosts 𝑏𝜇𝜈 = −𝑏𝜈𝜇 (ghost#=-2) and an 

additional bosonic  SL(2,C) symmetry. 

The TLT therefore has 10+16+6+6-6( SL(2,C))=32 bosonic d.o.f. and 16+16=32 

fermionic d.o.f. , or a total of 0 d.o.f.  . The eBRST is :

The additional fields of the TLT can in fact be integrated out to give the triangle

inequality constraints:  



The Manifold Condition for Spinors

The manifold condition for the spinors is:    𝑓𝜇𝜈 𝒏 ≔ 𝜉𝜇
𝐴 𝒏 − 𝜇 − 𝜈 𝜀𝐴𝐵𝜉𝜈

𝐵 𝒏 − 𝜇 − 𝜈

|  𝑓𝜇𝜈 𝒏 = |  𝜉𝜇
𝐴 𝒏 𝜀𝐴𝐵  𝜉𝜈

𝐵 𝒏 or         𝜉𝜇
𝐴 𝒏 𝜀𝐴𝐵  𝜉𝜈

𝐵 𝒏 = 𝑒𝑖 𝜑𝜇𝜈(𝒏)  𝑓𝜇𝜈 𝒏

where the 6 real phases 𝜑𝜇𝜈(𝒏) = 𝜑𝜈𝜇(𝒏) for 𝜇 ≠ 𝜈 are not all independent, 

because 𝑃𝑓 𝑒𝑖 𝜑𝜇𝜈 𝒏  𝑓𝜇𝜈 𝒏 = 𝟎.

Proposition: 

If 𝑃𝑓 𝑒𝑖 𝜑𝜇𝜈 𝒏  𝑓𝜇𝜈 𝒏 = 𝟎 ⟺ ∃ a U4(1) transformation 𝜉𝜇
𝐴(𝒏) → 𝑒−𝑖𝜓𝜇(𝒏)𝜉𝜇

𝐴(𝒏)

such that 𝑃𝑓  𝑓′𝜇𝜈 𝒏 = 𝟎.

Proof: Choose 𝜓1 𝒏 = −𝜓2 𝒏 ; 𝜓3 𝒏 = −𝜓4 𝒏 and denote 𝜓1 𝒏 ± 𝜓3 𝒏 = 𝜓± 𝒏
The 2 relations decouple and can be solved uniquely (modulo b.c.):

𝜓+ 𝒏 − 𝟐 − 𝟒 − 𝜓+ 𝒏 − 𝟏 − 𝟑 = 𝜑12 𝒏 + 𝜑34 𝒏 −𝜑13 𝒏 − 𝜑42 𝒏
𝜓− 𝒏 − 𝟐 − 𝟑 − 𝜓− 𝒏 − 𝟏 − 𝟒 = 𝜑12 𝒏 + 𝜑34 𝒏 − 𝜑14 𝒏 − 𝜑23 𝒏

manifold condition ⟺ ∃ 𝑈4 1 transformation ∋ 𝑃𝑓  𝑓𝜇𝜈 𝒏 = 0



The Manifold TLT for Spinors

The TLT of the manifold condition is obtained by using it to fix (part of) the U4(1).

BRST: 𝑠 𝜉1
𝐴 𝒏 =

−𝑖

2
𝜓1 𝒏 𝜉1

𝐴 𝒏 𝑠 𝜉1
∗𝐴 𝒏 =

𝑖

2
𝜓1 𝒏 𝜉1

∗𝐴 𝒏

𝑠 𝜉2
𝐴 𝒏 =

𝑖

2
𝜓1 𝒏 𝜉2

𝐴 𝒏 𝑠 𝜉2
∗𝐴 𝒏 =

−𝑖

2
𝜓1 𝒏 𝜉2

∗𝐴 𝒏 ; 𝑠2 = 0

𝑠 𝜉3
𝐴 𝒏 =

−𝑖

2
𝜓3 𝒏 𝜉3

𝐴 𝒏 𝑠 𝜉3
∗𝐴 𝒏 =

𝑖

2
𝜓3 𝒏 𝜉3

∗𝐴 𝒏

𝑠 𝜉4
𝐴 𝒏 =

𝑖

2
𝜓3 𝒏 𝜉4

𝐴 𝒏 𝑠 𝜉4
∗𝐴 𝒏 =

−𝑖

2
𝜓3 𝒏 𝜉4

∗𝐴 𝒏

𝑠  𝜓+ 𝒏 = 𝑏+ 𝒏 𝑠  𝜓− 𝒏 = 𝑏− 𝒏

 𝑓𝜇𝜈 𝒏 ≔ 𝜉𝜇
𝐴 𝒏 − 𝜇 − 𝜈 𝜀𝐴𝐵𝜉𝜈

𝐵 𝒏 − 𝜇 − 𝜈

Pf  𝑓 𝒏 =  𝑓12 𝒏  𝑓34 𝒏 +  𝑓13 𝒏  𝑓42 𝒏 +  𝑓14 𝒏  𝑓32 𝒏

𝜓+ 𝒏 = 𝜓1 𝒏 − 𝟒 − 𝟐 + 𝜓3 𝒏 − 𝟒 − 𝟐 − 𝜓1 𝒏 − 𝟏 − 𝟑 − 𝜓3 𝒏 − 𝟏 − 𝟑
𝜓− 𝒏 = 𝜓1 𝒏 − 𝟑 − 𝟐 − 𝜓3 𝒏 − 𝟑 − 𝟐 − 𝜓1 𝒏 − 𝟏 − 𝟒 + 𝜓3 𝒏 − 𝟏 − 𝟒

𝑆TLT = 𝑠 

𝒏

(  𝜓+ 𝒏 + 𝑖  𝜓−(𝒏))Pf  𝑓 𝒏 + (  𝜓+ 𝒏 − 𝑖  𝜓−(𝒏))Pf  𝑓∗ 𝒏 + 𝛼 𝑏+ 𝒏  𝜓− 𝒏

=  𝒏 𝑏+ 𝒏 ( Pf  𝑓 𝒏 + Pf  𝑓∗ 𝒏 ) + 𝑖𝑏− 𝒏 Pf  𝑓 𝒏 − Pf  𝑓∗ 𝒏 + 𝛼 𝑏+ 𝒏 𝑏− 𝒏

+2  𝜓+ 𝒏 Im  𝑓13 𝒏  𝑓42 𝒏 +  𝜓− 𝒏 Re  𝑓14 𝒏  𝑓32 𝒏 𝜓+ 𝒏

+2  𝜓+ 𝒏 Im  𝑓14 𝒏  𝑓32 𝒏 +  𝜓− 𝒏 Re  𝑓13 𝒏  𝑓42 𝒏 𝜓− 𝒏
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The TLT measure

One can integrate out the real bosonic fields 𝑏+, 𝑏− as well as the fermionic ghosts 
 𝜓+,  𝜓−, 𝜓+ and 𝜓− to arrive at the TLT contribution to the measure:

𝑑𝜇TLT = 

𝒏

 𝑉 𝒏 exp −
𝑖

𝛼
Pf  𝑓 𝒏

2
 

𝜇=1

4

𝑑𝜓𝜇

with                Pf  𝑓 𝒏 =  𝑓12 𝒏  𝑓34 𝒏 +  𝑓13 𝒏  𝑓42 𝒏 +  𝑓14 𝒏  𝑓32 𝒏

and                         𝑉 𝒏 =
−𝑖

48
 𝜇𝜈𝜌𝜎 𝜖 𝜇𝜈𝜌𝜎  𝑓𝜇𝜈 𝒏  𝑓𝜈𝜌

∗ (𝒏)  𝑓𝜌𝜎 𝒏  𝑓𝜎𝜇
∗ (𝒏)

where                  𝑓𝜇𝜈 𝒏 ≔ 𝜉𝜇
𝐴 𝒏 − 𝜇 − 𝜈 𝜀𝐴𝐵𝜉𝜈

𝐵 𝒏 − 𝜇 − 𝜈

Note:  Observables of the lattice theory do NOT DEPEND on the parameter 𝛼 ,  but 

lattice configurations generally are triangulations of causal manifolds for 𝛼 ⟶ 0 only!

The dependence on a particular “direction” used in the construction of  the TLT has 

disappeared (as it must).



Conclusion and Outlook
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Summary:

 Causal description of discretized space-time on a null lattice with fixed 

hypercubic coordination.

 Local eBRST actions that encode the topological manifold condition.

Outlook:

 Integration Measures and Regularization

 Invariants and Observables

 eBRST localization to compact SU(2) structure group of spatial rotations.

Hope You Enjoyed the Talk. Thank You.



Invariant Integral Measures & Regularization

The integration measures for the spinors and SL(2,C) transport matrices are 

dictated by SL(2,C) invariance:

or

The SL(2,C) invariant measure for the tetrads is: 

Parameterizing:

The invariant measure of SL(2,C) matrices:

is the (non-compact) SL(2,C) Haar measure: 𝑑𝜇 𝑈𝜇 𝒏 = 𝑑𝜇𝑆𝐿(2,𝐶)

So far NO UV-Regularization: the discretization can locally be arbitrary fine.

Coordinate invariant local regularization: 𝑉 𝒏 ≥ 𝜀 → 0+



Invariants and Observables

Basic SL(2,C) invariants

Closed loops:

Open strings:

Most local

examples:

Observables are real scalars of SL(2,C) invariant densities. Some are:

4-volume

Hilbert-Palatini term

SL(2,C) parallel transport



Partial Localization

The partially gauge-fixed lattice integration measure in polar parametrization becomes:

𝑑𝜇𝐿𝐴𝑇 = 𝑑𝑈𝜇(𝒏)

where                                            is the 3-volume of the (spatial) tetrahedron and is 

related to the 4-volume by:

The partial gauge fixing is local and ghost-free. It is unique and the Jacobian can be 

evaluated explicitly. The residual SU(2) structure group is compact !

𝑝.𝑔.𝑓.
𝜏4(𝒏)  𝑉(𝒏)

No matter what the invariant action, we must factor the infinite volume of the 

non-compact SL(2,C) structure group! 

We localize to the compact SU(2) subgroup of spatial rotations by requiring:

Physically we are choosing a local inertial system at n where the 4 non-collinear 

events on the forward light cone are simultaneous. This local inertial system always 

exists and is unique up to spatial rotations.
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Lattice Actions

volume Hilbert-Palatini Holst

Letting 𝜉 → 𝜆−1/4𝜉, the Hilbert-Palatini action is proportional to

𝛽 =  12 𝜆 =  12 Λℓ𝑃
2 =  3𝑐3 4𝐺ℎΛ ≈ 2 𝑥 10120

Is the only dimensionless coupling of the lattice model. 

Without cosmological constant - no critical limit!

In units 𝑐 = ℏ = ℓ𝑃 = 1, critical and thermodynamic limits coincide if the 

average 4-volume of the universe is fixed (𝜆 is the Lagrange multiplier).



Hilbert-Palatini GR with Null Co-Frames 

Co-frame, 

so(3,1) curvature is a 2-form

is a  1-form 

constructed from an SL(2,C) connection 1-form

Introducing a basis of anti-hermitian 2x2 matrices  𝜎𝛼, the co-frame 1-form

corresponds to an anti-hermitian matrix,

𝐸𝜇
𝐴  𝐵 𝒏 =

1

𝑙𝑃
𝜎𝛼
𝐴  𝐵 

𝒏

𝒏+𝜇

𝑒𝛼

line-integral on geodesic [𝒏, 𝒏 + 𝜇]. The lattice nodes have light-like separation

 det𝐸𝜇 𝒏 = 0 

Null links thus are described by complex bosonic spinors 𝜉𝜇
𝐴(𝒏).



Hilbert-Palatini GR with Null Co-Frames 

Co-frame, 

so(3,1) curvature is a 2-form

is a  1-form 

constructed from an SL(2,C) connection 1-form

Introducing a basis of anti-hermitian 2x2 matrices  𝜎𝛼, the co-frame 1-form

corresponds to an anti-hermitian matrix,

𝐸𝜇
𝐴  𝐵 𝒏 =

1

ℓ𝑃
𝜎𝛼
𝐴  𝐵 

𝒏

𝒏+𝜇

𝑒𝛼

on the link [𝒏, 𝒏 + 𝜇]. The separation between these nodes is light-like or null

 det𝐸𝜇 𝒏 = 0 

Null links are described by bosonic spinors 𝜉𝜇
𝐴(𝒏).

First order formulation of electromagnetism:

Upon shifting the  auxiliary field 𝐵
𝛼𝛽

,                            

First order formulation for a scalar:

and a spinor:


