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« Causal Dynamical Regge Triangulation (CDT) of Ambjgrn and Loll
e or on atopological lattice
Il. Topological Null Lattice
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» for tetrads
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RUTGERS Causal Dynamical triangulation (CDT)

Foliated Gravity as QM of space histories (Ambjgrn and Loll):

« Foliated space-time with spatial submanifolds at fixed
temporal separation. Triangulation of spatial manifolds by
simplexes of fixed size, but varying coordination number.

« Can be “rotated” to Euclidean space, but contrary to
Regge QG simulates a subset of causal manifolds only.

« There exist 3 distinct phases: A, B and C that depend on
the coupling constants (k, 1).
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RUTGERS Null Lattice Combinatorics

U Light-like signals naturally foliate a causal manifold:
The (future) light cones of a spatial line segment (in d=1), a spatial triangle (in d=2) and
of a spatial tetrahedron (in d=3) intersect at a unique point:

d=3
d=1

d=2

U Each spatial triangle (tetrahedron) maps to a point on a spatial (hyper-)surface with
time-like separation
- if each vertex is common to 3 (4) otherwise disjoint triangles (tetrahedrons), the
mapping between points of two timelike separated spatial surfaces is 1 to 1 !!!!
- the (spatial) coordination of a spatial vertex in d=1,2,3 dimensions thus is 2,6,12.
In 2 (3) spatial dimensions the (spatial) triangulation is hexagonal (tetrahedral) and fixed!
LENGTHS ARE VARIABLE: LATTICE IS TOPOLOGICALLY (HYPER)CUBIC ONLY



KUTGERS Null Lattices In 1+1 and 2+1 dimensions

?

d=3
Deformed: Actual geometry determined by *fields” E,,(n), ¢, (n); U, (n) on lattice.



RUTGERS Spatial Triangulation in d=1,2,3

o Coordination=d(d+1)

Linear in d=1
Coordination=2

Tetrahedral in d=3
Coordination=12

The tetrahedra in this triangulation of
spatial hypersurfaces in general are
neither equal nor regular !

Hexagonal in d=2
Coordination=6




KUTGERS Null Coframes

Co-frame, e” = e, dz" isa 1-form

Introducing a basis of anti-hermitian 2x2 matrices o,, this 1-form
corresponds to an anti-hermitian matrix,

) 1 ) n+u
Eff(n) = —a&“Bf e”
lp n

where the line-integral is along the geodesic [n,n + u]. The lattice nodes
have light-like or null separation

& detE, (W) = 0 AP (n) = (¢, © &) = itd(n)&;P (n)

Null links thus are described by complex bosonic spinors Eﬁ‘(n).

d.o.f. per site: spinors: 2x2x4-6[sl(2,C)]=10, 10-4 phases=6 metric d.o.f.



RUTGERS  The Metric and a Skew Spinorial Form

Local (spatial) lengths on the null lattice are given by the scalar product :

F:.!.y{ :I _EEP-EH:I E ( } TT;ET( ]' E!( |_ﬂ..!.!»'|::11 |2 {]

with the SL(2,C) invariant skew-symmetric tensor & — {—01 {1]]'

and the invariant skew product Fur(m) = —fiu(m) = E (n)z4pEP (n)

The latter algebraically satisfies:

PE(0) = = 3 =(p0) (1) fypor (1) = fro(n) fa(n) + fr3(0) fan(n) + Fra(m) fas(m) = 0
o

LT
The |£,,| for u # v are the 6 spatial lengths of the tetrahedron whose sides are
E,(n) — E,(n). These vectors are all given in the same inertial system at n.
The lengths are invariant under local SL(2,C) transformations E,j‘ (n) - g%(n)fﬁ(n).

Since Pf|f,,(m)] = 0, 3 two vectors & for which " f,, ()} =0, for A =1,2

skew form: 2x6-2constraints=10,10-4 =6 only |f,,| related to metric



RUTGERS The Manifold Condition

Any causal manifold can be discretized on a topological null-lattice with hypercubic
coordination.

Example: Minkowski space-time with null coframes,

‘ldmk —1.1.1, ‘k./_ I".-Illil{ 1 ~1,1, v’— Mml{ 1 1. —1. V(_ 1'ldml-: 1!_1!_1.‘,\‘[5:}

Independent of the node n (scaled and Lorentz-transformed frames here are
equivalent). The Minkowski metric (distances) in these coordinates is:

—fﬁ = Guv = E'”?},IbEE = —4 for p # v, vanishing for u = w.
and ciet{fﬂj = 163 ;}' (] , preserving orientation.

BUT:. NOT EVERY orientation-preserving configuration of null-frames on a lattice
with hypercubic orientation represents a discretized manifold !!

Since the #d.o.f. is correct < the additional conditions are topological and
do not alter the #d.o.f.



RUTGERS The Manifold Condition for Coframes

For a lattice configuration to be the triangulation of a manifold, distances
between events common to two inertial systems (“overlapping atlases”) must
be the same:

—E,(n) - E,(M)=¢}, = —E,(n) - E,(n")

Forward null coframe  Backward null coframe '
In inertial system at n In inertial system at n'

For a fixed event n’, the six spatial lengths u # v
0<ti,(n)=—-E,m —p—-v)-E,(n' —pu—v)

are the sides of a spatial tetrahedron (the one formed by the 4 events

n' —uu=1,..,4 inthe backward light cone of n"). They can be assembled to a
tetrahedron < the lengths satisfy triangle inequalities. A configuration of (forward) null
frames on this lattice is the discretization of a manifold if and only if:

0<£,,(n) <f,,(n)+ £, (n), for all p,v,p at every site n




RUTGERS The eBRST and TLT of the Manifold Condition

The manifold condition can be enforced by a local TLT with an equivariant BRST.
The action of this TLT is:

St =8 Z e m)(Eymn—-—p—v)-E,(n—p—v)— E'#{n) .E,(n)) + Eb‘““(n]EH(n:} - ¢y ()]
.n

= Z g m)Eyn—p—v)-E,(n—p—v)— E'#(llj . E,(n}]—!—

[THER 1

+ 2[¢? (n) + J:“"{ll]]ﬁ'“(nj - op(n) + Qb”“(n:}[ﬁ'p(n} . d(n) - Ey(n) + cu(n) - ey (n)]

with real bosonic Lagrange multiplier fields g*vV = gV#* enforcing 10 constraints on
16 (backward) tetrads EZ, 16 anti-ghosts ¢*¥ = ¢V* and @*¥ = — @"#, an equal
number of 16 ghosts ¢; and 6 bosonic topological ghosts d*B = —p?F (ghost#=2)
and an equal number of topological antighosts b*V = —b"# (ghost#=-2) and an
additional bosonic SL(2,C) symmetry.

The TLT therefore has 10+16+6+6-6(SL(2,C))=32 bosonic d.o.f. and 16+16=32
fermionic d.o.f. , or a total of O d.o.f. . The eBRST is :

QEa{n] — {11 + J"‘.j{n}E;(n] s’ (n) = g"'(n) = g"¥(n)
arﬂf{n) = ]Ej(n} + w“.r{ﬂ}f '(n) sg"(n) =0
¢“g(n) = (n)e’ Jj{njl @ .r{l'l)u;..’ Jj|:11] s’ (n) = @Y (n) = —&""(n)
sw(n) = :u”ir(n]w rf{n'} — ¢"3(n) swh(n) =0
The additional fields of the TLT can in fact be mtegrated out to give the triangle
inequality constraints: Zrir[E) o H H O[l,,(n) + £, (n) — £, (n)]

n o pLv,p



RUTGERS  The Manifold Condition for Spinors

The manifold condition for the spinors is: fm,(n) = E;j‘(n —u—V)egéBn—p—v)

|fuv(n)|= |Sgﬁl(n)€ABS85(n)| or Sgﬁl(n)gABsgg(n) = e! P fuv(n)

where the 6 real phases ¢, (n) = ¢,,(n) for u # v are not all independent,
because Pfle!¥w™ £ (n)] = 0.

Proposition:

If Pf[e!?w™ £ ,(m)] =0 < 3 aU4Q) transformation ¢/ (n) — e~ VuMWed(n)
such that Pf[ f',,(n)] = 0.

Proof: Choose ¥, (n) = —,(n) ; Y3(n) = —P,(n) and denote Y, (n) + Ps;(n) =P, (n)
The 2 relations decouple and can be solved uniquely (modulo b.c.):

Ypim—2-4) -y, (n—1-3) = @,(n) + @3.(n) —p13 (1) — @4,(n)
Y n—-2-3)-yY_-(n—1-4) = ¢,(n) + p3,(n) — @1,(n) — @,3(n)

manifold condition & 3 U*(1) transformation 3 Pf (fw(n)) =0



RUTGERS The Manifold TLT for Spinors

The TLT of the manifold condition is obtained by using it to fix (part of) the U4(1).
BRST: s&f(m) =~y (& (n) s &4m) = 29 )& ()
s =P M@ sHM) =P m) 52 =0
sEf(n) = ZPsMEL M) s &AM = <P (M)EA ()
SEM) =P;()ELm) s EAM) = =P ()EAm)
syp,(m) =b,(n) syp_(n) =b_(n)
fuv(n) = fﬁl(n —p—Vepé&y(m—p—v)

Pf (f(n)) = fi2(M)f3,(n) + f13(M) f1o() + f12 () f3,(n)

pm)=yY  n-4-2)+yY;(n—-4-2)-yp(n-1-3) -3 (n—1-3)
Ypy-m)=y  n-3-2)—yYps(n-3-2)-yYp(n—-1-4)+y;(n—1-4)

Srur =5 ) (s () + W @)PE(FO0)) + @y () = i )PE(F () ) + b, ()P ()

= by (O (PE(F D) + PE(F00)) + ib_() (PF(F) ) - PE(F* () ) + @ b, (m)b_()
+2 [P ) Im (fis (W) fiz () + P_@)Re (fra () foz () )| 9. ()
+2 [P ) Im (s foz () + D_()Re (fis (W frz () )| Y- ()



RUTGERS The TLT measure

One can integrate out the real bosonic fields b,, b_ as well as the fermionic ghosts
Y., Y_, Y, and yY_ to arrive at the TLT contribution to the measure:

durer = | [7 ) exp [ |pe (7)) ] ﬁ dip,
n u=1

with PE(F()) = frzM)fsa() + fis ) fao () + fra(m)fiz(m)
and V(n) = ;_é Zuvpa E(,quO')fm, (n)ﬁ;;o (n)fpa(n) fa*u (n)
where fuvM) =& —p—V)ggpéfn—p—v)

Note: Observables of the lattice theory do NOT DEPEND on the parameter a , but
lattice configurations generally are triangulations of causal manifolds for ¢ — 0 only!

The dependence on a particular “direction” used in the construction of the TLT has
disappeared (as it must). 14



RUTGERS Conclusion and Outlook

Summary:

» Causal description of discretized space-time on a null lattice with fixed
hypercubic coordination.

» Local eBRST actions that encode the topological manifold condition.

Outlook:
» Integration Measures and Regularization

» Invariants and Observables
» eBRST localization to compact SU(2) structure group of spatial rotations.

Hope You Enjoyed the Talk. Thank You.

15



RUTGERS Invariant Integral Measures & Regularization

The integration measures for the spinors and SL(2,C) transport matrices are
dictated by SL(2,C) invariance: E,(n) — g(n)E,(n)g'(n) with g(n) € SL(2,C)

or ES{II} — !“;Aﬁiﬂ}rf{ﬂ)a and £, 4(n) — 5;1;3{11};;_1”

()

—iipy (n) 2 ) W
Parametenzmg ‘{-'1- {11;'1 — ."IIF {l'ljlt'-'”'-”fm“ ( ! cah{ﬂ,,fn“EJ)

ei#u (™12 sin(@, (n)/2)
Eu(n) = i&u(n) @ £u(n) = itu(n) Pu(n) = itu(n) %{1 — 67, (n))
The SL(2,C) invariant measure for the tetrads is:
dp[E,(n)] o d‘iE“ 6T (Ey - Ey,) o< 1,d 71, dQ(7,)

The invariant measure of SL(2,C) matrices: Uj'z(n) — ¢’t(n)USH(n)g™(n+ p)

is the (non-compact) SL(2,C) Haar measure: du|U,(n)| = dusy20)

So far NO UV-Regularization: the discretization can locally be arbitrary fine.

Coordinate invariant local regularization: V(n) > & — 07



RUTGERS Invariants and Observables

Basic SL(2,C) invariants

Closed loops: C'"(ny.ng,....n,) = TrU g, no|Ung. ng) ... Un,.ng| .
Open strings: DHH{HU._ ni,....Ng) = EE(H[}]U ng, n1|Ung. na]. .. Uny—1, n.]8 (ny)

SL(2,C) parallel transport

fuv(m) == €4 ()& (n) = &} (n)eap&y (n) = Of) (n) .

Most local ., . .
examples:  Yuwp(n) ==& ()U ()¢ (n+ p) = O (n,n +p)
3

Xpvpo (D) 1= EEA(IIJ[’T,%{H}U.:{{:{“ +p)és (n+p+o) = Gﬁ:‘{“: n+pn+p+o)

Observables are real scalars of SL(2,C) invariant densities. Some are:

4-volume
v;.wpa’{n} = ?I_f;u {ll}f!fptnjf;ﬂ'{ll}fﬂ'p (n) = 2=(prpo) dEt[E?]

Hilbert-Palatini term

Puvps(n) =ixppe ()X e, (0) = iTrEEE{n}EUP{11}[-}(11 + p)Ey(n+p+ J}U;{ll + o)Ul(n)



RUTGERS Partial Localization

No matter what the invariant action, we must factor the infinite volume of the
non-compact SL(2,C) structure group!

We localize to the compact SU(2) subgroup of spatial rotations by requiring:

T1(n) = »(n) = 3(n) = 74(n) =: 7(n)

Physically we are choosing a local inertial system at n where the 4 non-collinear

events on the forward light cone are simultaneous. This local inertial system always
exists and is unigue up to spatial rotations.

The partial gauge fixing is local and ghost-free. It is unique and the Jacobian can be
evaluated explicitly. The residual SU(2) structure group is compact !

The partially gauge-fixed lattice integration measure in polar parametrization becomes:

dupar = [[77 () |V (0)|d77(n) [ [ diu(n)) dU, @)
n [

1'-:'-!3 - :F'-'I

; 1 Py —f : : :
where V(n) = 16 det (;-.Z—:’:: ) IS the 3-volume of the (spatial) tetrahedron and is
Il

related to the 4-volume by: Vi(n) = % Y (prpo)Vuvpo(n) = det Eff (n) s *m)V(n)

pupa



RUTGERS Lattice Actions

Hilbert-Palatini

SI{-IFP — Z =(pvpo) Z [P;..!.upﬂ'{“} T+ %vpup{r{n}]

Ly T nch

Letting ¢ - 171/4¢, the Hilbert-Palatini action is proportional to
B =12/1=12/A% = 3c3/(4GhA) =~ 2 x 10120

Is the only dimensionless coupling of the lattice model.

Without cosmological constant - no critical limit!

In units ¢ = h = ¢p = 1, critical and thermodynamic limits coincide if the
average 4-volume of the universe is fixed (1 is the Lagrange multiplier). 19



1 A s
Sup = —f e e A [E e’ ne' — R (w)]easys
M

J.
5

Co-frame, " = ﬁ'ﬁd:::“ isa 1-form

s0(3,1) curvature R (w) = dw™” +w® Aw?? s a 2-form
constructed from an SL(2,C) connection 1-form w™? = —f2

Introducing a basis of anti-hermitian 2x2 matrices og,, the co-frame 1-form
corresponds to an anti-hermitian matrix,

) 1 ) n+u
Eff(n) = —aéBf e
lp n
line-integral on geodesic [n,n + u]. The lattice nodes have light-like separation

 detk, (W) = 0 EP(n) = i(g, © §)*" = i )¢ (n)

Null links thus are described by complex bosonic spinors &';j‘(n).



First order formulation for a scalar:

S¢ = Trf eE*Ae® AeT A [ﬂﬁff:ﬁ- — E'-'r -Er_r'l-" un.#.ﬁ
M

and a spinor: S, — f e* A el Ae? Ada®Dieagys = f d'z det(e})) Yo eh Dyt
i M

Co-frame, " = .ee-ifri:::“ isa 1-form

s0(3,1) curvature R (w) = dw™” + W, A w'? is a 2-form
constructed from an SL(2,C) connection 1-form w™? = —f2

Introducing a basis of anti-hermitian 2x2 matrices o,, the co-frame 1-form
corresponds to an anti-hermitian matrix,

1 n+u
EAB (n) — f AB J ea
P n

on the link [n,n + u]. The separation between these nodes is light-like or null

© detE,(n) =0 E“j( {LEPE{IE 4;; ?£ (n) f*ﬂ (n)

Null links are described by bosonic spinors f;j‘(n).



