Lattice Measurement of the Delta $I=\frac{1}{2}$ Contribution to Standard Model Direct CP-Violation in $K \rightarrow \pi\pi$ Decays at Physical Kinematics: Part II

Daiqian Zhang

Dept. of Physics, Columbia University

23 June 2014 @ Columbia University, New York.
RBC & UKQCD Collaboration ($K \rightarrow \pi\pi$ subgroup)

- **BNL**
 - Taku Izubuchi
 - Chulwoo Jung
 - Christoph Lehner
 - Amarjit Soni

- **Columbia**
 - Ziyuan Bai
 - Norman Christ
 - Christopher Kelly
 - Robert Mawhinney
 - Jianglei Yu
 - Daiqian Zhang

- **Connecticut**
 - Tom Blum

- **Tata Institute of Fundamental Research**
 - Andrew Lytle

- **Trinity College**
 - Nicholas Garron

- **University of Southampton**
 - Chris Sachrajda
 - Tadeusz Janowski

- **University of Edinburgh**
 - Peter Boyle
 - Julien Frison
<table>
<thead>
<tr>
<th>UKQCD</th>
<th>RBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rudy Arthur (Odense)</td>
<td>Ziyuan Bai (Columbia)</td>
</tr>
<tr>
<td>Peter Boyle (Edinburgh)</td>
<td>Thomas Blum (U Conn/RBRC)</td>
</tr>
<tr>
<td>Luigi Del Debbio (Edinburgh)</td>
<td>Norman Christ (Columbia)</td>
</tr>
<tr>
<td>Shane Drury (Southampton)</td>
<td>Xu Feng (Columbia)</td>
</tr>
<tr>
<td>Jonathan Flynn (Southampton)</td>
<td>Tomomi Ishikawa (RBRC)</td>
</tr>
<tr>
<td>Julien Frison (Edinburgh)</td>
<td>Luchang Jin (Columbia)</td>
</tr>
<tr>
<td>Nicolas Garron (Dublin)</td>
<td>Chulwoo Jung (BNL)</td>
</tr>
<tr>
<td>Jamie Hudspith (Toronto)</td>
<td>Taichi Kawanai (RBRC)</td>
</tr>
<tr>
<td>Tadeusz Janowski (Southampton)</td>
<td>Chris Kelly (RBRC)</td>
</tr>
<tr>
<td>Andreas Juettner (Southampton)</td>
<td>Hyung-Jin Kim (BNL)</td>
</tr>
<tr>
<td>Ava Kamseh (Edinburgh)</td>
<td>Christoph Lehner (BNL)</td>
</tr>
<tr>
<td>Richard Kenway (Edinburgh)</td>
<td>Jasper Lin (Columbia)</td>
</tr>
<tr>
<td>Andrew Lytle (TIFR)</td>
<td>Meifeng Lin (BNL)</td>
</tr>
<tr>
<td>Marina Marinkovic (Southampton)</td>
<td>Robert Mawhinney (Columbia)</td>
</tr>
<tr>
<td>Brian Pendleton (Edinburgh)</td>
<td>Greg McGlynn (Columbia)</td>
</tr>
<tr>
<td>Antonin Portelli (Southampton)</td>
<td>David Murphy (Columbia)</td>
</tr>
<tr>
<td>Thomas Rae (Mainz)</td>
<td>Shigemi Ohta (KEK)</td>
</tr>
<tr>
<td>Chris Sachrajda (Southampton)</td>
<td>Eigo Shintani (Mainz)</td>
</tr>
<tr>
<td>Francesco Sanfilippo (Southampton)</td>
<td>Amarjit Soni (BNL)</td>
</tr>
<tr>
<td>Matthew Spraggs (Southampton)</td>
<td>Sergey Syritsyn (RBRC)</td>
</tr>
<tr>
<td>Tobias Tsang (Southampton)</td>
<td>Oliver Witzel (BU)</td>
</tr>
<tr>
<td></td>
<td>Hantao Yin (Columbia)</td>
</tr>
<tr>
<td></td>
<td>Jianglei Yu (Columbia)</td>
</tr>
<tr>
<td></td>
<td>Daiqian Zhang (Columbia)</td>
</tr>
</tbody>
</table>
Outline

1. Motivation
2. Method
 ▶ Weak matrix elements.
 ▶ Decay amplitude.
3. Current results.
 ▶ $\pi\pi$ phase shift.
 ▶ $K \rightarrow \pi\pi (I = 0)$ weak matrix elements, decay amplitude A_0.
4. Conclusion
First ab initio calculation of direct CP-violation (in $K \rightarrow \pi\pi$).

Current experiment result: $Re(\epsilon'/\epsilon) = 1.65(26) \times 10^{-3}$

\[\epsilon' = \frac{ie^{i(\delta_2 - \delta_0)}}{\sqrt{2}} \frac{ReA_2}{ReA_0} \left[\frac{ImA_2}{ReA_2} - \frac{ImA_0}{ReA_0} \right] \] (1)

Current lattice result: Only has $Re(A_2)$ and $Im(A_2)$, both with $< 10\%$ error. (mainly from stat and Wilson coefficients)

Once we obtain A_0 with $\approx 20\%$ error, could compare ϵ' with experiments.
Weak matrix elements $\langle \pi \pi | Q_i | K \rangle$

- G-parity Boundary introduces even larger numbers of contractions.

\[
\begin{align*}
\mu &\rightarrow -\gamma_4 \gamma_2 \bar{d}^T \\
\bar{d} &\rightarrow \gamma_4 \gamma_2 \bar{u}^T
\end{align*}
\]

\[
\langle \pi \pi \rangle = \bar{u} \gamma_5 d \quad \bar{d} \gamma_5 u
\]

\[+ \bar{u} \gamma_5 \bar{d} \quad \bar{d} \gamma_5 \bar{u} \]

Not like single pion, the 10 matrix elements $\langle \pi \pi | Q_i | K \rangle$ each contains 256 possible contractions. One has to figure out the linear combination:

\[
\langle \pi \pi | Q_i | K \rangle = \sum_{j=1}^{256} c_{ij} [\text{Contraction}_j]
\]
Weak matrix elements $\langle \pi\pi | Q_i | K \rangle$

- G-parity boundary introduces subtlety in momentum directions.

Under G-parity boundary condition, the degrees of freedom doubles in momentum space. Allowed quark momentum are in 'diagonal' direction.
Weak matrix elements $\langle \pi \pi | Q_i | K \rangle$

- Reducing errors from 'disconnected' diagrams.

Since the $\pi \pi (I = 0)$ state couples with vacuum, the amplitude doesn't decay as separation increases, small fluctuation could result in huge error.

In order to reduce the $\pi \pi (I = 0)$ to vacuum coupling, we chose to use the localized meson source, and separate the two pions in time direction.
Weak matrix elements \(\langle \pi \pi \mid Q_i \mid K \rangle \)

- Using localized source (all-to-all propagators).

Shaded boxes are where the random sources have been used.

\[
\sum \overleftarrow{\gamma}_\mu (1 - \gamma_5) L(\vec{x}_{op}, t_{op}; t_\pi) \gamma_5 L_w(t_\pi; t_{\pi'}) \gamma_5 L_w(t_{\pi'}; t_K) \gamma_5 S(t_K; \vec{x}_{op}, t_{op}) \cdot \overrightarrow{\gamma}_\mu (1 - \gamma_5) L(\vec{x}_{op}, t_{op}; \vec{x}_{op}, t_{op})
\]

\[
= \sum \\overleftarrow{w}^m_{x_{op}} \overrightarrow{\gamma}_\mu (1 - \gamma_5) \overrightarrow{v}_{x_{op}} \cdot \{ \overleftarrow{w}^j_{x_{op}} \overrightarrow{\gamma}_\mu (1 - \gamma_5) \overrightarrow{v}_{x_{op}} \} \cdot \pi^{i_k}_{t_\pi} \pi^{k_l}_{t_{\pi'}} K^{l_m}_{t_K}
\]

The complexity is \((\text{Mode Number})^2 \times (\text{Volume}) \times (T \text{ size}) \times 144\)

Mode number for light quark is 2436, volume is \(32^3 \times 64\), T is 64.
From $M_i = \langle \pi\pi | Q_i | K \rangle$ to decay amplitude

Bare M_i on Lattice

\downarrow

M_i in infinite volume

\downarrow

M_i in RI/SMOM scheme

\downarrow

M_i in \overline{MS} scheme

\downarrow

Decay amplitude A_0

Finite volume correction1

Lat\rightarrowRI/SMOM matching at 1.52GeV2

RI/SMOM\rightarrow \overline{MS} matching at 1.52GeV3

times \overline{MS} Wilson coefficients at 1.52GeV4

1Laurent Lellouch et al. HEP-LAT/0003023;
2C.Sturm et al. ARXIV:0901.2599
3Christoph Lehner et al. ARXIV:1104.4948;
4Buchalla et al. HEP-PH/9512380;
Lattice setup and measurement time

- Used $32^3 \times 64$ lattice, DWF+IDSDR action, $a^{-1} \approx 1.38\text{GeV}$, $(4.6\text{fm})^3$ box, physical pion and kaon. With G-parity boundary in X,Y,Z directions.

- Measurement time on IBM BG/Q 512-node machine:

<table>
<thead>
<tr>
<th></th>
<th>time</th>
<th>flops</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generating eigenmodes</td>
<td>3.6h</td>
<td>22 Gflops/Node</td>
</tr>
<tr>
<td>Quark propagator (CG)</td>
<td>7.5h</td>
<td>38 Gflops/Node</td>
</tr>
<tr>
<td>Meson field contraction</td>
<td>5h</td>
<td>~20 Gflops/Node</td>
</tr>
<tr>
<td>Total</td>
<td>~17h</td>
<td></td>
</tr>
</tbody>
</table>
Result: Meson spectrum

<table>
<thead>
<tr>
<th>Lat</th>
<th>E_π</th>
<th>$\sqrt{E_\pi^2 - p_\pi^2}$</th>
<th>m_K</th>
<th>$E_{\pi\pi}(l=0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeV</td>
<td>0.19834(67)</td>
<td>0.1021(12)</td>
<td>0.35490(32)</td>
<td>0.3888(86)</td>
</tr>
<tr>
<td>MeV</td>
<td>273.71(92)</td>
<td>140.9(17)</td>
<td>489.76(44)</td>
<td>537(12)</td>
</tr>
</tbody>
</table>

![Figure: Phase shift](image_url)

- $l=2$, 3 G.B.C.
- $l=0$, 3 G.B.C.
Result: Weak matrix elements and decay amplitude

\[\langle \pi \pi | Q_2 | K \rangle = (1.30 \pm 0.96) \times 10^{-3}, \text{ using 50 configurations, fitting from 4 to 8:} \]
Result: Weak matrix elements and decay amplitude

\[\langle \pi \pi | Q_6 | K \rangle = (-1.35 \pm 0.37) \times 10^{-2}, \] using 50 configurations, fitting from 4 to 8:
Conclusion

- $K \to \pi\pi (I = 0)$ decay amplitude is underway, with physical π, K, and physical kinematics. Estimate 100 more measurements in order to get 50% error for A_0. The measurement will take a few months.

- Future work:
 - estimate lattice artefacts / do the same computation on a finer lattice.
 - Match at higher scale in \overline{MS} scheme / use dynamic charm quark.
Thank you!