Lattice N=4 SYM

Joel Giedt (RPI)

in collaboration with Simon Catterall, Anosh Joseph, Eric Dzienkowski, Robert Wells, David Schaich, Tom DeGrand, Poul Damgaard

The lattice SUSY problem

$$
\left\{Q_{\alpha}, \bar{Q}_{\dot{\alpha}}\right\}=2 \sigma_{\alpha \dot{\alpha}}^{\mu} P_{\mu}
$$

- P_{μ} generator of infinitesmal translations.
- Broken on lattice.
- Only discrete subgroup preserved.
- with lattice spacing a

$$
x \rightarrow T_{\mu} x=x+a \hat{\mu}
$$

Failure of Leibnitz rule

- So why not just change the algebra to

$$
\left\{Q_{\alpha}, \bar{Q}_{\dot{\alpha}}\right\}=2 i \sigma_{\alpha \dot{\alpha}}^{\mu} \frac{1}{a}\left(T_{\mu}-1\right) \equiv 2 i \sigma_{\alpha \dot{\alpha}}^{\mu} \nabla_{\mu}
$$

- Notice that

$$
\nabla_{\mu} \phi(x)=\frac{1}{a}[\phi(x+a \hat{\mu})-\phi(x)]=\partial_{\mu} \phi(x)+\frac{a}{2} \partial_{\mu}^{2} \phi(x)+\mathcal{O}\left(a^{2}\right)
$$

- Problem: essential difference between these (∂_{μ} and ∇_{μ}) at finite lattice spacing.
- The Leibnitz rule.

$$
\begin{aligned}
& \nabla_{\mu}[\phi(x) \chi(x)]=\frac{1}{a}[\phi(x+a \hat{\mu}) \chi(x+a \hat{\mu})-\phi(x) \chi(x)] \\
& \quad=\nabla_{\mu} \phi(x) \chi(x)+\phi(x) \nabla_{\mu} \chi(x)+a \nabla_{\mu} \phi(x) \nabla_{\mu} \chi(x)
\end{aligned}
$$

Problems for interacting theory

- SUSY algebra on elementary fields
- Not on polynomials of fields
- Result: $O(a)$ artifact:

$$
\delta_{\epsilon} S=i\left[\epsilon^{\alpha} Q_{\alpha}+\bar{\epsilon}_{\dot{\alpha}} \bar{Q}^{\dot{\alpha}}, S\right]=i a\left(\epsilon^{\alpha} X_{\alpha}-\bar{\epsilon}_{\dot{\alpha}} \bar{X}^{\dot{\alpha}}\right)
$$

- But we send $a \rightarrow 0$ at the end of our calculations, so who cares?

Counterterm/renormalization in $\mathrm{N}=1$ SYM

- Failure of Leibnitz rule $\rightarrow \mathrm{O}$ (a) term
$\left\langle\partial_{\mu} S_{\mu}(x) O(y)\right\rangle=m_{0}\langle\chi(x) O(y)\rangle+a\left\langle O_{11 / 2}(x) O(y)\right\rangle+$ contact terms

$$
O_{11 / 2}^{R}=Z_{11 / 2}\left[O_{11 / 2}+\frac{1}{a}\left(Z_{S}-1\right) \partial_{\mu} S_{\mu}+\frac{1}{a} Z_{T} \partial_{\mu} T_{\mu}+\frac{1}{a^{2}} Z_{\chi} \chi\right]+\sum_{j} Z_{11 / 2}^{(j)} O_{11 / 2}^{(j) R}
$$

$$
S_{\mu}=-\sigma_{\rho \nu} \gamma_{\mu} \operatorname{Tr}\left(F_{\rho \nu} \lambda\right), \quad T_{\mu}=2 \gamma_{\nu} \operatorname{Tr}\left(F_{\mu \nu} \lambda\right), \quad \chi=\sigma_{\mu \nu} \operatorname{Tr}\left(F_{\mu \nu} \lambda\right)
$$

$$
\left\langle\partial_{\mu} S_{\mu}^{R}(x) O^{R}(y)\right\rangle=\left(m_{0}-\frac{Z_{\chi}}{a}\right)\left\langle\chi(x) O^{R}(y)\right\rangle+a \cdot \text { finite }+ \text { contact terms }
$$

$$
S_{\mu}^{R}=Z_{S} S_{\mu}+Z_{T} T_{\mu}
$$

- Z_{T} / Z_{S} must be determined to test for SUSY
-Fine-tuning just m_{0} agrees w/ expectations

Wilson fermion N=4 SYM

- How bad is an entirely conventional approach, say using Wilson fermions?
- We cannot impose $\operatorname{SU}(4) \mathrm{R}$ symmetry because it is chiral, and Wilson fermions violate chiral symmetry.
- However, we can impose $\mathrm{SO}(4)$ flavor symmetry with the fermions in 4's (vector) and the scalars in 6 (antisymmetric tensor).
- To determine the number of fine-tunings, we write down the most general renormalizable action consistent with these constraints.

$$
\begin{gathered}
S=\int d^{4} x \operatorname{Tr}\left\{-\frac{1}{2 g_{r}^{2}} F_{\mu \nu} F_{\mu \nu}+\frac{i}{g_{r}^{2}} \bar{\lambda}_{i} \bar{\sigma}^{\mu} D_{\mu} \lambda_{i}+\frac{1}{g_{r}^{2}} D_{\mu} \phi_{m} D_{\mu} \phi_{m}+m_{\phi}^{2} \phi_{m} \phi_{m}\right. \\
+m_{\lambda}\left(\lambda_{i} \lambda_{i}+\bar{\lambda}_{i} \bar{\lambda}_{i}\right)+\kappa_{1} \phi_{m} \phi_{m} \phi_{n} \phi_{n}+\kappa_{2} \phi_{m} \phi_{n} \phi_{m} \phi_{n}+y_{1}\left(\lambda_{i}\left[\phi_{i j}, \lambda_{j}\right]+\bar{\lambda}_{i}\left[\phi_{i j}, \bar{\lambda}_{j}\right]\right) \\
\left.+y_{2} \epsilon_{i j k l}\left(\lambda_{i}\left[\phi_{j k}, \lambda_{l}\right]+\bar{\lambda}_{i}\left[\phi_{j k}, \bar{\lambda}_{l}\right]\right)\right\} \\
+\int d^{4} x\left\{\kappa_{3}\left(\operatorname{Tr} \phi_{m} \phi_{m}\right)^{2}+\kappa_{4} \operatorname{Tr} \phi_{m} \phi_{n} \operatorname{Tr} \phi_{m} \phi_{n}\right\}
\end{gathered}
$$

- We achieved the first three coefficients by rescaling the fermion and scalar.
-We are left with 8 parameters to fine-tune: hopeless.
- Goal of modern formulations: reduce the number of finetunings.
- Method: lattice symmetries that restrict the long distance effective action.

Twisted $\mathrm{N}=4$

- We form the twisted rotation group from an $\mathrm{SO}(4)$ subgroup of the flavor (R symmetry) group $\operatorname{SU}(4)$:

$$
\begin{gathered}
S O(4)^{\prime}=\operatorname{diag}\left[S O(4)_{E} \times S O(4)_{R}\right] \\
\lambda_{\alpha}^{I} \rightarrow \Psi_{\alpha \beta}
\end{gathered}
$$

- Then it is natural to expand on the five gamma matrices $(a=1, \ldots, 5)$:

$$
\Psi=\frac{1}{2} \eta+\psi_{a} \gamma_{a}+\frac{i}{2} \chi_{a b}\left[\gamma_{a}, \gamma_{b}\right]
$$

- Given the 5d language of the fermions, it is also natural to package up the bosons in a 5d way:

$$
\mathcal{A}_{a}=A_{a}+i B_{a}, \quad \overline{\mathcal{A}}_{a}=A_{a}-i B_{a}
$$

Q invariant action

$$
\begin{gathered}
S=\frac{1}{2 g^{2}}\left(Q \Lambda+S_{\text {closed }}\right) \\
\Lambda=\int d^{4} x \operatorname{Tr}\left(\chi_{m n} \mathcal{F}_{m n}+\eta\left[\overline{\mathcal{D}}_{m}, \mathcal{D}_{m}\right]-\frac{1}{2} \eta d\right) \\
S_{\text {closed }}=-\frac{1}{4} \int d^{4} x \operatorname{Tr} \epsilon_{m n r p q} \chi_{p q} \overline{\mathcal{D}}_{r} \chi_{m n} \\
Q \mathcal{A}_{m}=\psi_{m}, \quad Q \psi_{m}=0, \quad Q \overline{\mathcal{A}}_{m}=0 \\
Q \chi_{m n}=-\overline{\mathcal{F}}_{m n}, \quad Q \eta=d, \quad Q d=0
\end{gathered}
$$

Lattice discretization

- In the lattice theory we switch to link variables for the gauge fields

$$
\mathcal{U}_{a}(x)=e^{\mathcal{A}_{a}(x)}, \quad \overline{\mathcal{U}}_{a}(x)=\mathcal{U}_{a}^{\dagger}(x)=e^{-\overline{\mathcal{A}}_{a}(x)}
$$

- Physically, $\mathcal{U}_{a}(x)$ is a link that goes from

$$
x \rightarrow x+a e_{a}
$$

and $\overline{\mathcal{U}}_{a}(x)$ is a link between the same pair of sites but going in the opposite direction.

- The five e_{a} are basis vectors of the A_{4}^{*} lattice.

$$
\begin{aligned}
& e_{1}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{12}}, \frac{1}{\sqrt{20}}\right) \\
& e_{2}=\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{12}}, \frac{1}{\sqrt{20}}\right) \\
& e_{3}=\left(0,-\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{12}}, \frac{1}{\sqrt{12}}\right) \\
& e_{4}=\left(0,0,-\frac{3}{\sqrt{12}}, \frac{1}{\sqrt{20}}\right) \\
& e_{5}=\left(0,0,0,-\frac{4}{\sqrt{20}}\right)
\end{aligned}
$$

- These vectors are also used to construct an important orthogonal matrix

$$
\mathcal{O}_{a \mu}=e_{a}^{\mu}, \quad \mathcal{O}_{a 5}=\frac{1}{\sqrt{5}}, \quad a=1, \ldots, 5, \quad \mu=0, \ldots, 3
$$

- The bosonic fields of the usual formulation of $\mathrm{N}=4$ SYM are obtained as

$$
\mathcal{V}_{\mu}=A_{\mu}+i \phi_{\mu+1}=\mathcal{O}_{a \mu} \mathcal{A}_{a}, \quad \phi_{5}+i \phi_{6}=\mathcal{O}_{a 5} \mathcal{A}_{a}
$$

Unsal, hep-th/0603046

- Under gauge transformations, the link variables transform in the usual way:

$$
\begin{gathered}
\mathcal{U}_{a}(x) \rightarrow g(x) \mathcal{U}_{a}(x) g^{\dagger}\left(x+e_{a}\right) \\
\overline{\mathcal{U}}_{a}(x) \rightarrow g\left(x+e_{a}\right) \overline{\mathcal{U}}_{a}(x) g^{\dagger}(x)
\end{gathered}
$$

- The transformations of all of our other fields are dictated by this index related prescription

$$
\begin{gathered}
\eta(x) \rightarrow g(x) \eta(x) g^{\dagger}(x), \quad \psi_{a}(x) \rightarrow g(x) \psi_{a}(x) g^{\dagger}\left(x+e_{a}\right) \\
\chi_{a b}(x) \rightarrow g\left(x+e_{a}+e_{b}\right) \chi_{a b}(x) g^{\dagger}(x)
\end{gathered}
$$

- Next we have to figure out how to discretize the covariant derivatives.
- For the field strength, the following has the right continuum limit:

$$
\mathcal{F}_{a b}(x)=\mathcal{D}_{a}^{(+)} \mathcal{U}_{b}(x)=\mathcal{U}_{a}(x) \mathcal{U}_{b}\left(x+e_{a}\right)-\mathcal{U}_{b}(x) \mathcal{U}_{a}\left(x+e_{b}\right)
$$

- We also introduce derivatives for term 2 of the action:

$$
\left[\overline{\mathcal{D}}_{a}, \mathcal{D}_{a}\right] \rightarrow \overline{\mathcal{D}}_{a}^{(-)} \mathcal{U}_{a}(x)=\mathcal{U}_{a}(x) \overline{\mathcal{U}}_{a}(x)-\overline{\mathcal{U}}_{a}\left(x-e_{a}\right) \mathcal{U}_{a}\left(x-e_{a}\right)
$$

- It is easy to see this has the right continuum limit.
- The lattice version of Q transformations is a fairly straightforward transcription from the continuum:

$$
\begin{gathered}
Q \mathcal{U}_{a}=\psi_{a}, \quad Q \psi_{a}=0, \quad Q \overline{\mathcal{U}}_{a}=0 \\
Q \chi_{a b}(x)=\overline{\mathcal{F}}_{a b}(x) \equiv \overline{\mathcal{U}}_{b}\left(x+e_{a}\right) \overline{\mathcal{U}}_{a}(x)-\overline{\mathcal{U}}_{a}\left(x+e_{b}\right) \overline{\mathcal{U}}_{b}(x) \\
Q \eta=d, \quad Q d=0
\end{gathered}
$$

- Then the Q exact action requires the replacements in the "gauge fermion"

$$
\begin{gathered}
\chi_{a b} \mathcal{F}_{a b}: \quad \mathcal{F}_{a b}(x)=\mathcal{D}_{a}^{(+)} \mathcal{U}_{b}(x)=\mathcal{U}_{a}(x) \mathcal{U}_{b}\left(x+e_{a}\right)-\mathcal{U}_{b}(x) \mathcal{U}_{a}\left(x+e_{b}\right) \\
\eta\left[\overline{\mathcal{D}}_{a}, \mathcal{D}_{a}\right] \rightarrow \eta \overline{\mathcal{D}}_{a}^{(-)} \mathcal{U}_{a}(x)=\eta(x)\left[\mathcal{U}_{a}(x) \overline{\mathcal{U}}_{a}(x)-\overline{\mathcal{U}}_{a}\left(x-e_{a}\right) \mathcal{U}_{a}\left(x-e_{a}\right)\right] \\
S_{\mathrm{Q}-\text { exact }}=\sum_{x} Q \operatorname{Tr}\left\{\chi_{a b} \mathcal{F}_{a b}+\eta \overline{\mathcal{D}}_{a}^{(-)} \mathcal{U}_{a}-\frac{1}{2} \eta d\right\}
\end{gathered}
$$

- The action has a shift invariance (using equations of motion):

$$
\eta \rightarrow \eta+\epsilon \mathbf{1}
$$

- The Q-closed term is a little more work

$$
\begin{aligned}
& \quad \chi_{d e} \overline{\mathcal{D}}_{c}^{(-)} \chi_{a b}=\chi_{d e}(\cdots)\left[\chi_{a b}(x) \overline{\mathcal{U}}_{c}(\cdots)-\overline{\mathcal{U}}_{c}(\cdots) \chi_{a b}\left(x-e_{c}\right)\right] \\
& =\chi_{d e}\left(x-e_{d}-e_{e}-e_{c}\right)\left[\chi_{a b}(x) \overline{\mathcal{U}}_{c}\left(x-e_{c}\right)-\overline{\mathcal{U}}_{c}\left(x-e_{c}+e_{a}+e_{b}\right) \chi_{a b}\left(x-e_{c}\right)\right] \\
& x-e_{d}-e_{e}-e_{c}
\end{aligned} \overbrace{x}+e_{a}+e_{b} .
$$

- For the closure of this term, an important property is the lattice Bianchi identity

$$
\epsilon_{a b c d e} \overline{\mathcal{D}}_{c}^{(-)} \overline{\mathcal{F}}_{a b}=0
$$

- If we have a renormalization scheme that preserves the lattice structure (including the symmetries), then we can enumerate the terms in the most general long distance effective action.
- There is only one Q-closed operator allowed by the lattice symmetries and it is already present.

$$
S_{\mathrm{Q}-\text { closed }}=-\frac{\alpha_{4}}{4} \sum_{x} \epsilon_{a b c d e} \operatorname{Tr}\left(\chi_{d e} \overline{\mathcal{D}}_{c}^{(-)} \chi_{a b}\right)
$$

- Q-exact terms must be fermionic, so they take the general form

$$
Q \operatorname{Tr}[\Psi f(\mathcal{U}, \overline{\mathcal{U}})]
$$

- Taking into account the lattice gauge invariance and S_{5} symmetry, we have (up to irrelevant operators)

$$
Q \operatorname{Tr}\left(\chi_{a b} \mathcal{U}_{a} \mathcal{U}_{b}\right)-Q \operatorname{Tr}\left(\chi_{a b} \mathcal{U}_{b} \mathcal{U}_{a}\right)=Q \operatorname{Tr}\left(\chi_{a b} \mathcal{D}_{a}^{(+)} \mathcal{U}_{b}\right)
$$

- With η we have lots of operators but shift invariance reduces to a few combinations

$$
\begin{gathered}
Q \operatorname{Tr}\left[\eta(x) \overline{\mathcal{U}}_{a}\left(x-e_{a}\right) \mathcal{U}_{a}\left(x-e_{a}\right)\right], \quad Q \operatorname{Tr}(\eta d) \\
Q \operatorname{Tr}\left[\eta(x) \mathcal{U}_{a}(x) \overline{\mathcal{U}}_{a}(x)\right], \quad Q \operatorname{Tr} \eta, \quad Q\left\{\operatorname{Tr} \eta \operatorname{Tr}\left(\mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right)\right\} \\
Q \operatorname{Tr}\left[\eta \overline{\mathcal{D}}_{a}^{(-)} \mathcal{U}_{a}\right], \quad Q \operatorname{Tr}(\eta d) \\
Q \operatorname{Tr}\left(\eta \mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right)-\frac{1}{N} Q\left\{\operatorname{Tr} \eta \operatorname{Tr}\left(\mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right)\right\}
\end{gathered}
$$

- Thus the renormalizable long distance theory is

$$
\begin{gathered}
S=\sum_{x} Q \operatorname{Tr}\left\{\alpha_{1} \chi_{a b} \mathcal{D}_{a}^{(+)} \mathcal{U}_{b}+\alpha_{2} \eta \overline{\mathcal{D}}_{a}^{(-)} \mathcal{U}_{a}-\frac{\alpha_{3}}{2} \eta d\right\} \\
+\sum_{x} \beta_{1} Q\left\{\operatorname{Tr}\left(\eta \mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right)-\frac{1}{N} \operatorname{Tr} \eta \operatorname{Tr}\left(\mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right)\right\} \\
-\frac{\alpha_{4}}{4} \sum_{x} \epsilon_{a b c d e} \operatorname{Tr}\left(\chi_{d e} \overline{\mathcal{D}}_{c}^{(-)} \chi_{a b}\right)
\end{gathered}
$$

- Seems to be 4 fine-tunings. This is far fewer than a naive approach would yield.
- Act with Q and then rescale the fermions and auxiliary field:

$$
\eta \rightarrow \lambda_{\eta} \eta, \quad \chi_{a b} \rightarrow \lambda_{\chi} \chi_{a b}, \quad \psi_{a} \rightarrow \lambda_{\psi} \psi_{a}, \quad d \rightarrow \lambda_{d} d
$$

- The action becomes

$$
\begin{gathered}
\operatorname{Tr}\left\{-\alpha_{1} \overline{\mathcal{F}}_{a b} \mathcal{F}_{a b}-\alpha_{1} \lambda_{\chi} \lambda_{\psi} \chi_{a b} \mathcal{D}_{[a}^{(+)} \psi_{b]}+\alpha_{2} \lambda_{d} d \overline{\mathcal{D}}_{a}^{(-)} \mathcal{U}_{a}-\alpha_{2} \lambda_{\eta} \lambda_{\psi} \eta \overline{\mathcal{D}}_{a}^{(-)} \psi_{a}\right. \\
\left.-\frac{\alpha_{3}}{2} \lambda_{d}^{2} d^{2}-\frac{\alpha_{4}}{4} \lambda_{\chi}^{2} \epsilon_{a b c d e} \chi_{d e} \overline{\mathcal{D}}_{c}^{(-)} \chi_{a b}\right\}+\beta\left\{\lambda_{d} \operatorname{Tr}\left(d \mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right)-\lambda_{\eta} \lambda_{\psi} \operatorname{Tr}\left(\eta \psi_{a} \overline{\mathcal{U}}_{a}\right)\right. \\
\left.-\frac{1}{N} \lambda_{d} \operatorname{Tr} d \operatorname{Tr}\left(\mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right)+\frac{1}{N} \lambda_{\eta} \lambda_{\psi} \operatorname{Tr} \eta \operatorname{Tr}\left(\psi_{a} \overline{\mathcal{U}}_{a}\right)\right\}
\end{gathered}
$$

- Use freedom to set

$$
\alpha_{1} \lambda_{\chi} \lambda_{\psi}=\alpha_{1}, \quad \alpha_{2} \lambda_{d}=\alpha_{1}, \quad \alpha_{2} \lambda_{\eta} \lambda_{\psi}=\alpha_{1}, \quad \alpha_{4} \lambda_{\chi}^{2}=\alpha_{1}
$$

- Solution:

$$
\lambda_{\eta}=\sqrt{\frac{\alpha_{1}^{3}}{\alpha_{4} \alpha_{2}^{2}}}, \quad \lambda_{\chi}=\frac{1}{\lambda_{\psi}}=\sqrt{\frac{\alpha_{1}}{\alpha_{4}}}, \quad \lambda_{d}=\frac{\alpha_{1}}{\alpha_{2}}
$$

- Define

$$
\alpha_{3}^{\prime}=\alpha_{3}\left(\frac{\alpha_{1}}{\alpha_{2}}\right)^{2}, \quad \beta^{\prime}=\beta \frac{\alpha_{1}}{\alpha_{2}}
$$

- Action is now

$$
\begin{aligned}
& \operatorname{Tr}\left\{-\alpha_{1} \overline{\mathcal{F}}_{a b} \mathcal{F}_{a b}-\alpha_{1} \chi_{a b} \mathcal{D}_{[a}^{(+)} \psi_{b]}+\alpha_{1} d \overline{\mathcal{D}}_{a}^{(-)} \mathcal{U}_{a}-\alpha_{1} \eta \overline{\mathcal{D}}_{a}^{(-)} \psi_{a}\right. \\
& \left.-\frac{\alpha_{3}^{\prime}}{2} d^{2}-\frac{\alpha_{1}}{4} \epsilon_{a b c d e} \chi_{d e} \overline{\mathcal{D}}_{c}^{(-)} \chi_{a b}\right\}+\beta^{\prime}\left\{\operatorname{Tr}\left(d \mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right)-\operatorname{Tr}\left(\eta \psi_{a} \overline{\mathcal{U}}_{a}\right)\right. \\
& \left.-\frac{1}{N} \operatorname{Tr} d \operatorname{Tr}\left(\mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right)+\frac{1}{N} \operatorname{Tr} \eta \operatorname{Tr}\left(\psi_{a} \overline{\mathcal{U}}_{a}\right)\right\}
\end{aligned}
$$

- Only 2 fine-tunings:

$$
\alpha_{3}^{\prime} \rightarrow \alpha_{1}, \quad \beta^{\prime} \rightarrow 0
$$

Cf. clover fermions, also 2 fine-tunings.

One less, one left

- Actually, we showed in our previous work that the moduli space is not lifted at any order of lattice perturbation theory.
- Here it is crucial that the partition function is a topological quantity, so that the one-loop result holds to all orders.
- But the β term would lift the moduli space, so it is actually forbidden.
- Thus we are left with a single fine-tuning.

The other 15 SUSYs

- The supercharge also has the KD structure

$$
\mathcal{Q}=Q+Q_{a} \gamma_{a}+\frac{i}{2} Q_{a b}\left[\gamma_{a}, \gamma_{b}\right]
$$

- We can work out the other 15 SUSYs using discrete R invariances of the action (on-shell). For a fixed and b, c,etc. not equal to a, $R_{a}:$

$$
\begin{gathered}
\eta \rightarrow 2 \psi_{a}, \quad \psi_{a} \rightarrow \frac{1}{2} \eta, \quad \psi_{b} \rightarrow-\chi_{a b} \\
\chi_{a b} \rightarrow-\psi_{b}, \quad \chi_{b c} \rightarrow \frac{1}{2} \epsilon_{b c a g h} \chi_{g h} \\
\mathcal{D}_{a} \rightarrow \mathcal{D}_{a}, \quad \overline{\mathcal{D}}_{a} \rightarrow \overline{\mathcal{D}}_{a}, \quad \mathcal{D}_{b} \rightarrow \overline{\mathcal{D}}_{b}, \quad \overline{\mathcal{D}}_{b} \rightarrow \mathcal{D}_{b}
\end{gathered}
$$

- This leads to the five SUSYs

$$
\begin{gathered}
Q_{a} \mathcal{A}_{b}=\frac{1}{2} \delta_{a b} \eta, \quad Q_{a} \overline{\mathcal{A}}_{b}=-\chi_{a b}, \quad Q_{a} \psi_{b}=\frac{1}{2} \delta_{a b} d_{a}+\left(1-\delta_{a b}\right)\left[\overline{\mathcal{D}}_{a}, \mathcal{D}_{b}\right] \\
Q_{a} \chi_{b c}=-\frac{1}{2} \epsilon_{a b c d e}\left[\mathcal{D}_{d}, \mathcal{D}_{e}\right], \quad Q_{a} \eta=0, \quad Q_{a} d_{a}=0 \\
d_{a}=\left[\overline{\mathcal{D}}_{a}, \mathcal{D}_{a}\right]-\sum_{m \neq a}\left[\overline{\mathcal{D}}_{m}, \mathcal{D}_{m}\right]
\end{gathered}
$$

- Then there are 10 other discrete R symmetries:

$$
\begin{gathered}
R_{a b}: \\
\eta \rightarrow 2 \chi_{a b}, \quad \psi_{a} \rightarrow \psi_{b}, \quad \psi_{b} \rightarrow-\psi_{a}, \quad \psi_{c} \rightarrow \frac{1}{2} \epsilon_{c a b g h} \chi_{g h} \\
\chi_{a b} \rightarrow-\frac{1}{2} \eta, \quad \chi_{a c} \rightarrow \chi_{b c}, \quad \chi_{b c} \rightarrow-\chi_{a c}, \quad \chi_{g h} \rightarrow-\epsilon_{g h a b c} \psi_{c} \\
\mathcal{D}_{a, b} \rightarrow \overline{\mathcal{D}}_{a, b}, \quad \overline{\mathcal{D}}_{a, b} \rightarrow \mathcal{D}_{a, b}, \quad \mathcal{D}_{c} \rightarrow \mathcal{D}_{c}, \quad \overline{\mathcal{D}}_{c} \rightarrow \overline{\mathcal{D}}_{c}
\end{gathered}
$$

Then one gets 10 more supercharges by applying these to Q :

$$
\begin{gathered}
Q_{a b} \mathcal{A}_{c}=\frac{1}{2} \epsilon_{a b c g h} \chi_{g h}, \quad Q_{a b} \overline{\mathcal{A}}_{c}=\delta_{a c} \psi_{b}-\delta_{b c} \psi_{a}, \quad Q_{a b} \psi_{c}=\epsilon_{a b c g h} \overline{\mathcal{F}}_{g h} \\
Q_{a b} \chi_{c d}=\frac{1}{4}\left(\delta_{a c} \delta_{b d}-\delta_{a d} \delta_{b c}\right) d_{a b}+\delta_{a c}\left[\mathcal{D}_{b}, \overline{\mathcal{D}}_{d}\right]-\delta_{b c}\left[\mathcal{D}_{a}, \overline{\mathcal{D}}_{d}\right] \\
Q_{a b} \eta=2 \mathcal{F}_{a b}, \quad Q_{a b} d_{a b}=0 \\
d_{a b}=-\left[\overline{\mathcal{D}}_{a}, \mathcal{D}_{a}\right]-\left[\overline{\mathcal{D}}_{a}, \mathcal{D}_{a}\right]+\sum_{m \neq a, b}\left[\overline{\mathcal{D}}_{m}, \mathcal{D}_{m}\right]
\end{gathered}
$$

The equation $Q_{a b} d_{a b}=0$ requires the EOM.

R_{a} and renormalization

- Returning to

$$
\begin{aligned}
Q \operatorname{Tr} & \left\{\alpha_{1} \chi_{a b} \mathcal{F}_{a b}+\alpha_{2} \eta\left[\overline{\mathcal{D}}_{a}, \mathcal{D}_{a}\right]-\frac{\alpha_{3}}{2} \eta d\right\} \\
& -\frac{\alpha_{4}}{4} \epsilon_{a b c d e} \chi_{d e} \overline{\mathcal{D}}_{c} \chi_{a b}+\beta\{\cdots\}
\end{aligned}
$$

- Eliminate auxiliary

$$
\begin{gathered}
\operatorname{Tr}\left\{-\alpha_{1} \overline{\mathcal{F}}_{a b} \mathcal{F}_{a b}+\frac{\alpha_{2}^{2}}{2 \alpha_{3}}\left[\overline{\mathcal{D}}_{a}, \mathcal{D}_{a}\right]^{2}-\alpha_{1} \chi_{a b} \mathcal{D}_{[a} \psi_{b]}\right. \\
\quad-\alpha_{2} \eta \overline{\mathcal{D}}_{a} \psi_{a}-\frac{\alpha_{4}}{4} \epsilon_{a b c d e} \chi_{d e} \overline{\mathcal{D}}_{c} \chi_{a b}+\beta\{\cdots\}
\end{gathered}
$$

- Apply R_{a} to this and demand invariance
- In bosonic sector terms are interchanged, requiring

$$
\alpha_{1}=\frac{\alpha_{2}^{2}}{\alpha_{3}}, \quad \beta=0
$$

- In fermionic sector terms are interchanged, requiring

$$
\alpha_{1}=\alpha_{2}=\alpha_{4}, \quad \beta=0
$$

- Thus R_{a} invariance forces SUSY long distance theory.
- Recall

$$
\mathcal{U}_{a}=e^{\mathcal{A}_{a}}, \quad \overline{\mathcal{U}}_{a}=e^{-\overline{\mathcal{A}}_{a}}
$$

- Implies under R_{a}

$$
\mathcal{U}_{a} \rightarrow \mathcal{U}_{a}, \quad \overline{\mathcal{U}}_{a} \rightarrow \overline{\mathcal{U}}_{a}, \quad \mathcal{U}_{b} \rightarrow \overline{\mathcal{U}}_{b}^{-1}, \quad \overline{\mathcal{U}}_{b} \rightarrow \mathcal{U}_{b}^{-1}
$$

- Thus a simple test of R_{a} restoration, and hence full $\mathrm{N}=4$ SUSY restoration is

$$
\begin{aligned}
& \left\langle\operatorname{Tr}\left\{\mathcal{U}_{a}(x) \mathcal{U}_{b}\left(x+e_{a}\right) \overline{\mathcal{U}}_{a}\left(x+e_{b}\right) \overline{\mathcal{U}}_{b}(x)\right\}\right\rangle \\
= & \left\langle\operatorname{Tr}\left\{\mathcal{U}_{a}(x) \overline{\mathcal{U}}_{b}^{-1}\left(x+e_{a}\right) \overline{\mathcal{U}}_{a}\left(x+e_{b}\right) \mathcal{U}_{b}^{-1}(x)\right\}\right\rangle
\end{aligned}
$$

- Amazing
- Due to exact symmetries of lattice theory

Blocking

- The arguments about the long distance effective action only hold if there is a real space renormalization group which preserves the lattice structure.
- This means that $\mathrm{Q}, \mathrm{S}_{5}$, gauge invariance and geometric interpretation of fields should survive the flow.
- Here we provide an explicit construction.
- The original lattice Λ may be described by

$$
\Lambda=\left\{a \sum_{\mu=1}^{4} n_{\mu} e_{\mu} \mid n \in \mathbf{Z}^{4}\right\}
$$

- where the e_{μ} are the first four of the five (degenerate) basis vectors of the A_{4}^{*} lattice described above.
- The blocked lattice will merely be doubled in every direction:

$$
\Lambda^{\prime}=\left\{2 a \sum_{\mu=1}^{4} n_{\mu} e_{\mu} \mid n \in \mathbf{Z}^{4}\right\}
$$

- From this point forward we will work in lattice units, setting $a=1$
- The blocked fields will be denoted by primes.
- They must begin and end on sites of the blocked lattice Λ^{\prime}.
- We want the geometric intepretation to survive the blocking.
- For example, $\chi_{a b}^{\prime}(x)$ must begin on site $x+2 e_{a}+2 e_{b}$ and end on site x.

- One choice that achieves this is the following:

$$
\begin{aligned}
\mathcal{U}_{a}^{\prime}(x)= & \mathcal{U}_{a}(x) \mathcal{U}_{a}\left(x+e_{a}\right), \quad \overline{\mathcal{U}}_{a}^{\prime}(x)=\overline{\mathcal{U}}_{a}\left(x+e_{a}\right) \overline{\mathcal{U}}_{a}(x) \\
d^{\prime}(x)= & d(x), \quad \eta^{\prime}(x)=\eta(x) \\
\psi_{a}^{\prime}(x)= & \psi_{a}(x) \mathcal{U}_{a}\left(x+e_{a}\right)+\mathcal{U}_{a}(x) \psi_{a}\left(x+e_{a}\right) \\
\chi_{a b}^{\prime}(x)= & \frac{1}{2}\left[\overline{\mathcal{U}}_{a}\left(x+e_{a}+2 e_{b}\right) \overline{\mathcal{U}}_{b}\left(x+e_{a}+e_{b}\right) \chi_{a b}(x)\right. \\
& \left.+\overline{\mathcal{U}}_{b}\left(x+2 e_{a}+e_{b}\right) \overline{\mathcal{U}}_{a}\left(x+e_{a}+e_{b}\right) \chi_{a b}(x)\right] \\
& +\left[\overline{\mathcal{U}}_{a}\left(x+e_{a}+2 e_{b}\right) \chi_{a b}\left(x+e_{b}\right) \overline{\mathcal{U}}_{b}(x)\right. \\
& \left.+\overline{\mathcal{U}}_{b}\left(x+2 e_{a}+e_{b}\right) \chi_{a b}\left(x+e_{a}\right) \overline{\mathcal{U}}_{a}(x)\right] \\
& +\frac{1}{2}\left[\chi_{a b}\left(x+e_{a}+e_{b}\right) \overline{\mathcal{U}}_{a}\left(x+e_{b}\right) \overline{\mathcal{U}}_{b}(x)\right. \\
& \left.+\chi_{a b}\left(x+e_{a}+e_{b}\right) \overline{\mathcal{U}}_{b}\left(x+e_{a}\right) \overline{\mathcal{U}}_{a}(x)\right]
\end{aligned}
$$

- This choice preserves the Q algebra, namely

$$
\begin{gathered}
Q \mathcal{U}_{a}^{\prime}=\psi_{a} \mathcal{U}_{a}+\mathcal{U}_{a} \psi_{a}=\psi_{a}^{\prime} \\
Q \psi_{a}^{\prime}=-\psi_{a} \psi_{a}+\psi_{a} \psi_{a}=0 \\
Q \overline{\mathcal{U}}_{a}^{\prime}=0 \quad Q \eta^{\prime}=d=d^{\prime} \quad Q d^{\prime}=0 \\
Q \chi_{a b}^{\prime}=\overline{\mathcal{F}}_{a b}^{\prime} \\
\overline{\mathcal{F}}_{a b}^{\prime}(x)=\overline{\mathcal{U}}_{b}^{\prime}\left(x+2 e_{a}\right) \overline{\mathcal{U}}_{a}^{\prime}(x)-\overline{\mathcal{U}}_{a}^{\prime}\left(x+2 e_{b}\right) \overline{\mathcal{U}}_{b}^{\prime}(x)
\end{gathered}
$$

- The last result, for $Q \chi_{a b}^{\prime}$, is the only one that requires any significant computation.

Future directions

- RSRG calculations: MCRG
- CTs, finite parts, two loops
- Other 15 SUSYs after RSRG, fine-tuning
- Strong coupling issues

