
Lattice N=4 SYM

Joel Giedt (RPI)
in collaboration with Simon Catterall, Anosh in collaboration with Simon Catterall, Anosh 

Joseph, Eric Dzienkowski, Robert Wells, David 
Schaich, Tom DeGrand, Poul Damgaard



The lattice SUSY problemThe lattice SUSY problem

{Q Q̄ } 2 μ P

 Pμ generator of infinitesmal translations.

{Qα, Qα̇} = 2σμαα̇Pμ

 Broken on lattice.

 Only discrete subgroup preserved.

 with lattice spacing a

x→ Tμx = x+ aμ̂



Failure of Leibnitz ruleFailure of Leibnitz rule
 So why not just change the algebra to

 Notice that

{Qα, Q̄α̇} = 2iσμαα̇ 1a (Tμ − 1) ≡ 2iσ
μ
αα̇∇μ

1 2 2

 Problem: essential difference between these (      and       ) at 
fi it  l tti  i

∇μφ(x) =
1
a [φ(x+ aμ̂)− φ(x)] = ∂μφ(x) +

a
2∂

2
μφ(x) +O(a2)

∂μ ∇μ

finite lattice spacing.

 The Leibnitz rule.

∇ [φ( ) ( )] 1 [φ( + ˆ) ( + ˆ) φ( ) ( )]∇μ[φ(x)χ(x)] =
1
a [φ(x+ aμ̂)χ(x+ aμ̂)− φ(x)χ(x)]

= ∇μφ(x)χ(x) + φ(x)∇μχ(x) + a∇μφ(x)∇μχ(x)

Dondi & Nicolai, 1977



Problems for interacting theoryProblems for interacting theory
 SUSY algebra on elementary fields

 Not on polynomials of fields



 Result: O(a) artifact:

 But we send a  0 at the end of our calculations, so who 
?

δ²S = i[²
αQα + ²̄α̇Q̄

α̇, S] = ia(²αXα − ²̄α̇X̄ α̇)

cares?



Counterterm/renormalization in N=1 
SYMSYM
 Failure of Leibnitz rule  O(a) term

h∂μSμ(x)O(y)i = m0hχ(x)O(y)i+ ahO11/2(x)O(y)i+ contact terms

OR Z [O + 1 (Z 1)∂ S + 1Z ∂ T + 1 Z ]+
P

Z
(j)

O
(j)R

OR11/2 = Z11/2[O11/2+
1
a (ZS−1)∂μSμ+ 1

aZT ∂μTμ+
1
a2Zχχ]+

P
j Z

(j)
11/2O

(j)
11/2

Sμ = −σρνγμTr(Fρνλ), Tμ = 2γνTr(Fμνλ), χ = σμνTr(Fμνλ)

h∂μSRμ (x)OR(y)i = (m0 − Zχ
a )hχ(x)OR(y)i+ a · finite + contact terms

SR = ZSS + ZTTSμ = ZSSμ + ZTTμ

• must be determined to test for SUSY
•Fine-tuning just m0 agrees w/ expectations
ZT /ZS

Farchioni et al. 2001



Wilson fermion N=4 SYMWilson fermion N=4 SYM
 How bad is an entirely conventional approach, say using 

Wilson fermions?

 We cannot impose SU(4) R symmetry because it is chiral, 
and Wilson fermions violate chiral symmetryand Wilson fermions violate chiral symmetry.

 However, we can impose SO(4) flavor symmetry with the 
fermions in 4’s (vector) and the scalars in 6 (antisymmetric( ) ( y
tensor).

 To determine the number of fine-tunings, we write down the 
most general renormalizable action consistent with these 
constraints.



S =
R
d4x Tr{− 1

2FμνFμν +
i
2λiσ

μDμλi +
1
2DμφmDμφm +m

2
φφmφmS =

R
d x Tr{ 2g2r

FμνFμν + g2r
λiσ Dμλi + g2r

DμφmDμφm +mφφmφm

+mλ(λiλi+λiλi)+κ1φmφmφnφn+κ2φmφnφmφn+y1(λi[φij ,λj]+λi[φij ,λj ])

+
R
d4x {κ3(Trφmφm)

2 + κ4TrφmφnTrφmφn}

+y2²ijkl(λi[φjk,λl] + λi[φjk,λl])}

•We achieved the first three coefficients by rescaling the 
fermion and scalar.
•We are left with 8 parameters to fine-tune:  hopeless.



 Goal of modern formulations:  reduce the number of fine-
tunings.

 Method:  lattice symmetries that restrict the long distance 
effective actioneffective action.



Twisted N=4Twisted N=4
 We form the twisted rotation group from an SO(4) subgroup 

of the flavor (R symmetry) group SU(4):

SO(4)0 = diag[SO(4)E × SO(4)R]

 Th  it i  t l t  d  th  fi   t i  

λIα → Ψαβ

 Then it is natural to expand on the five gamma matrices 
(a=1,…,5):

Ψ = 1
2η + ψaγa +

i
2χab[γa, γb]



 Given the 5d language of the fermions, it is also natural to 
package up the bosons in a 5d way:

Aa = Aa + iBa, Aa = Aa − iBa



Q invariant actionQ invariant action
S = 1

2g2 (QΛ+ Sclosed)g

Λ =
R
d4x Tr(χmnFmn + η[Dm,Dm]− 1

2ηd)

Sclosed = −1
4

R
d4x Tr²mnrpqχpqDrχmn

QAm = ψm, Qψm = 0, QAm = 0

Qχ = F Qη = d Qd = 0Qχmn = −Fmn, Qη = d, Qd = 0



Lattice discretizationLattice discretization
 In the lattice theory we switch to link variables for the gauge 

fields

Ua(x) = eAa(x), Ua(x) = U†a(x) = e−Aa(x)

 Physically,           is a link that goes fromUa(x)

x→ x+ aea

and              is a link between the same pair of sites but going 
in the opposite direction.

Ua(x)

Catterall, 0712.2532



 The five        are basis vectors of the          lattice.ea A∗4

e1 =

µ
1√
2
,
1√
6
,
1√
12
,
1√
20

¶
e2 =

µ
− 1√

2
,
1√
6
,
1√
12
,
1√
20

¶
µ
0

2 1 1
¶

e3 =

µ
0,−√

6
, √
12
, √
12

¶
e4 =

µ
0, 0,− 3√

12
,
1√
20

¶µ
√
12

√
20

¶
e5 =

µ
0, 0, 0,− 4√

20

¶



 These vectors are also used to construct an important 
orthogonal matrix

Oaμ = eμa , Oa5 = 1√
5
, a = 1, . . . , 5, μ = 0, . . . , 3

 The bosonic fields of the usual formulation of N=4 SYM are 
obtained asobtained as

Vμ = Aμ + iφμ+1 = OaμAa, φ5 + iφ6 = Oa5Aa

Unsal, hep-th/0603046



 Under gauge transformations, the link variables transform in 
the usual way:

Ua(x)→ g(x)Ua(x)g†(x+ ea)
U ( )→ ( + )U ( ) †( )

 The transformations of all of our other fields are dictated by 
this index related prescription

Ua(x)→ g(x+ ea)Ua(x)g†(x)

this index related prescription

η(x)→ g(x)η(x)g†(x), ψa(x)→ g(x)ψa(x)g
†(x+ ea)

χab(x)→ g(x+ ea + eb)χab(x)g
†(x)



 Next we have to figure out how to discretize the covariant 
d i tiderivatives.

 For the field strength, the following has the right continuum 
limit:

Fab(x) = D(+)a Ub(x) = Ua(x)Ub(x+ ea)− Ub(x)Ua(x+ eb)

 We also introduce derivatives for term 2 of the action:

[Da,Da]→ D(−)a Ua(x) = Ua(x)Ua(x)− Ua(x− ea)Ua(x− ea)

 It is easy to see this has the right continuum limit.



 The lattice version of Q transformations is a fairly 
straightforward transcription from the continuum:

QUa = ψa, Qψa = 0, QUa = 0Q a ψa, Qψa , Q a

Qχab(x) = Fab(x) ≡ Ub(x+ ea)Ua(x)− Ua(x+ eb)Ub(x)

Qη = d Qd = 0Qη = d, Qd = 0



 Then the Q exact action requires the replacements in the 
“gauge fermion”

χabFab : Fab(x) = D(+)a Ub(x) = Ua(x)Ub(x+ ea)− Ub(x)Ua(x+ eb)

η[Da,Da]→ ηD(−)a Ua(x) = η(x)[Ua(x)Ua(x)− Ua(x− ea)Ua(x− ea)]

 The action has a shift invariance (using equations of motion)

SQ−exact =
P

xQTr{χabFab + ηD(−)a Ua − 1
2ηd}

 The action has a shift invariance (using equations of motion):

η → η + ²1



 The Q-closed term is a little more work 

χdeD
(−)
c χab = χde(· · ·)[χab(x)Uc(· · ·)− Uc(· · ·)χab(x− ec)]

= χd (x− ed − e − e )[χ b(x)U (x− e )− U (x− e + e + eb)χ b(x− e )]= χde(x ed ee ec)[χab(x)Uc(x ec) Uc(x ec + ea + eb)χab(x ec)]

x+ e + eb

x− ed − ee − ec
x+ ea + eb

x

χab

x

Uc

χde

x− ec



 For the closure of this term, an important property is the 
lattice Bianchi identity

²abcdeD
(−)
c Fab = 0abcde c Fab



 If we have a renormalization scheme that preserves the lattice 
structure (including the symmetries), then we can enumerate 
the terms in the most general long distance effective action.

 There is only one Q closed operator allowed by the lattice  There is only one Q-closed operator allowed by the lattice 
symmetries and it is already present.

SQ−closed = −α4
4

P
x ²abcdeTr(χdeD

(−)
c χab)



 Q-exact terms must be fermionic, so they take the general 
form

T k    h  l    d S

QTr[Ψf(U ,U)]
 Taking into account the lattice gauge invariance and S5

symmetry, we have (up to irrelevant operators)

QT ( U U ) QT ( U U ) QT ( D(+)U )QTr(χabUaUb)−QTr(χabUbUa) = QTr(χabD(+)a Ub)



 With η we have lots of operators but shift invariance reduces 
to a few combinations

QTr[η(x)Ua(x− ea)Ua(x− ea)], QTr(ηd)

QTr[η(x)Ua(x)Ua(x)], QTrη, Q{TrηTr(UaUa)}

QTr[ηD(−)a Ua], QTr(ηd)

QTr(ηUaUa)− 1
NQ{TrηTr(UaUa)}



 Thus the renormalizable long distance theory is

S =
P

xQTr{α1χabD
(+)
a Ub + α2ηD

(−)
a Ua − α3

2 ηd}

−α4
4

P
²abcdeTr(χdeD

(−)
c χab)

+
P

x β1Q{Tr(ηUaUa)− 1
NTrηTr(UaUa)}

S   b  4 f   Th   f  f  h    

4

P
x ²abcdeTr(χdeDc χab)

 Seems to be 4 fine-tunings.  This is far fewer than a naive 
approach would yield.



 Act with Q and then rescale the fermions and auxiliary field:

 The action becomes

η → ληη, χab → λχχab, ψa → λψψa, d→ λdd

( ) ( )
Tr
©
− α1FabFab − α1λχλψχabD(+)[a ψb] + α2λddD

(−)
a Ua − α2ληλψηD

(−)
a ψa

−α3
2 λ2dd

2 − α4
4 λ2χ²abcdeχdeD

(−)
c χab

ª
+ β

©
λdTr(dUaUa)− ληλψTr(ηψaUa)2 d 4 χ

ª ©
η ψ

− 1
N λdTrdTr(UaUa) + 1

N ληλψTrηTr(ψaUa)
ª



 Use freedom to set

 Solution:
α1λχλψ = α1, α2λd = α1, α2ληλψ = α1, α4λ

2
χ = α1

λη =

r
α31

α4α22
, λχ =

1
λψ
=
q

α1
α4
, λd =

α1
α2

 Define

α03 = α3

³
α1
α2

´2
, β0 = β α1

α2



 Action is now

Tr
©
− α1FabFab − α1χabD(+)[a ψb] + α1dD

(−)
a Ua − α1ηD

(−)
a ψa

α03 d2 α1 D(−)
ª
+ β0

©
T (dU U ) T ( ψ U )−α3

2 d
2 − α1

4 ²abcdeχdeD
( )

c χab
ª
+ β0

©
Tr(dUaUa)− Tr(ηψaUa)

− 1
NTrdTr(UaUa) + 1

NTrηTr(ψaUa)
ª

 Only 2 fine-tunings:

α03 → α1, β0 → 0

Cf. clover fermions, also 2 fine-tunings.



One less  one leftOne less, one left
 Actually, we showed in our previous work that the moduli

space is not lifted at any order of lattice perturbation theory.

 Here it is crucial that the partition function is a topological 
quantity  so that the one loop result holds to all ordersquantity, so that the one-loop result holds to all orders.

 But the β term would lift the moduli space, so it is actually 
forbidden..

 Thus we are left with a single fine-tuning.



The other 15 SUSYsThe other 15 SUSYs
 The supercharge also has the KD structure

Q = Q+Qaγa + i
2Qab[γa, γb]

 We can work out the other 15 SUSYs using discrete R 
invariances of the action (on-shell).  For a fixed and b,c,etc. 
not equal to anot equal to a,

η → 2ψa, ψa → 1
2η, ψb → −χab

ψ 1

Ra :

χab → −ψb, χbc → 1
2 ²bcaghχgh

Da → Da, Da → Da, Db → Db, Db → Db



 This leads to the five SUSYs

QaAb = 1
2δabη, QaAb = −χab, Qaψb =

1
2δabda + (1− δab)[Da,Db]

Qaχbc = − 1
2²abcde[Dd,De], Qaη = 0, Qada = 0

da = [Da,Da]−
P

m 6=a[Dm,Dm]



 Then there are 10 other discrete R symmetries:

Rab :

η → 2χab, ψa → ψb, ψb → −ψa, ψc → 1
2 ²cabghχghη χab, ψa ψb, ψb ψa, ψc 2 cabghχgh

χab → − 1
2η, χac → χbc, χbc → −χac, χgh → −²ghabcψc

Da,b → Da,b, Da,b → Da,b, Dc → Dc, Dc → Dc



Then one gets 10 more supercharges by applying these to Q:

QabAc = 1
2²abcghχgh, QabAc = δacψb − δbcψa, Qabψc = ²abcghFgh

Q 1 (δ δ δ δ )d + δ [D D ] δ [D D ]Qabχcd =
1
4 (δacδbd − δadδbc)dab + δac[Db,Dd]− δbc[Da,Dd]

Qabη = 2Fab, Qabdab = 0

Th                       h  EOM

dab = −[Da,Da]− [Da,Da] +
P

m 6=a,b[Dm,Dm]

The equation                    requires the EOM.Qabdab = 0



R and renormalizationRa and renormalization
 Returning to

QTr
©
α1χabFab + α2η[Da,Da]− α3

2 ηd
ª

−α4 ² b d χd D χ b + β
©
· · ·
ª

 Eliminate auxiliary

4 ²abcdeχdeDcχab + β
© ª

Tr
©
− α1FabFab + α22

2α3
[Da,Da]2 − α1χabD[aψb]

−α2ηDaψa − α4
4 ²abcdeχdeDcχab + β

©
· · ·
ª

2η aψa 4 abcdeχde cχab + β
© ª



 Apply        to this and demand invarianceRa

 In bosonic sector terms are interchanged, requiring

α1 =
α22
α3
, β = 0

 In fermionic sector terms are interchanged, requiring

3

Th           f  SUSY l  d  h

α1 = α2 = α4, β = 0

 Thus         invariance forces SUSY long distance theory.Ra



 Recall

 Implies under

Ua = eAa , Ua = e−Aa

Ra
1Ua → Ua, Ua → Ua, Ub → U−1b , U b → U−1b

 Thus a simple test of          restoration, and hence full N=4 
SUSY restoration is 

Ra

hT
©
U ( )U ( + )U ( + )U ( )

ª
ihTr

©
Ua(x)Ub(x+ ea)Ua(x+ eb)Ub(x)

ª
i

= hTr
©
Ua(x)U

−1
b (x+ ea)Ua(x+ eb)U−1b (x)

ª
i



 Amazing

 Due to exact symmetries of lattice theory





BlockingBlocking
 The arguments about the long distance effective action only 

hold if there is a real space renormalization group which 
preserves the lattice structure.

 This means that Q  S  gauge invariance and geometric  This means that Q, S5, gauge invariance and geometric 
interpretation of fields should survive the flow.

 Here we provide an explicit construction.p p .



 The original lattice Λ may be described by

 where the      are the first four of the five (degenerate) basis 
 f h        l  d b d b

Λ = {aP4
μ=1 nμeμ|n ∈ Z4}

eμ
A∗vectors of the       lattice described above.

 The blocked lattice will merely be doubled in every 
direction:

A∗4

direction:

Λ0 = {2aP4
μ=1 nμeμ|n ∈ Z4}

 From this point forward we will work in lattice units, setting 
a = 1



 The blocked fields will be denoted by primes.  

 They must begin and end on sites of the blocked lattice     .

 We want the geometric intepretation to survive the blocking.
0 ( )

Λ0

 For example,              must begin on site                       and 
end on site    .x

χ0ab(x) x+ 2ea + 2eb

x+ 2ea + 2eb

x

x+ ea + ebχab(x) χ0ab(x)



 One choice that achieves this is the following:

U 0a(x) = Ua(x)Ua(x+ ea), U 0a(x) = Ua(x+ ea)Ua(x)
d0(x) = d(x), η0(x) = η(x)

ψ0a(x) = ψa(x)Ua(x+ ea) + Ua(x)ψa(x+ ea)

χ0ab(x) =
1

2
[Ua(x+ ea + 2eb)Ub(x+ ea + eb)χab(x)
2

+Ub(x+ 2ea + eb)Ua(x+ ea + eb)χab(x)]
+[Ua(x+ ea + 2eb)χab(x+ eb)Ub(x)
+Ub(x+ 2ea + eb)χab(x+ ea)Ua(x)]

+
1

2
[χab(x+ ea + eb)Ua(x+ eb)Ub(x)
2

+χab(x+ ea + eb)Ub(x+ ea)Ua(x)]



 This choice preserves the Q algebra, namely

QU 0a = ψaUa + Uaψa = ψ0a

Qψ0 ψ ψ + ψ ψ 0Qψa = −ψaψa + ψaψa = 0

QU 0a = 0 Qη0 = d = d0 Qd0 = 0

Qχ0 b = F
0
b

Th  l  l  f              h  l   h    

Qχab = Fab

F 0ab(x) = U
0
b(x+ 2ea)U

0
a(x)− U

0
a(x+ 2eb)U

0
b(x)

 The last result, for           , is the only one that requires any 
significant computation.

Qχ0ab



Future directionsFuture directions
 RSRG calculations:  MCRG

 CTs, finite parts, two loops

 Other 15 SUSYs after RSRG, fine-tuning

 Strong coupling issues


