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The lattice SUSY problem

{Qou Qd} — QO-Z&PM

P , generator of infinitesmal translations.
Broken on lattice.
Only discrete subgroup preserved.

with lattice spacing a

r— T, x=x+aj




Failure of Leibnitz rule

® So why not just change the algebra to
(QurQu) = 2iot, H(T, — 1) = 20,V
® Notice that
Vuo(z) = 5 [¢(z + aft) — ¢(2)] = 0,¢(z) + §0;6(z) + O(a?)
® Problem: essential difference between these ( 9 ,and V,, ) at
finite lattice spacing.
® The Leibnitz rule.
Viuld(@)x(z)] = 2 o(z + afp)x(z + aft) — d(2)x(z)]
= Vuo(x)x(z) + ¢(2)Vux(@) + aV,u(x)Vux(z)

Dondi & Nicolai, 1977




Problems for interacting theory

e SUSY algebra on elementary fields
e Not on polynomials of fields




® Result: O(a) artifact:
5.5 = i[e?Qq + €,Q%, S| = ia(e“ X, — €4 X %)
® But we send a — 0 at the end of our calculations, so who

cares’?
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Counterterm/renormalization in N=1
SYM

® Failure of Leibnitz rule =2 O(a) term

(0,5, (2)0()) = mo(x(@)0(y) + (011 2(2)0(y)) + contact terms
Oﬁ/2 = 2117201172+ % (25 =1)0,S,+ %ZT(?HTN T a%ZXX] T Zj Zg)/20ﬁ)/};
S, =—0pY,Te(FpA), T, =2vTr(Fu,A), x=0u,Tr(FuA)

(0,8 (x)0" (y)) = (mo — %)(X(a:)OR(y» + a - finite + contact terms

St =255, + ZrT,

e Z1/Zs must be determined to test for SUSY

°Fine—tuning just m, agrees w/ expectations

Farchioni et al. 2001
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Wilson fermion N=4 SYM

® How bad is an entirely conventional approach, say using

Wilson fermions?

® We cannot impose SU(4) R symmetry because it is chiral,

and Wilson fermions violate chiral symmetry.

* However, we can impose SO(4) flavor symmetry with the
fermions in 4’s (vector) and the scalars in 6 (antisymmetric

tensor).

* To determine the number of fine-tunings, we write down the
most general renormalizable action consistent with these

constraints.




S = [d*z Tr{— 50 Fuu Fuw + 5N Dpdi + 5 Db D + mEdmdim

HMA(NiAi+ A Ai) +E10m Gm bnn+ K2 GnPmn+y1 (i@, A1 +Xil iz, Aj])
+y2€iji1(Ni[ ik, M) + XilBjk, M) }
+ [ d*z {k3(Tr¢mdm)? + kaTrdmdn Trdmdn}
*We achieved the first three coefficients by rescaling the

fermion and scalar.

*We are left with 8 parameters to fine-tune: hopeless.




® (Goal of modern formulations: reduce the number of fine-
tunings.
e Method: lattice symmetries that restrict the long distance

effective action.




Twisted N=4

® We form the twisted rotation group from an SO(4) subgroup
of the flavor (R symmetry) group SU(4):

SO(4) = diag[SO(4) g x SO(4)g]
)\é — \Ifag

® Then it is natural to expand on the five gamma matrices

a=1,...,5):

U =20+ YaVa + 2 Xab[Vas V0]




® Given the 5d language of the fermions, it is also natural to

package up the bosons in a 5d way:

A, = A, +1B,, A,=A,— 1B,




Q invariant action

S = 352 (QA + Sciosed)
A = [ d*z Tr(XmnFmn + 1[Dm, Dm] — 51d)
Setosed = —% | d*T Tr€mnrpqXpq DrXmn
QAm = Ym, QYm =0, QA,=0

Qan — _?mna QU — d7 Qd =0




Lattice discretization

¢ |n the lattice theory we switch to link variables for the gauge

fields
() = Ao, T () = Ul () = el

® Physically, Ua(z) is a link that goes from

T — T+ aeg,

and 7{,(z) isalink between the same pair of sites but going

in the opposite direction.

Catterall, 0712.2532




lattice.
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® The five €., are basis vectors of the
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® These vectors are also used to construct an important

orthogonal matrix

Oop = b, 0a5:%, a=1,...,5, u=0,...,3

® The bosonic fields of the usual formulation of N=4 SYM are

obtained as

w A,u T i¢u+1 — Oa,uAaa ¢5 + Z¢6 — Oa5~Aa

Unsal, hep-th/0603046




® Under gauge transformations, the link variables transtorm in

the usual way:
Ua () — g(2)Ua(z)g" (z + €a)
27{a(x) — g(x + 6a>aa($)9T<x>

® The transformations of all of our other fields are dictated by

this index related prescription
n(x) = g(@)n(x)g"(z), va(z) = g(x)tba(z)g’(z + e4)

Xab(T) = g(x + €4 + ep)Xap(7)g' (2)




e Next we have to figure out how to discretize the covariant
derivatives.

® For the field strength, the following has the right continuum
limit:

For() = DSVU(2) = Uy (2)Uy (7 + €4) — Up (2)Uy (7 + €p)
® We also introduce derivatives for term 2 of the action:

Do, Dol = DY U () = Uy (2)Ua (1) — U — e0)Ua (2 — €4)

* It is easy to see this has the right continuum limit.




® The lattice version of Q transformations is a fairly

straightforward transcription from the continuum:
QU = Yo, Qg =0, Qaa =0

QXap (1) = Fap(x) =Up(z + €Uy (z) — Ug(z + ep)Up(T)
Qn=d, Qd=0




® Then the Q exact action requires the replacements in the

(44 . »
gauge fermion

XavFap © Fap(@) = DS U (3) = Un (2)Uy (7 + €4) — U (2)Ua(z + €))

N[Da, Da] = nDy Un(x) = n(@) Un(@)Uy(2) — Ua(x — ea)Ua(z — €4)

(=)

SQ—exact — Zx QTr{Xab:Fab + 775@_ Z/{a — %nd}

® The action has a shift invariance (using equations of motion):

n—mn+el




® The Q-closed term is a little more work

Xdeﬁﬁ_)xab = Xde(" ')[Xab(x)HC(' 1) = HC( - )Xab (T — €c)]

= Xde(T — g — €c — €¢)[Xap(®)Uc(z —€.) —Uc(T — e+ eq + €p) Xap(T — €c)]

x_ed_ee_ec

T+ e, + e
Xab
Xde v
7
T — €c




® For the closure of this term, an important property is the

lattice Bianchi identity

Eabcdez_)i_)-fab =0




* If we have a renormalization scheme that preserves the lattice
structure (including the symmetries), then we can enumerate

the terms in the most general long distance effective action.

® There is only one Q-closed operator allowed by the lattice

symmetries and it is already present.

(=)

SQ—closed — _021_4 Za; 6abcaleTr(Xcle’Z_)c_ Xab)




® Q-exact terms must be fermionic, so they take the general

form
QTr[W f(U,U)]

© Taking into account the lattice gauge invariance and S :

symmetry, we have (up to irrelevant operators)

QTr(xapUally) — QTr(Xaplplhy) = QTT(XabD£L+)Mb)




* With 1) we have lots of operators but shift invariance reduces

to a few combinations
QTr[n(z)Ua(z — ea)Ua(r — €4)],  QTr(nd)
QTr[n(z)Ua () ()], QTrn, Q{TrnTr(Usl,)}

\ 4

Q[P U], QTr(nd)

QTr(nUaly) — + Q{TrnTr(UU,)}




® Thus the renormalizable long distance theory is

S=> QTr{oleach(LJr)Ub -+ agnﬁé_)ua — %nd}

+ > 81Q{Tr(nldlU,) — %TrnTr(UaUa)}

(=)

— 021_4 Zx EabcdeTr(XdeZ_)c_ Xab)

® Seems to be 4 fine—tunings. This is far fewer than a naive

approach would yield.




* Act with Q and then rescale the fermions and auxiliary field:
n— )‘77779 Xab — )\xXaba ¢a — )\w%, d— Add
® The action becomes

Tr{ — a1 F apFab — CYMXMXabD[(:)TPb] + 042)\dd2_><(1_)ua - azknkw@g_)%

— A2 — 222 i Xae Do Xab )+ B{ATH(AUL) — AphyTr(miballs)

— IAGTdTe(Uall o) + 5 Ay Ay TenTr (ol o) }




e Use freedom to set

2
Oél)\x>wp — (1, 042)\61 = (X1, Oég)\n)\¢ = (X1, Oé4)\X = 01

e Solution:




® Action is now
T (+) (=) =)
TI'{ — al]-"ab}—ab — OélXabD[a wb] + Oéldpa Z/{a T Oéﬂﬂ% %

_O;_3d2 - %eabcdeXdeZ_)i_)Xab} + ﬂ/{Tr<dMaaa) N Tr<n¢aaa)

—%TrdTr(Z/{aZ/_{a) + %TrnTr(waﬂa)}

° Only 2 fine—tunings:

as; = oy, B —0

Cf. clover termions, also 2 fine-tunings.




One less, one left

* Actually, we showed in our previous work that the moduli

space is not lifted at any order of lattice perturbation theory.

® Here it is crucial that the partition function is a topological

quantity, so that the one-loop result holds to all orders.

* But the 8 term would lift the moduli space, so it is actually
forbidden.

® Thus we are left with a single fine—tuning.




The other 15 SUSYs

® The supercharge also has the KD structure

Q=Q+ QuYa + %Qabhaa%]

® We can work out the other 15 SUSYs using discrete R
invariances of the action (on-shell). For a tixed and b, ¢, etc.

not equal to q, R, :
n— 2¢a7 ”% — %777 wb — —Xab

1
Xab = —Ubs  Xbe — 9 €bcagh Xgh

D, — Da, Y_Da — ﬁa, Dy — ﬁb, Y_Db — Dy,




® This leads to the five SUSYs

QaAb — %5ab777 Qazb = —Xab) Qawb — %5abda + (1 — 5ab>[paapb]

QaXbc — _%Eabcde [Dda D6]7 Qan = O, Qada =0

da — [ﬁaa Da] - Zm?ﬁa[Dma Dm]




® Then there are 10 other discrete R symmetries:
R :

N — 2Xabs Ya = Vb, Yo — —Ve, Yo — %ecabgthh

1
Xab = =57, Xac =7 Xbes  Xbe =7 —Xacs Xgh —7 _Gghabc¢c
2

Da,b — Z_Da,ba Da,b — Da,b7 Dc — Dc> Dc — Dc




Then one gets 10 more supercharges by applying these to Q:

Qab-Ac — %Eabcgthhy Qab-’_élc — 5ac¢b - 5bc¢a7 Qabwc — Ea,bcgh,fgh
QavXed = 1 (0acObd — daadbe)dab + dac[Dys Da) — dbe[Da, Da)

Qv = 2Fap, Qapdap =0
dab = _[5aapa] — [5avpa] + Zm;éa,b[ﬁmﬁpm]

The equation Q,;d,, = 0 requires the EOM.




R, and renormalization

® Returning to
QTr{(XlXabfab + aZni,Z_Daa Da] _ %&nd}
— OCZA"eabcdeXdez_)ch,b + ﬁ{ e }

e Eliminate auxiliary

_ 2
Tr{ — a1 F oo Fap + 522 Da; Dal? — a1Xab Diaty)

—Oég’lﬂ_)awa — %f‘eabcdeXdeﬁchb + ﬁ{ T }




Apply R, to this and demand invariance

In bosonic sector terms are interchanged, requiring

2
(87
a1 — Oé_i’ 6 =0
In fermionic sector terms are interchanged, requiring

a1 = G = O4, 620

Thus R, invariance forces SUSY long distance theory.




® Recall

U, =ets, U, =e Ao

° Implies under R,

Uy = Uy, Uy —TUa, Uy— U, Uy — U

® Thus a simple test of R, restoration, and hence full N=4
SUSY restoration is

<Tr{1/{a(a:)1/{b(a: + eq)Uq(z + eb)Ub(a:)}>
= (Tr{Uy(2)U, (2 + o) U, (x + en)U; () })




L Amazing

® Due to exact symmetries of lattice theory
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Blocking

® The arguments about the long distance effective action only
hold if there is a real space renormalization group which

preserves the lattice structure.

® This means that Q, S, gauge invariance and geometric

interpretation of fields should survive the flow.

® Here we provide an explicit construction.




The original lattice A may be described by

A={a Zi:1 nueuln € 2}
where the e, are the first four of the five (degenerate) basis

vectors of the A} lattice described above.

The blocked lattice will merely be doubled in every

direction:

AN =1{2a Zi:l nue.n € Z*}

From this point forward we will work in lattice units, setting

a=1




The blocked fields will be denoted by primes.
They must begin and end on sites of the blocked lattice A’.
We want the geometric intepretation to survive the blocking.

For example, Xab(Z) must begin on site = + 2e, + 2¢; and
P &

end on site x.

T+ 2e, + 2ep

Xab(x) T+ e, + e / (:13)




® One choice that achieves this is the following:

/

U (2) = Uy(x)Uy(z+eq), U,(x)=Us(T+ eq)Uy(T)
d'(z) = d(z), n'(z)=n(z)
V() = a(@)Ue(x 4 €a) + Ua(2)ha(x + €4)

(z)

1

= 5 Ua(x + eq + 2e4)Up(x + €4 + €5)Xab (@)

+Up(x + 2e4 + ep)U o (T + € + €b)Xab(T)]
FUa(z + eq + 2€p)Xab (@ + €)Up()
+Up(x + 264 + ) Xab(T + €0 )Ua(T)]

/
Xab

1
5 [Xab(z + €a + €0)Ua(z + €)Us ()

+Xab (T + €a + €)Up(7 + €q)Ua ()]




® This choice preserves the Q algebra, namely

Quclz — waua + Ma¢a — ¢ZL

Qw(l} — _wawa T ¢a¢a =0
QU,=0 Qn=d=d Qd =0
QXap = 7:;1)
Foup(2) = Up(x + 2e0)U o (z) — U (2 + 2¢) U (2)
® The last result, for Qy/, , is the only one that requires any

significant computation.




Future directions

® RSRG calculations: MCRG
® CTs, finite parts, two loops
® Other 15 SUSYs after RSRG, fine-tuning

o Strong Coupling i1ssues




