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An explicit example of the Cyclic Leibniz Rule :An explicit example of the Cyclic Leibniz Rule :

which satisfy i) translation invariance, ii) locality and 
iii)Cyclic Leibniz Rule. 
which satisfy i) translation invariance, ii) locality and 
iii)Cyclic Leibniz Rule. 

M.Kato, M.S. & H.So, JHEP 05(2013)089
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 We have proved the No-Go theorem that the Leibniz rule 
cannot be realized on lattice under reasonable assumptions.

 We proposed a lattice SUSY model equipped with the cyclic 
Leibniz rule as a modified Leibniz rule.

 A striking feature of our lattice SUSY model is that the non-
renormalization theorem holds for a finite lattice spacing.

 Our results suggest that the cyclic Leibniz rule grasps im-
portant properties of SUSY.
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renormalization theorem holds for a finite lattice spacing.

 Our results suggest that the cyclic Leibniz rule grasps im-
portant properties of SUSY.



18Remaining tasksRemaining tasks

Lattice 2014 at Columbia University, New York, June 23 - 28, 2014Lattice 2014 at Columbia University, New York, June 23 - 28, 2014

 Extension to higher dimensions

 inclusion of gauge fields

 Nilpotent SUSYs with CLR      full SUSYs

We have to extend our analysis to higher dimensions. 
Especially, we need to find solutions to CLR in more 
than one dimensions.

 Extension to higher dimensions

 inclusion of gauge fields

 Nilpotent SUSYs with CLR      full SUSYs

We have to extend our analysis to higher dimensions. 
Especially, we need to find solutions to CLR in more 
than one dimensions.

Are nilpotent SUSYs extended by CLR enough to 
guarantee full SUSYs ?
Are nilpotent SUSYs extended by CLR enough to 
guarantee full SUSYs ?
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Two Nicolai maps:Two Nicolai maps:

Action:Action:

CLRCLR
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i) translation invariancei) translation invariance
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difference operator:

field product:

difference operator:

field product:

ii) locality

holomorphic representation

ii) locality

holomorphic representation
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difference operator:

field product:

difference operator:

field product:

iii) Leibniz ruleiii) Leibniz rule
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