Effective Polyakov line actions
and their solution at finite chemical potential

Jeff Greensite
San Francisco State University

LATTICE 2014
New York, NY
June 2014

An “indirect” approach to the sign problem

Finite chemical potential \rightarrow straightforward importance sampling is impossible.

Our approach: First map the gauge-matter theory onto a theory with fewer d.o.f. — a Polyakov line action (or “SU(3) spin”) model.

There is still a sign problem that must be faced. I will deal with that in two ways:

Methods

1. mean field theory \((\text{Splittorff and JG})\)
2. complex Langevin equation \((\text{Aarts and James})\)

We will find that these methods sometimes agree perfectly, and sometimes not. I will discuss who is right — or who is wrong — in the latter case.
Effective Polyakov Line Action

Start with lattice gauge theory and integrate out all d.o.f. subject to the constraint that the Polyakov line holonomies are held fixed. In temporal gauge

\[e^{S_P[U_x]} = \int DU_0(x,0) DU_k D\phi \left\{ \prod_x \delta[U_x - U_0(x,0)] \right\} e^{S_L} \]

Avoid dynamical fermion simulations for now, work instead with an SU(3) gauge-Higgs model with a fixed modulus Higgs

\[
S_L = \frac{\beta}{3} \sum_p \text{ReTr}[U(p)] \\
+ \frac{\kappa}{3} \sum_x \sum_{\mu=1}^4 \text{Re} \left[\Omega^\dagger(x) U_{\mu}(x) \Omega(x + \hat{\mu}) \right]
\]
From $\mu = 0$ to finite μ

If we can derive S_P at $\mu = 0$, then (in principle) we also have S_P at $\mu > 0$ by the following identity:

$$S_P^\mu[U_x, U_x^\dagger] = S_P^{\mu=0}\left[e^{N_t \mu} U_x, e^{-N_t \mu} U_x^\dagger\right]$$

which is true to all orders in the strong coupling/hopping parameter expansion.
Let S_L' be the lattice action in temporal gauge with $U_0(x,0)$ fixed to U'_x. It is not so easy to compute

$$\exp\left[S_P[U'_{x}] \right] = \int DU_k D\phi \ e^{S_L'}$$

directly. But the ratio ("relative weights")

$$e^{\Delta S_P} = \frac{\exp[S_P[U'_x]]}{\exp[S_P[U''_x]]}$$

is easily computed as an expectation value

$$\exp[\Delta S_P] = \frac{\int DU_k D\phi \ e^{S_L'}}{\int DU_k D\phi \ e^{S''_L}}$$

$$= \frac{\int DU_k D\phi \ \exp[S_L' - S''_L] e^{S_L'}}{\int DU_k D\phi \ e^{S''_L}}$$

$$= \langle \exp[S_L' - S''_L] \rangle''$$

where $\langle ... \rangle''$ means the VEV in the Boltzmann weight $\propto e^{S''_L}$.
Suppose $U_x(\lambda)$ is some path through configuration space parametrized by λ, and suppose U'_x and U''_x differ by a small change in that parameter, i.e.

\[
U'_x = U_x(\lambda_0 + \frac{1}{2} \Delta \lambda), \quad U''_x = U_x(\lambda_0 - \frac{1}{2} \Delta \lambda)
\]

Then the relative weights method gives us the derivative of the true effective action S_P along the path:

\[
\left(\frac{dS_P}{d\lambda} \right)_{\lambda=\lambda_0} \approx \frac{\Delta S}{\Delta \lambda}
\]

The question is: which derivatives will help us to determine S_P itself?
Fourier components of P_x

We compute derivatives of S_P w.r.t. Fourier components a_k of the Polyakov lines

$$P_x \equiv \frac{1}{N_c} \text{Tr} U_x = \sum_k a_k e^{i k \cdot x}$$

For a pure gauge theory, the part of S_P bilinear in P_x is constrained to have the form

$$S_P = \sum_{xy} P_x P_y^\dagger K(x - y)$$

Then, going over to Fourier modes

$$\frac{1}{\alpha} \frac{1}{L^3} \left(\frac{\partial S_P}{\partial a_k^R} \right)_{a_k=\alpha} = 2 \tilde{K}(k)$$
The red points are the Fourier transform of $K(x - y)$, which gives us the effective action S_P.

\[\beta = 5.7, \kappa = 0 \]

\[2K(k) \]
\[\alpha \rightarrow 0 \]
\[\alpha = 0.01 \]
\[\alpha = 0.02 \]
\[\alpha = 0.03 \]
\[\alpha = 0.04 \]
Correlator comparisons at $\beta = 5.6, 5.7$

$$S_P = \sum_{xy} P_x P_y^\dagger K(x - y)$$

Simulate the effective theory in the usual way, and compare the Polyakov line correlators in the effective theory with the correlators in the underlying pure gauge theory.
Including linear and bilinear center symmetry-breaking terms, it can be shown that at finite chemical potential

\[
S_P = \sum_{xy} P_x P_y^\dagger K(x - y) + \sum_{xy} (P_x P_y Q(x - y, \mu) + P_x^\dagger P_y^\dagger Q(x - y; -\mu)) \\
+ \sum_x \left\{ (d_1 e^{\mu/T} - d_2 e^{-2\mu/T}) P_x + (d_1 e^{-\mu/T} - d_2 e^{2\mu/T}) P_x^\dagger \right\}
\]

where

\[
Q(x - y; \mu) = Q^{(1)}(x - y) e^{-\mu/T} + Q^{(2)}(x - y) e^{2\mu/T} + Q^{(4)}(x - y) e^{-4\mu/T}
\]

To determine \(d_1, d_2, Q(x - y; \mu)\) it is helpful to compute \(dS_P/da_k\) at imaginary chemical potential \(\mu/T = i\theta\).
The underlying lattice gauge-Higgs theory is at $\beta = 5.6$, $\mu = 0$ and $\kappa = 3.6, 3.8, 3.9$ on a $16^3 \times 6$ lattice volume.
Comparison of complex Langevin and mean field methods applied to effective actions at $\mu > 0$
Gauge-Higgs Models I

Gauge-Higgs at $\kappa = 3.8, 3.9$

\[
S_P = \frac{1}{9} \sum_{xy} \text{Tr}[U_x] \text{Tr}[U_y^\dagger] K(x - y) + \frac{1}{3} \sum_x \left\{ (d_1 e^{\mu/T} - d_2 e^{-2\mu/T}) \text{Tr}[U_x] + (d_1 e^{-\mu/T} - d_2 e^{2\mu/T}) \text{Tr}[U_x^\dagger] \right\}
\]

The d_2 dependent terms must originate from “double-winding” terms

\[
d_2 e^{2\mu/T} \text{Tr}[U_x^2] + d_2 e^{-2\mu/T} \text{Tr}[U_x^2]
\]

via the SU(3) identities

\[
\text{Tr}[U_x^2] = \text{Tr}[U_x]^2 - 2\text{Tr}[U_x^\dagger] \quad , \quad \text{Tr}[U_x^{\dagger 2}] = \text{Tr}[U_x^\dagger]^2 - 2\text{Tr}[U_x]
\]
With that motivation, we also consider

A model with a double-winding term

\[
S_P = \frac{1}{9} \sum_{xy} \text{Tr}[U_x] \text{Tr}[U_y^\dagger] K(x - y) \\
+ \frac{1}{3} \sum_x \left\{ d_1 e^{\mu/T} \text{Tr}[U_x] + d_1 e^{-\mu/T} \text{Tr}[U_x^\dagger] \right\} \\
+ \frac{1}{6} \sum_x \left\{ d_2 e^{2\mu/T} \text{Tr}[U_x^2] + d_2 e^{-2\mu/T} \text{Tr}[U_x^{2\dagger}] \right\}
\]
Hopping parameter very small, chemical potential μ very large. In temporal gauge, the lattice action is simply

$$e^{S_L} = \prod_x \det\left[1 + he^{\mu/T} U_0(x, 0) \right]^p \det\left[1 + he^{-\mu/T} U_0^\dagger(x, 0) \right]^p e^{S_{plaq}}$$

$p = 1$ for staggered fermions, $p = 2N_f$ for Wilson fermions. If we know the Polyakov line action for the pure gauge theory S_{pg}^P, then

$$e^{S_P} = \prod_x \det\left[1 + he^{\mu/T} U_x \right]^p \det\left[1 + he^{-\mu/T} U_x^\dagger \right]^p e^{S_{pg}^P}$$
Complex Langevin for the effective actions

We follow the approach of *Aarts and James (2012)*.

Effective Polyakov line models depend only on the eigenvalues $\exp[i\theta_a(x)]$ of U_x. In particular

$$\text{Tr}[U_x] = e^{i\theta_1(x)} + e^{i\theta_2(x)} + e^{-i(\theta_1(x)+\theta_2(x))}$$

Treat $\theta_{1,2}(x)$ as the dynamical variables. Then the Haar integration measure must be incorporated into the action

$$S_P \rightarrow S'_P = S_P + \sum_x \log \left[\sin^2 \left(\frac{\theta_1(x) - \theta_2(x)}{2} \right) \right. \\
\times \sin^2 \left(\frac{2\theta_1(x) + \theta_2(x)}{2} \right) \sin^2 \left(\frac{\theta_1(x) + 2\theta_2(x)}{2} \right) \left. \right]$$

The prescription is then to complexify the angles $\theta_{1,2}(x)$, and solve the complex Langevin equation.
Beware! Logarithms have branch cuts along the negative real axis. Complex Langevin can go wrong if

1. there is a logarithmic term in the action (e.g. the log of a measure or a fermion determinant), and
2. Langevin evolution frequently crosses the branch cut.

To check this, we keep track of the argument of the logarithm

$$\text{Arg} = \sin^2 \left(\frac{\theta_1(\mathbf{x}') - \theta_2(\mathbf{x}')}{2} \right) \sin^2 \left(\frac{2\theta_1(\mathbf{x}') + \theta_2(\mathbf{x}')}{2} \right) \sin^2 \left(\frac{\theta_1(\mathbf{x}') + 2\theta_2(\mathbf{x}')}{} \right)$$

at an arbitrarily chosen lattice site \mathbf{x}'.

The mean field treatment of SU(3) spin models at finite μ is a minor variation of standard mean field theory at zero chemical potential.

Two “magnetizations” are introduced; one for $\text{Tr}U$ and one for $\text{Tr}U^\dagger$. These are determined, as usual, by minimizing the free energy.

For details, see *Splittorff and JG (2012).*
Here are the results for the Polyakov lines and the number density, derived from complex Langevin and mean field ($\beta = 5.6$, $16^3 \times 6$ lattice as before):

It is hard to even detect a difference between the two methods.
Here is a plot of the argument of the logarithm in the complex plane, at a fixed lattice site, at each Langevin time step for $\mu = 5$:

There seems to be no branch-cut crossing problem.
Results II - The Heavy Quark Model

\(p = 1, \; \beta = 5.6, \; h = 10^{-4}, \; 16^3 \times 6 \)

Again, near-perfect agreement:

(a) \(\langle \text{Tr}(U) \rangle \)

(b) \(\langle \text{Tr}(U^\dagger) \rangle \)

(c) density

and no branch-cut crossing problem
Results III - Gauge-Higgs with double winding term

Here we see a phase transition

Great agreement. However, complex Langevin has at least two solutions above the transition, depending on initialization, and only one agrees with mean field.
Which to prefer? It may be determined by the branch-cut crossing problem:

(a) initialize $\text{Tr}U = 3$

(b) initialize $\text{Tr}U = 0$
Results IV - Gauge-Higgs $\kappa = 3.9$, no double winding term

Here there is a very strong disagreement between mean field and complex Langevin at $\mu \geq 2.75$.

But where the results differ, complex Langevin evolution has a branch-cut problem.
(a) $\mu / T = 1.5$

(b) $\mu / T = 2.0$

(c) $\mu / T = 2.75$

(d) $\mu / T = 3.25$
Why is mean field so good?

Perhaps because many spins – not just nearest neighbors – are coupled to a given spin, through the non-local kernel $K(x - y)$.

The basic idea behind mean field theory, i.e. that each spin is effectively coupled to the average spin on the lattice, may be a very good approximation to the true situation.
We have developed a method for determining the effective Polyakov line action.

At $\mu = 0$ there is excellent agreement for the Polyakov line correlators computed in the effective theory and underlying lattice gauge theory.

At $\mu > 0$ we can solve the effective theory by either mean field or complex Langevin methods.

Where the two methods agree, they agree almost perfectly. Where they disagree, complex Langevin has a Møllgård-Splittorff branch cut crossing problem.
Next Steps

1. Determine the quadratic, quasi-local center symmetry-breaking terms. They may be important at finite chemical potential.

2. Go on to dynamical fermions.

Prescription:

Find the effective action via relative weights, solve by mean field.

Given S_P, there may be no need to resort to any further numerical simulation at finite μ.