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Introduction

• The study of the QCD phase diagram has 
become a topic of wide interest  in recent 
years.

• A transition or rapid crossover is 
thought to exist from a low temperature 
hadronic phase to a high temperature 
quark-gluon plasma phase.

• The  determination of the QCD (pseudo)critical line (exact location and nature of the transition) 
is related to many important theoretical and phenomenological issues. 

For example:  

✦   the physics of the early universe (high T and low baryon density region)
✦   the physics of the interior of some compact astrophysical objects (low T and high baryon 
        density region)
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• The QCD (pseudo)critical line can be parameterized by a lowest order Taylor expansion in the 
baryon chemical potential:

T (µB)

Tc(0)
= 1 � 

✓
µB

T (µB)

◆2

•Lattice QCD can be used to locate the QCD (pseudo)critical line. 

BUT the “sign problem”  prevents us to do simulations at real 
nonzero baryon chemical potential. 

• Possible way out:  analytic continuation from an imaginary chemical potential (other 
methods:  reweighting from the ensemble at μB=0, the Taylor expansion method, the canonical 
approach, the density of states method).

• The aim of this work is to give a !rst estimate of the (pseudo)critical line by the 
method of analytic continuation of (2+1) "avor QCD using the HISQ/tree action.
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Lattice setup and numerical simulation

•  Highly improved staggered quark action with tree level improved Symanzik gauge 
action (HISQ/tree)  with 2+1 "avors  as implemented in the MILC code

•  We work on a line of constant physics (LCP) determined (*) by !xing the strange quark 
mass to its physical value ms    at each value of the gauge coupling β.   The light-quark mass 
has been !xed at ml = ms/20 .

     (*) as determined in A. Bazavov et al (HotQCD Collaboration), PRD 85, 054503 (2012))

•  In the present study we assign the same quark chemical potential to the three quark
   species:

(http://www.physics.utah.edu/~detar/milc/).

•  To perform numerical simulations we used the  MILC code suitably modi!ed in order to  
    introduce an imaginary quark chemical  potential μ=μB/3 .

That has been done by multiplying all forward and backward temporal links entering 
the discretized Dirac operator by  exp(iaμ) and exp(−iaμ), respectively.

•  All simulations make use of the rational hybrid Monte Carlo (RHMC) algorithm.
    The length of each RHMC trajectory has been set to 1.0 in molecular dynamics time units.
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•  We have simulated QCD at !nite temperature and imaginary quark chemical potential on 
    lattices of size 163×6, 243×6, 323×8  (to check for !nite size effects and for !nite  cutoff   
    effects)

•  We have typically discarded not less than 1000 trajectories for each run and have collected 
   from 4000 to 8000 trajectories for measurements

•  To determine the (pseudo)critical line we have to estimate the (pseudo)critical coupling

�c(µ
2)

  in correspondence of a given value of the imaginary quark chemical potential.

• We considered the following 
values for the quark chemical 
potential:

μ ¼ μl ¼ μs. All simulations make use of the rational
hybrid Monte Carlo (RHMC) algorithm. The length of
each RHMC trajectory has been set to 1.0 in molecular
dynamics time units.
We have simulated QCD at finite temperature and

imaginary quark chemical potential on lattices of size
163 × 6, 243 × 6, and 323 × 8. In particular, most simu-
lations have been performed on the smallest lattice, while
for μ=ðπTÞ ¼ 0.2iwe have also considered a 243 × 6 lattice
and a 323 × 8 lattice, in order to check for finite size and
for finite cutoff effects. We have typically discarded not
less than 1000 trajectories for each run and have collected
from 4000 to 8000 trajectories for measurements.
The (pseudo)critical line βcðμ2Þ has been determined as

the value for which the disconnected susceptibility of the
light-quark chiral condensate exhibits a peak. To precisely
localize the peak, a Lorentzian fit has been used. For the
243 × 6 and 323 × 8 lattices, the values of the susceptibility
at μ=ðπTÞ ¼ 0 have been taken from Table X and Table XI
of Ref. [1], respectively. For the reader’s convenience,
we summarize in Table I the (pseudo)critical couplings
obtained by the Lorentzian fit for the different values of the
chemical potential and lattice size used in this work. For
illustrative purposes, in Fig. 1 we display our determination
of the (pseudo)critical couplings at μ=ðπTÞ ¼ 0.2i for
163 × 6, 243 × 6, and 323 × 8 lattices. We notice that the
discrepancy in the determination of βc on the 163 × 6 and
the 243 × 6 lattices, which may indicate the presence of
finite size effects, will be strongly suppressed when
considering the ratio of temperatures, TcðμÞ=Tcð0Þ.
To determine the ratio TcðμÞ=Tcð0Þ, we need to set the

lattice spacing. This is done following the discussion in
Appendix B of Ref. [1], where, for this particular value of
ml=ms, the spacing is given in terms of the r1 parameter:

a
r1
ðβÞml¼0.05ms

¼ c0fðβÞ þ c2ð10=βÞf3ðβÞ
1þ d2ð10=βÞf2ðβÞ

; (2)

with c0 ¼ 44:06, c2 ¼ 272102, d2 ¼ 4281, r1 ¼
0.3106ð20Þ fm [31], and

fðβÞ ¼ ðb0ð10=βÞÞ−b1=ð2b
2
0Þ expð−β=ð20b0ÞÞ; (3)

where b0 and b1 are the universal coefficients of the
two-loop beta function.
From aðβÞ we determine, separately for each explored

lattice size, TcðμÞ=Tcð0Þ ¼ aðβcð0ÞÞ=aðβcðμÞÞ. Data for

TABLE I. Summary of the values of the (pseudo)critical
couplings βc for the imaginary quark chemical potentials μ
considered in this work. The data for μ ¼ 0 on the 243 × 6
lattice and on the 323 × 6 lattice have been estimated from the
disconnected chiral susceptibilities reported, respectively, on
Table X and Table XI of Ref. [1].

Lattice μ=ðπTÞ βc TcðμÞ=Tcð0Þ
163 × 6 0. 6.102(8) 1.000

0.15i 6.147(10) 1.045(13)
0.2i 6.171(12) 1.070(15)
0.25i 6.193(14) 1.093(17)

243 × 6 0. 6.148(8) 1.000
0.2i 6.208(5) 1.060(10)

323 × 8 0. 6.392(5) 1.000
0.2i 6.459(9) 1.068(11)
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FIG. 1 (color online). The real part of the disconnected
susceptibility of the light-quark chiral condensate for 163 × 6
and 243 × 6 (full circles and full squares, respectively) and for
323 × 8 (full triangles) at μ=ðπTÞ ¼ 0.2i. Full lines are the fits to
the peaks using a Lorentzian.
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FIG. 2 (color online). TcðμÞ=Tcð0Þ versus ððiμÞ=ðπTÞÞ2 ob-
tained on a 163 × 6 lattice (full circles), on a 243 × 6 lattice (full
square), and on a 323 × 8 lattice (full triangle). For the sake of
readability, the abscissae at ððiμÞ=ðπTÞÞ2 ¼ −0.04 for 243 × 6
and 323 × 8 data have been slightly shifted. The full line is a
linear fit to the data on the 163 × 6 lattice.
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Numerical results

The (pseudo)critical  line  βc(μ2)  has been 
determined as the value for which the 
disconnected susceptibility of the light 
quark chiral condensate exhibits a peak

�q,disc =
n2

f

16N3
�N⌧

n

h
�

TrD�1
q

�2i � hTrD�1
q i2

o

7
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To localize the peak, a 
Lorentzian !t has been used:

a1

1 + a2(� � �c)2
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To localize the peak, a 
Lorentzian !t has been used:

a1

1 + a2(� � �c)2

μ ¼ μl ¼ μs. All simulations make use of the rational
hybrid Monte Carlo (RHMC) algorithm. The length of
each RHMC trajectory has been set to 1.0 in molecular
dynamics time units.
We have simulated QCD at finite temperature and

imaginary quark chemical potential on lattices of size
163 × 6, 243 × 6, and 323 × 8. In particular, most simu-
lations have been performed on the smallest lattice, while
for μ=ðπTÞ ¼ 0.2iwe have also considered a 243 × 6 lattice
and a 323 × 8 lattice, in order to check for finite size and
for finite cutoff effects. We have typically discarded not
less than 1000 trajectories for each run and have collected
from 4000 to 8000 trajectories for measurements.
The (pseudo)critical line βcðμ2Þ has been determined as

the value for which the disconnected susceptibility of the
light-quark chiral condensate exhibits a peak. To precisely
localize the peak, a Lorentzian fit has been used. For the
243 × 6 and 323 × 8 lattices, the values of the susceptibility
at μ=ðπTÞ ¼ 0 have been taken from Table X and Table XI
of Ref. [1], respectively. For the reader’s convenience,
we summarize in Table I the (pseudo)critical couplings
obtained by the Lorentzian fit for the different values of the
chemical potential and lattice size used in this work. For
illustrative purposes, in Fig. 1 we display our determination
of the (pseudo)critical couplings at μ=ðπTÞ ¼ 0.2i for
163 × 6, 243 × 6, and 323 × 8 lattices. We notice that the
discrepancy in the determination of βc on the 163 × 6 and
the 243 × 6 lattices, which may indicate the presence of
finite size effects, will be strongly suppressed when
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FIG. 1 (color online). The real part of the disconnected
susceptibility of the light-quark chiral condensate for 163 × 6
and 243 × 6 (full circles and full squares, respectively) and for
323 × 8 (full triangles) at μ=ðπTÞ ¼ 0.2i. Full lines are the fits to
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FIG. 2 (color online). TcðμÞ=Tcð0Þ versus ððiμÞ=ðπTÞÞ2 ob-
tained on a 163 × 6 lattice (full circles), on a 243 × 6 lattice (full
square), and on a 323 × 8 lattice (full triangle). For the sake of
readability, the abscissae at ððiμÞ=ðπTÞÞ2 ¼ −0.04 for 243 × 6
and 323 × 8 data have been slightly shifted. The full line is a
linear fit to the data on the 163 × 6 lattice.
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In order to check our estimate for the peaks, we also locate the peaks in the  renormalized 
susceptibility 

To set the lattice spacing (*) 

a

r1
(�)ml=0.05ms =

c0f(�) + c2(10/�)f3(�)

1 + d2(10/�)f2(�)

f(�) = (b0(10/�))
�b1/(2b

2
0)

exp(��/(20b0))
coefficients of the 
universal two-loop 
beta function

b0, b1

or

afK(�)ml=0.05ms =
cK0 f(�) + cK2 (10/�)f3(�)

1 + dK
2 (10/�)f2(�)

1

Z2
m

�light

T 2
Zm =

mlight(�)

mlight(�?)
T =

1

a(�)Lt

r1

a(�?)
= 2.37

(*) as discussed in Appendix B of A. Bazavov et al (HotQCD Collaboration), PRD 85, 054503 (2012)

r1 = 0.3106 fm

c0 = 44.06

c2 = 272102

d2 = 4281

r1fK = 0.1738

cK0 = 7.66

cK2 = 32911

dK
2 = 2388
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check even for smaller lattices at   μ/(πT)=0.2i
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μ ¼ μl ¼ μs. All simulations make use of the rational
hybrid Monte Carlo (RHMC) algorithm. The length of
each RHMC trajectory has been set to 1.0 in molecular
dynamics time units.
We have simulated QCD at finite temperature and

imaginary quark chemical potential on lattices of size
163 × 6, 243 × 6, and 323 × 8. In particular, most simu-
lations have been performed on the smallest lattice, while
for μ=ðπTÞ ¼ 0.2iwe have also considered a 243 × 6 lattice
and a 323 × 8 lattice, in order to check for finite size and
for finite cutoff effects. We have typically discarded not
less than 1000 trajectories for each run and have collected
from 4000 to 8000 trajectories for measurements.
The (pseudo)critical line βcðμ2Þ has been determined as

the value for which the disconnected susceptibility of the
light-quark chiral condensate exhibits a peak. To precisely
localize the peak, a Lorentzian fit has been used. For the
243 × 6 and 323 × 8 lattices, the values of the susceptibility
at μ=ðπTÞ ¼ 0 have been taken from Table X and Table XI
of Ref. [1], respectively. For the reader’s convenience,
we summarize in Table I the (pseudo)critical couplings
obtained by the Lorentzian fit for the different values of the
chemical potential and lattice size used in this work. For
illustrative purposes, in Fig. 1 we display our determination
of the (pseudo)critical couplings at μ=ðπTÞ ¼ 0.2i for
163 × 6, 243 × 6, and 323 × 8 lattices. We notice that the
discrepancy in the determination of βc on the 163 × 6 and
the 243 × 6 lattices, which may indicate the presence of
finite size effects, will be strongly suppressed when
considering the ratio of temperatures, TcðμÞ=Tcð0Þ.
To determine the ratio TcðμÞ=Tcð0Þ, we need to set the
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Appendix B of Ref. [1], where, for this particular value of
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0Þ expð−β=ð20b0ÞÞ; (3)

where b0 and b1 are the universal coefficients of the
two-loop beta function.
From aðβÞ we determine, separately for each explored
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TABLE I. Summary of the values of the (pseudo)critical
couplings βc for the imaginary quark chemical potentials μ
considered in this work. The data for μ ¼ 0 on the 243 × 6
lattice and on the 323 × 6 lattice have been estimated from the
disconnected chiral susceptibilities reported, respectively, on
Table X and Table XI of Ref. [1].
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163 × 6 0. 6.102(8) 1.000

0.15i 6.147(10) 1.045(13)
0.2i 6.171(12) 1.070(15)
0.25i 6.193(14) 1.093(17)
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FIG. 1 (color online). The real part of the disconnected
susceptibility of the light-quark chiral condensate for 163 × 6
and 243 × 6 (full circles and full squares, respectively) and for
323 × 8 (full triangles) at μ=ðπTÞ ¼ 0.2i. Full lines are the fits to
the peaks using a Lorentzian.

-0.06 -0.04 -0.02 0

(iµ/(πT))2

0.95

1

1.05

1.1

1.15

T
c(µ

)/
T

c(0
)

FIG. 2 (color online). TcðμÞ=Tcð0Þ versus ððiμÞ=ðπTÞÞ2 ob-
tained on a 163 × 6 lattice (full circles), on a 243 × 6 lattice (full
square), and on a 323 × 8 lattice (full triangle). For the sake of
readability, the abscissae at ððiμÞ=ðπTÞÞ2 ¼ −0.04 for 243 × 6
and 323 × 8 data have been slightly shifted. The full line is a
linear fit to the data on the 163 × 6 lattice.
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The critical temperature vs. imaginary quark chemical 
potential

Tc(µ)

Tc(0)
=

a(�c(0))

a(�c(µ))

a

r1
(�)ml=0.05ms =

c0f(�) + c2(10/�)f3(�)

1 + d2(10/�)f2(�)

f(�) = (b0(10/�))
�b1/(2b

2
0)

exp(��/(20b0))

r1 = 0.3106 fm

c0 = 44.06

c2 = 272102

d2 = 4281
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Linear !t (in μ2) to the data 

Tc(µ)

Tc(0)
= 1 + Rq

✓
iµ

⇡Tc(µ)

◆2

for the 163×6 lattice:

Rq = �1.63(22)

Assuming that linearity still holds on 
the other lattices:

�2/d.o.f. = 0.39

Rq(16
3 ⇥ 6) = �1.63(22) ,  = 0.0183(24)

Rq(24
3 ⇥ 6) = �1.51(25) ,  = 0.0170(28)

Rq(32
3 ⇥ 8) = �1.70(29) ,  = 0.0190(32)

 = �
Rq

(9⇡2)
= 0.0183(24)

curvature of the (pseudo)critical 
line:

 = 0.018(4)

our estimate:
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Estimate of the (pseudo)critical line 
From our estimate of the curvature 
 = 0.018(4)

Tc(µB) = a � bµ2
B

and

a = Tc(0)

b =


Tc(0)

Tc(0) = 154(9)MeV

we get:

b = 0.117(27)GeV�1

to be compared with:

b = 0.139(16)GeV�1
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Summary and Conclusions

•  We have determined the curvature κ of the QCD (pseudo)critical line with 2+1 "avors and 
ml/ms = 1/20 and the HISQ/tree action, with μ=μl=μs 

•  Our determination κ=0.018(4) is larger than previous lattice determinations and seems to 
be in better agreement with the freeze-out curvature based on the standard statistical 
hadronization model. 

•  Possible reasons for the disagreement with previous lattice determinations:

- different methods to avoid the sign problem (analytic continuation in our work)

- different lattice discretizations (HISQ/tree action in our work)

- different setup of quark chemical potentials (μ=μl=μs  in our work)

•  To do:
- other values of μ/(πT) for 243×6 and 323×8 lattices to check linearity in μ2

- extrapolation to the continuum limit

- extension to the physical value of the light to strange mass ratio ml/ms = 1/28
- study the possible effect of varying the strange quark chemical potential


