Multigrid Preconditioning for the Overlap Operator

James Brannick[†], Andreas Frommer^{*}, Karsten Kahl^{*}, Björn Leder^{*}, Matthias Rottmann^{*}, Marcel Schweitzer^{*}, and Artur Strebel^{*}

> Bergische Universität Wuppertal [†]Pennsylvania State University

June 23, 2014

SFB TR55

Motivation

Task: Find solution of $D_N \varphi = \eta$ where

$$D_N = (m_0^N - \frac{m}{2})(1 + \gamma_5 \operatorname{sign}(\gamma_5(D_W - m_0^N)) + m)$$
$$= (m_0^N - \frac{m}{2})(1 + \gamma_5(H_W^{\dagger}H_W)^{-\frac{1}{2}}H_W) + m$$

Challenges:

- i) Evaluating $(H_W^{\dagger}H_W)^{-\frac{1}{2}}x$ is quite costly
- ii) Iteration counts of $\mathcal{O}(1{,}000)$ for $D_N\varphi=\eta$

The Neuberger Overlap Equation

Summary & Outlook

Preconditioning with the Wilson-Dirac operator

Challenge ii): Reduce number of iterations for $D_N \varphi = \eta$

Idea: Preconditioning (what else?)

Summary & Outlook

Preconditioning with the Wilson-Dirac operator Challenge ii): Reduce number of iterations for $D_N \varphi = \eta$

Idea: Preconditioning (what else?)

What is a suitable preconditioner for D_N ?

Preconditioning with the Wilson-Dirac operator Challenge ii): Reduce number of iterations for $D_N \varphi = \eta$

Idea: Preconditioning (what else?)

What is a suitable preconditioner for D_N ?

The kernel operator of D_N , i.e., the Wilson-Dirac operator D_W

$$D_N D_W^{-1} \psi = \eta$$
 with $\varphi = D_W^{-1} \psi$

Computing D_W⁻¹ is done by DD-αAMG [arXiv:1303.1377]
 D_W⁻¹ is cheap

Numerical Results

Why is D_W a good preconditioner for D_N ?

Assuming normality of D_W (i.e., $D_W^{\dagger} D_W = D_W D_W^{\dagger}$) we find

Relation between low modes of D_W and D_N

Let λ be a small eigenvalue of D_W , i.e., $D_W x = \lambda x$ with $|\lambda|$ small. W.l.o.g. assume m = 0. Then

$$D_N x = m_0^N (1 + \gamma_5 \operatorname{sign}(\gamma_5 (D_W - m_0^N))) x$$

= $m_0^N (1 + \gamma_5 ((D_W - m_0^N)^{\dagger} (D_W - m_0^N))^{-\frac{1}{2}}$
 $\cdot (\gamma_5 (D_W - m_0^N))) x$
= $m_0^N x + m_0^N (\lambda - m_0^N) ((\lambda - m_0^N) (\overline{\lambda - m_0^N}))^{-\frac{1}{2}} x$
= $m_0^N (1 + \operatorname{sign}(\lambda - m_0^N)) x$

The Neuberger Overlap Equation

Numerical Results

Summary & Outlook

Deviation from normality of non-chiral discretizations

Quality of preconditioner depends on normality?!

Measure for the deviation of normality

$$\delta_N := ||D_W^{\dagger} D_W - D_W D_W^{\dagger}||_F,$$

where $||X||_F^2 = \sum_{i,j=1}^n x_{ij}^2, \ X \in \mathbb{C}^{n \times n}.$

Theorem

The deviation of normality of D_W is given by

$$\delta_N = 16 \sum_x \sum_{\mu > \nu} \operatorname{Re}(\operatorname{tr}(I - Q_x^{\mu,\nu})),$$

where $Q_x^{\mu,
u}$ is the plaquette defined by

$$Q_x^{\mu,\nu} = U_\nu(x)U_\mu(x+\hat{\nu})U_\nu^H(x+\hat{\mu})U_\mu^H(x) = \bigcup_{x \to \infty}^{+}.$$

Why is D_W a good preconditioner for D_N ?

Why is D_W a good preconditioner for D_N ?

Scanning the Optimal Wilson Preconditioner Mass Shift m_0^W

- ▶ 32^4 lat, 3HEX smeared BMW-c cnfg (unpublished), $m_{\pi} \approx 350$ MeV, 1,024 processes
- ► overlap tol 10⁻⁸, Wilson tol 10⁻², sign fct with explicit deflation and relaxed tol
- optimal $m_0^W \approx 0.16$

Numerical Results

Smearing Study

- ▶ 32^4 lattice, 1,024 processes
- no smearing $\rightarrow \times 5$ speedup
- ▶ 3–6 steps of stout smearing $\rightarrow \times 20-\times 30$ speedup
- cost per iteration for preconditioned method only slightly higher
- preconditioner cost almost negligible

Scaling with the Overlap Mass Shift

- ▶ 32^4 lat, 3HEX smeared BMW-c cnfg
- cnfg generated at approx. $m = 2^{-6} (m_{\pi} \approx 350 \,\text{MeV})$
- smaller masses \rightarrow bigger gain

Influence of the Preconditioner Accuracy

- ▶ 32^4 lat, 3HEX smeared BMW-c cnfg
- $tol = 10^{-2}$ optimal in terms of iteration count
- $tol = 10^{-1}$ optimal in terms of solve time

Solving the inverse square root Challenge i): Evaluating $(H_W^{\dagger}H_W)^{-\frac{1}{2}}x$

Good convergence without explicit calculation of low modes of H_W ?

Idea: Use implicit low mode information via *thick restarts* (cf. [Eiermann, Ernst, Güttel 2011]).

With the Cauchy integral representation

$$f(A) = A^{-\frac{1}{2}} = \int_{\Gamma} g(t)(tI - A)^{-1} dt$$

and a Lanczos decomposition of $H_W^{\dagger}H_W$ we can compute the *k*-th error propagator by numerical quadrature (cf. [Frommer, Güttel, Schweitzer 2014]):

$$e^{(k)}(T) = c \sum_{i=1}^{l} \rho(T, x_i) \frac{\omega_i}{-\beta(1 - x_i) - T(1 + x_i)}$$

Numerical Results

he Neuberger Overlap Equation

Thick Restarts and Explicit Deflation

- $\blacktriangleright~32^4$ lat, 3HEX smeared BMW-c cnfg, $1{,}024$ cores
- ► GMRESR := FGMRES-64bit + GMRES-32bit
- ► GMRESR+DD-αAMG := FGMRES-64bit + FGMRES-32bit + DD-αAMG

Thick Restarts and Explicit Deflation

- ▶ 32^4 lat, no smearing, 1,024 cores
- ▶ one RHS: preconditioning + thick restarts
- many RHS: preconditioning + explicit deflation

Summary & Outlook

Summary:

- Preconditioning overlap equation leads to fewer iterations for the solution of $D_N \varphi = \eta$
- Preconditioner is cheap
- Efficiency of preconditioner improves
 - when approaching normality
 - for smaller masses
- ▶ For few RHS: thick restarts instead of EV computation

Outlook:

- Incoorporate solver into production codes of collaborators
- Further optimization of preconditioner
- Overall performance improvement of the method

All results computed on JUROPA at Jülich Supercomputing Centre (JSC)

•

Partially funded by Deutsche Forschungsgemeinschaft (DFG), Transregional Collaborative Research Centre 55 (SFB TR 55)

All configurations provided by BMW-c

