Complex Langevin dynamics for SU(3) gauge theory with a θ term

Lorenzo Bongiovanni

Swansea University

June 22, 2014

イロト イポト イヨト イヨト 三日

1/21

Index

- Introduction
- Test CL with imaginary θ
- Simulations at real θ and (preliminary) results

Work in collaboration with :

G.Aarts, E.Seiler, D.Sexty, I.Stamatescu.

Pure Gauge Lagrangian of SU(3) :

$$\mathcal{L}_{PG} = -\frac{1}{2}F^{a}_{\mu\nu}F^{a}_{\mu\nu} - i \frac{\theta}{32\pi^{2}}F^{a}_{\mu\nu}\tilde{F}^{a}_{\mu\nu};$$

$$\tilde{F}^{a}_{\mu\nu} = \frac{1}{2} \epsilon_{\mu\nu\rho\sigma} F^{a}_{\rho\sigma} ; \qquad F^{a}_{\mu\nu} = \partial_{\mu} A^{a}_{\nu} - \partial_{\nu} A^{a}_{\mu} + g f^{abc} A^{b}_{\mu} A^{c}_{\nu} ;$$

where :

$$\int d^4x \; \frac{\theta}{32\pi^2} \; F^a_{\mu\nu} \tilde{F}^a_{\mu\nu} \; = \; Q_{top} \; .$$

is the topological charge .

< □ > < @ > < 클 > < 클 > · 클 · ୬ ۹ @ 3/21

Discretization on the Lattice

Topological density and charge on lattice :

$$q_L(n) = -\frac{1}{2^4 \times 32\pi^2} \sum_{\mu\nu\rho\sigma=\pm 1}^{\pm 4} \tilde{\epsilon}_{\mu\nu\rho\sigma} \operatorname{Tr}[\Pi_{\mu\nu}(n)\Pi_{\rho\sigma}(n)]$$

$$Q_L = \sum_n q_L(n)$$

・ロ ・ ・ (日 ・ ・ 三 ・ ・ 三 ・ つ へ ()
4/21

The topological charge density must be corrected by a renormalization factor introduced by the lattice cut-off at the quantum level

$$q_L(n)
ightarrow a^4 Z_L(g^2) q(x) + O(a^6)$$
 .

・ロト ・四ト ・ヨト ・ヨト ・ヨー

5/21

Various methods to take care of Z_L :

- Cooling
- Smearing
- Wilson Flow
- ecc...

The Wilson Flow equation :

$$\dot{V}_{\mu}(x, au) = -g^2 \left[\partial_{x,\mu} \mathcal{S}(V(au))
ight] V_{\mu}(x, au)$$
 $V_{\mu}(x,0) = U_{\mu}(x)$

It has some advantages for our purpose :

- Its process can be accurately controlled since associated to a differential equation,
- it can, in principle, be extended to any gauge group

Since

$$S_{\theta} = i\theta Q_{top}$$

is purely imaginary \Rightarrow SIGN PROBLEM $% \mathcal{S}$.

Some progress have been made, on the Lattice, in studying the phase diagram of the theory using :

- analytical continuation from imaginary heta $(heta= heta_{R}+i heta_{I})$,
- Reweightening , Taylor expansion,
- large N expansion .

The first two, however, are limited by the small value of θ , the last is affected from the corrections for N=3 $\,$.

In principle Complex Langevin Dynamics is a method to access the whole phase diagram .

Real Langevin Dynamics

$$\langle O \rangle = \frac{\int dx \ O(x) \ e^{-S(x)}}{\int dx e^{-S(x)}}$$

• Stochastic process for x : $\frac{dx}{d\tau} = -\frac{\partial S}{\partial x} + \eta(\tau)$

$$\langle \eta(au)
angle = 0 \qquad \langle \eta(au) \eta(au')
angle = 2 \delta(au - au')$$

Averages are calculated along the Langevin trajectory :

$$\langle O \rangle = \frac{1}{T} \int_0^T O(x(\tau)) d\tau$$

• Fokker-Planck equation for probability distribution P(x) : $\frac{dP}{d\tau} = \frac{\partial}{\partial x} \left(\frac{\partial P}{\partial x} + P \frac{\partial S}{\partial x} \right) = -H_{FP}P$

• real action \rightarrow positive eigenvalues: $P(x) \longrightarrow e^{-S(x)}$

Convergence to the correct distribution
 Convergence to the correct distribution

Complex Langevin Dynamics

The fields are complexified :

• real scalar \rightarrow complex scalar: $x \longrightarrow x + iy$

$$\frac{dx}{d\tau} = -Re[\frac{\partial S(z)}{\partial z}]_{z=x+iy} + \eta(\tau)$$
$$\frac{dy}{d\tau} = -Im[\frac{\partial S(z)}{\partial z}]_{z=x+iy}$$

- gauge group elements: $U \in SU(N) \longrightarrow U \in SL(N, C)$ SL(3, C) is non-compact, $U^{\dagger} \neq U^{-1}$, det(U) = 1.
- Analytical continuation of the observables must be consider

$$\langle O \rangle = \frac{1}{Z} \int P_{real}(x, y) O(x + iy) dxdy$$

• The Fokker-Planck prob. *P*(*x*, *y*) is still **real** in the complexified variables

\longrightarrow NO SIGN PROBLEM

However

• Proof of convergence :

$$\int dxdy \ P(x,y) \ O(x+iy) = \int dx \ e^{-S_{comp(x)}} \ O(x)$$

exist only if $P_{real}(x, y)$ decays fast enough.

In principle Complex Langevin Dynamics is a method to access the whole phase diagram .

Very careful with the proofs of correctness.

・ロト ・聞 ト ・ 国 ト ・ 国 ト 三 国

- Compactness of the distribution in the complex plane ,
- agreement of CL with MC methods for $heta_I$,
- smoothness of $\langle O
 angle$ going from $heta_I$ to $heta_R$,

Compactness

Dynamics :

- $\bullet~1$ Complex Langevin update + several Gauge Cooling steps $% A_{\rm c}$.
- GC. is a gauge transformation that locally minimize the Unitarity Norm $UN(n) = \sum_{\mu} Tr(U_{\mu}(n)U_{\mu}^{\dagger}(n))$, $U \in SL(3, C)$.
- We use GC. to keep the distribution compact, as close as possible to the SU(N) manifold .

Test dynamics choosing $\theta = i \theta_I$

- Use Complex Langevin evolution ,
- NO unitarization
- Gauge cooling to stabilize dynamics ,
- without gc. : explores SL(3, C), and eventually breaks down .

 \implies Test of approach

< ロト < 同ト < ヨト < ヨト

Exploring Real θ

Preliminary Results for $N = 6^4$.

So far :

- \bullet bare lattice parameter θ_L , i.e. not renormalization $% \theta_L$, i.e. not renormalization θ_L
- \bullet the lattice version of $F\tilde{F}$ contributes to the eq of motion $% F\tilde{F}$,
- no renormalization of the topological operators .

We look at the behaviour of the plaquette and the topological charge going from θ_I to θ_R .

Smooth behaviour of both observables with $heta\,$.

Behaviour of $\langle Q_{top} \rangle$ with θ

$$Z(\theta) = \int D[A] \ e^{-S_{YM}} \ e^{i\theta Q_{top}} = \exp[-VF(\theta)];$$
$$F(\theta) = \sum_{k} \frac{1}{(2k)!} \ F^{2k}(0) \ \theta^{2k};$$

The distribution of $\langle Q_{top}\rangle$ with $\theta~$ is thus is expected to have the form :

•
$$\langle Q \rangle_{\theta_I} = -V \frac{d}{d\theta_I} F(\theta_I) = -V \chi \theta_I (1 - 2b_2 \theta_I^2 + 3b_4 \theta_I^4 + ...)$$
.
• $\langle Q \rangle_{\theta_R} = i V \frac{d}{d\theta_R} F(\theta_R) = i V \chi \theta_R (1 + 2b_2 \theta_R^2 + 3b_4 \theta_R^4 + ...)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Deviation from linear behaviour of $\langle Q \rangle_{\theta}$ at large θ :

The effect will be enhanced including the renormalization factor $Z(\beta)$.

• We have good control of the CL dynamics at θ_R for values of β high enough ($\beta \gtrsim 5.8$), i.e. satisfaction of the criteria for correctness .

For what concerns the bare theory :

- We showed agreement with some momenta of Q_{top} calculated independently at θ_R and at θ_I .
- We showed the expected behaviour of the χ_{top} with β .

Outlooks :

• Find a way to measure the renormalized topological observables in *SL*(3, *C*).