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Introduction

Pure Gauge Lagrangian of SU(3) :

LPG = −
1

2
F a
µνF

a
µν − i

θ

32π2
F a
µν F̃

a
µν ;

F̃ a
µν =

1

2
ǫµνρσF

a
ρσ ; F a

µν = ∂µA
a
ν − ∂νA

a
µ + g f abcAb

µA
c
ν ;

where :
∫

d4x
θ

32π2
F a
µν F̃

a
µν = Qtop .

is the topological charge .
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Discretization on the Lattice

Topological density and charge on lattice :

qL(n) = −
1

24 × 32π2

±4
∑

µνρσ=±1

ǫ̃µνρσTr [Πµν(n)Πρσ(n)]

QL =
∑

n qL(n)
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Renormalization

The topological charge density must be corrected by a
renormalization factor introduced by the lattice cut-off at the
quantum level

qL(n) → a4ZL(g
2)q(x) + O(a6) .

Various methods to take care of ZL :

Cooling

Smearing

Wilson Flow

ecc...
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Wilson Flow

The Wilson Flow equation :

V̇µ(x , τ) = −g2 [∂x ,µS(V (τ))]Vµ(x , τ)

Vµ(x , 0) = Uµ(x)

It has some advantages for our purpose :

Its process can be accurately controlled since associated to a
differential equation,

it can, in principle, be extended to any gauge group
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Sign Problem

Since
Sθ = iθQtop

is purely imaginary ⇒ SIGN PROBLEM .

Some progress have been made, on the Lattice, in studying the
phase diagram of the theory using :

analytical continuation from imaginary θ (θ = θR + iθI ) ,

Reweightening , Taylor expansion,

large N expansion .

The first two, however, are limited by the small value of θ , the last
is affected from the corrections for N=3 .
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Complex Langevin Dynamics

In principle Complex Langevin Dynamics is a method to access the
whole phase diagram .

8 / 21



Real Langevin Dynamics

〈O〉 =

∫

dx O(x) e−S(x)

∫

dxe−S(x)

Stochastic process for x :
dx

dτ
= −

∂S

∂x
+ η(τ)

〈η(τ)〉 = 0 〈η(τ)η(τ ′)〉 = 2δ(τ − τ ′)

Averages are calculated along the Langevin trajectory :

〈O〉 =
1

T

∫ T

0
O(x(τ)) dτ

Fokker-Planck equation for probability distribution P(x) :
dP

dτ
=

∂

∂x

(

∂P

∂x
+ P

∂S

∂x

)

= −HFPP

real action → positive eigenvalues: P(x) −→ e−S(x)

Convergence to the correct distribution
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Complex Langevin Dynamics

The fields are complexified :

real scalar → complex scalar: x −→ x + iy

dx

dτ
= −Re[

∂S(z)

∂z
]z=x+iy + η(τ)

dy

dτ
= −Im[

∂S(z)

∂z
]z=x+iy

gauge group elements: U ∈ SU(N) −→ U ∈ SL(N,C )
SL(3,C ) is non-compact, U† 6= U−1, det(U) = 1 .

Analytical continuation of the observables must be consider

〈O〉 =
1

Z

∫

Preal (x , y) O(x + iy) dxdy
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The Fokker-Planck prob. P(x , y) is still real in the
complexified variables

−→ NO SIGN PROBLEM

However

Proof of convergence :

∫

dxdy P(x , y) O(x + iy) =

∫

dx e−Scomp(x) O(x)

exist only if Preal (x , y) decays fast enough.
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Complex Langevin

In principle Complex Langevin Dynamics is a method to access the
whole phase diagram .

Very careful with the proofs of correctness.

Compactness of the distribution in the complex plane ,

agreement of CL with MC methods for θI ,

smoothness of 〈O〉 going from θI to θR ,
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Compactness

Dynamics :

1 Complex Langevin update + several Gauge Cooling steps .

GC. is a gauge transformation that locally minimize the
Unitarity Norm UN(n) =

∑

µ Tr(Uµ(n)U
†
µ(n)) ,

U ∈ SL(3,C ) .

We use GC. to keep the distribution compact, as close as
possible to the SU(N) manifold .

Histogram of the distribution of 〈S〉 for θL = 2 :
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Test dynamics choosing θ = i θI
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Use Complex Langevin evolution ,

NO unitarization ,

Gauge cooling to stabilize dynamics ,

without gc. : explores SL(3,C ), and eventually breaks down .

=⇒ Test of approach
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Exploring Real θ

Preliminary Results for N = 64 .

So far :

bare lattice parameter θL , i.e. not renormalization ,

the lattice version of F F̃ contributes to the eq of motion ,

no renormalization of the topological operators .
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Smoothness

We look at the behaviour of the plaquette and the topological
charge going from θI to θR .
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Smooth behaviour of both observables with θ .

16 / 21



Behaviour of 〈Qtop〉 with θ

Z (θ) =

∫

D[A] e−SYM e iθQtop = exp[−VF (θ)] ;

F (θ) =
∑

k

1

(2k)!
F 2k(0) θ2k ;

The distribution of 〈Qtop〉 with θ is thus is expected to have the
form :

〈Q〉θI = − V
d

dθI
F (θI ) = − Vχ θI (1 − 2b2 θ

2
I +3b4 θ4I + ...) .

〈Q〉θR = i V
d

dθR
F (θR) = i Vχ θR(1 + 2b2 θ

2
R+3b4 θ

4
R+ ...) .
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Deviation from linear behaviour of 〈Q〉θ at large θ :
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Drop of the lattice topological susceptibility χL for increasing
values of β
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The effect will be enhanced including the renormalization factor
Z (β) .
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Conclusipons and Outlooks

We have good control of the CL dynamics at θR for values of
β high enough (β & 5.8), i.e. satisfaction of the criteria for
correctness .

For what concerns the bare theory :

We showed agreement with some momenta of Qtop calculated
independently at θR and at θI .

We showed the expected behaviour of the χtop with β .

Outlooks :

Find a way to measure the renormalized topological
observables in SL(3,C ) .
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