
CL

2

QCD - Part 1

M. Bah

‡
, O. Philipsen

†
, C. Pinke

†
and A. Siarra

†

†
Institut für Theoretishe Physik, Goethe Universität, Frankfurt am Main, Germany

‡
Frankfurt Institute for Advaned Studies / Institut für Informatik, Goethe-Universität, Frankfurt am Main, Germany

HGS-HIRe
Helmholtz Graduate School for Hadron and Ion Research

We present the Lattie QCD (LQCD) appliation CL

2

QCD, whih is based on OpenCL and an be run on Graphi

Proessing Units (GPUs) as well as on ommon CPUs. We fous on implementation details as well as performane

results of seleted features. CL

2

QCD has been suessfully applied in LQCD studies at �nite temperature and density

and is available at http://ode.ompeng.uni-frankfurt.de/projets/lhm.

Lattie QCD

• Importane Sampling: Generate gauge on�gurations {Um} using Boltzmann-weight p[U, φ] = exp {−S
e�

[U, φ]}
with Hybrid-Monte-Carlo (HMC) algorithm [Duane et al., 1987℄.

�Observables:

〈K〉 ≈
1

N

∑

m

K[Um] ;

� E�etive ation S
e�

proportional to inverse fermion matrix D−1
.

•Most expensive ingredient to urrent LQCD simulations: fermion matrix inversion

Dφ = ψ ⇒ φ = D−1 ψ .

� Carried out with Krylov subspae methods, e.g. onjugate gradient (CG);

�Matrix-vetor produt Dφ has to be arried out multiple times.

• LQCD funtions loal (depend on a number of nearest neighbours only) ⇒ very well suited for parallelization.

• LQCD operations limited by memory bandwidth. Most expensive part: Derivative part of D, so-alled

/D.

Numerial density ρ =
Number of FLOPs

Number of Bytes to read and write

⇒
�Wilson fermions: ρ(/D) ∼ 0.57

� Staggered fermions: ρ(DKS) ∼ 0.35

⇒ LQCD requires hardware with a high memory-bandwidth to run e�etively

⇒ Meaningful measure for e�ieny is ahieved bandwidth

OpenCL and Graphi Cards

Chip

Peak SP Peak DP Peak BW

{GFLOPS} {GFLOPS} {GB/s}

AMD Radeon HD 5870 Cypress 2720 544 154

AMD Radeon HD 7970 Tahiti 3789 947 264

AMD FirePro S10000 Tahiti 2×3410 2×850 2×240

NVIDIA GeFore GTX 680 Kepler 3090 258 192

NVIDIA Tesla K40 Kepler 4290 1430 288

AMD Opteron 6172 Magny-Cours 202 101 43

Intel Xeon E5-2690 Sandy Bridge EP 371 186 51

Table 1: Theoretial peak performane of urrent GPUs and CPUs. SP and DP denote

single and double preision, respetively. BW denotes bandwidth.

LOEWE -CSC

GPU nodes 786

GPUs/node 1 × AMD 5870

CPUs/node 2 × Opteron 6172

SANAM

GPU nodes 304

GPUs/node 2 × AMD S10000

CPUs/node 2 × Xeon E5-2650

Table 2: AMD based lusters where CL

2

QCD

was used for prodution runs.

•Graphis Proessing Units (GPUs) surpass CPUs in peak performane as well as in memory bandwidth (see Table 1);

•GPUs an be used for general purposes;

•Many omputing lusters are aelerated by GPUs, for example LOEWE -CSC in Frankfurt [Bah et al., 2011℄ or

SANAM [Kalher et al., 2013℄ (see Table 2);

•GPUs onstitute inherently parallel arhiteture;

• LQCD appliations are always memory-bandwidth limited ⇒ they an bene�t from GPUs tremendously;

• In reent years the usage of GPUs in LQCD simulations has inreased, mainly relying on CUDA as omputing language,

appliable to NVIDIA hardware only

1

.

OpenCL Devie Compute Unit Proessing element Loal memory Private memory Work � group Work item

CUDA GPU Multiproessor Salar ore Shared (per-blok) memory Loal memory Blok Thread

Table 3: OpenCL and CUDA terminology.

•Hardware independent approah to GPU appliations given by Open Computing Language (OpenCL)

2

.

•OpenCL is an open standard to perform alulations on heterogeneous omputing platforms ⇒ GPUs and CPUs an

be used together within the same framework, taking advantage of their synergy and resulting in a high portability of

the software. First attempts to do this in LQCD in [Philipsen et al., 2011℄.

• See Table 3 for a omparison of CUDA and OpenCL terminology.

Figure 1: OpenCL onept

•An OpenCL appliation onsists of a host program oordinat-

ing the exeution of the atual funtions, alled kernels, on

omputing devies (Figure 1). A devie an for instane be a

GPU or a CPU.

•Although the hardware has di�erent harateristis, GPU pro-

gramming shares many similarities with parallel programming

of CPUs. A omputing devie onsists of multiple ompute

units. When a kernel is exeuted on a omputing devie, atu-

ally a huge number of kernel instanes is launhed. They are

mapped onto work-groups onsisting of work-items. The work-

items are guaranteed to be exeuted onurrently only on the

proessing elements of the ompute unit (and share proessor

resoures on the devie).

• Compared to the main memory of traditional omputing systems, on-board memory apaities of GPUs are low, though

inreasing more and more

3

. This onstitutes a lear boundary for simulation setups. Also, ommuniation between

host system and GPU is slow, limiting workarounds in ase the available GPU memory is exeeded. Nevertheless, as

�nite T studies are usually arried out on moderate lattie sizes (in partiular Nσ ≫ Nτ), this is less problemati for

the use ases CL

2

QCD was developed for.

1

See https://developer.nvidia.om/uda-zone and the QUDA library: https://github.om/lattie/quda .

2

See https://www.khronos.org/openl .

3

For instane, the GPUs given in Table 2 have on-board memory apaities of 1 GB and 3 GB, respetively.

CL

2

QCD Features

• First OpenCL appliation for Wilson fermions [Bah et al., 2013℄, fousing on Twisted Mass Wilson fermions

[Frezzotti and Rossi, 2004; Shindler, 2008℄ (automati O(a) improvement at maximal twist);

• Staggered fermions in standard formulation;

• Improved gauge ations;

• Standard inversion and integration algorithms;

• ILDG-ompatible IO

4

;

•RANLUX Pseudo-Random Number Generator (PRNG)

5

[Lüsher, 1994℄.

Exeutables:

•HMC: Generation of gauge �eld on�gurations for Nf = 2 (Twisted Mass) Wilson type fermions using the HMC

algorithm [Duane et al., 1987℄;

•RHMC: Generation of gauge �eld on�gurations for staggered type fermions using the Rational HMC algorithm

[Clark and Kennedy, 2007℄;

• SU3HEATBATH: Generation of gauge �eld on�gurations for SU(3) Pure Gauge Theory using the heatbath

algorithm [Cabibbo and Marinari, 1982; Creutz, 1980; Kennedy and Pendleton, 1985℄;

• INVERTER: Measurements of fermioni observables on given gauge �eld on�gurations;

•GAUGEOBSERVABLES: Measurements of gauge observables on given gauge �eld on�gurations.

4

Via LIME, see http://usqd.jlab.org/usqd-dos/-lime .

5

See https://bitbuket.org/ivarun/ranluxl .

CL

2

QCD Code Struture

•Host program of CL

2

QCD set up in C++ ⇒ allows for independent program parts using C++ funtionalities and

naturally provides extension apabilities.

•Cross-platform ompilation provided using CMake framework

6

.

•The ode struture of CL2QCD is displayed in Figure 2. Two main omponents:

� The physis pakage, representing high-level funtionality;

� The hardware pakage, representing low-level funtionality.

The meta pakage ollets what is needed to ontrol the program exeution and IO operations.

•All parts of the simulation ode are arried out using OpenCL kernels in double preision.

•OpenCL kernels soure �les:

� Contain onrete implementations of basi LQCD funtionality like matrix-matrix multipliation, but also more

omplex operations like the

/D or the (R)HMC fore alulation;

�OpenCL language based on C99;

� Compilation and exeution is handled within the hardware pakage;

�Kernels in a ertain way detahed from host part (host an ontinue independently of kernel exeution status)

⇒ Clear separation into administrative part (host) and performane-ritial alulations (kernels).

6

See http://www.make.org .

M

E
T
A

Parameters

Utilities

ILDG IO

P
H
Y
S
I
C
S

Algorithms

Implementation of algorithms using

Lattices and Fermionmatrix objects

• HMC

• RHMC

• HEATBATH

• SOLVER

• INTEGRATOR

• METROPOLIS

Lattices

Representations of lattice fields

Operations on fields

• GAUGEFIELD

• FERMIONFIELD

• GAUGEMOMENTA

Fermionmatrix

Matrix operations on fermion fields

• WILSON

• TWISTED MASS

• STAGGERED

Observables

• GAUGEOBSERVABLES

• 〈ψ̄ψ〉

• CORRELATORS

PRNG

• RANLUX

Noise Sources

• POINT • Z2

• GAUSSIAN • Z4

H
A
R
D
W

A
R
E

Buffers

Representation of OpenCL buffer

Device-dependent: AOS or SOA

• SU3

• SU3VEC

• SPINOR

• GAUGEMOMENTA

• · · ·

Code

Execution of specific OpenCL kernels

Meta information about kernels

• SPINOR ALGEBRA

• FERMIONS

• MOLECULAR DYNAMICS

• GAUGEFIELD

• · · ·

OpenCL Compiler

Compilation of OpenCL kernels
Reread functionality

Device

Represenation of specific device

Provides Code modules

System

Repr. of current architecture
Provides available OpenCL devices

OpenCL Kernels

Code for execution on device

Compiled at runtime

• PLAQUETTE

• SAXPY

• DSLASH

• GAMMA5

• · · ·

Figure 2: CL

2

QCD ode struture (illustrative). Pakages and substrutures are realized as namespaes.

•The physis pakage provides representations of the physial objets like gauge �elds or fermion �elds. In addition,

the orresponding lasses provide funtionality to operate on the respetive �eld type. Moreover, algebrai operations

like saxpy are provided. Similarly, the various fermion matries are provided. This allows for the implementation of

high-level funtionality without knowing details of the underlying OpenCL struture. For example, the (R)HMC or

the alulation of observables are ompletely independent of system or kernel spei�s. In other words, the physis

pakage works as an interfae between algorithmi logi and the atual OpenCL implementation.

• In turn, the hardware pakage is destined to handle the ompilation and exeution of the OpenCL kernels. The

hardware::System lass represents the arhiteture available at runtime. The latter an provide multiple om-

puting devies (i.e. CPUs and/or GPUs), whih are represented by hardware::Devie objets and initialized

based on runtime parameters. Kernels are organized topi-wise within the hardware::ode namespae, e.g. in

the hardware::ode::Fermions lass. These lasses take over the alling logi of the kernels and provide meta

informations like the number of FLOPs a spei� kernels performs. The hardware::Devie lass has eah of the

hardware::ode lasses as singleton objets, i.e. they are initialized the �rst time they are needed. During this

proess, the OpenCL kernels are ompiled.

•Memory management is performed by the hardware::buffers lasses, whih also ensure that memory objets are

treated in a Struture of arrays (SOA) fashion on GPUs, whih on these is ruial for optimal memory aess as

opposed to Array of strutures (AOS).

•OpenCL kernels are ompiled at runtime using the OpenCL ompiler lass. In OpenCL, this is mandatory as the

spei� arhiteture is not known a priori. On the one hand, this introdues an overhead, but on the other hand

allows to pass runtime parameters (like the lattie size) as ompile time parameters to the kernels, saving arguments

and enabling ompiler optimization for spei� parameter sets. In addition, the ompiled kernel ode is saved for

later reuse, e.g. when resuming an HMC hain with the same parameters on the same arhiteture. This redues

the initialization time. Kernel ode is ommon to GPUs and CPUs, devie spei�s are inorporated using maros.

