
Coulomb and Landau Gauge Fixing in GPUs
using CUDA and MILC

Nuno Cardoso

NCSA, University of Illinois

Lattice 2014

Introduction

MILC and QUDA library does not have gauge fixing on GPUs

When using MILC + QUDA: lot of computational time can be waisted on CPU
gauge fixing

Main goal was to create a library to be called from MILC code with support for
single and multi-GPUs to perform gauge fixing

N. Cardoso Gauge Fixing in GPUs using CUDA and MILC 1/15

Coulomb and Landau Gauge Fixing

On the lattice, the Coulomb/Landau gauge is defined by maximising the
functional

FU [g] =
1

4NcV

∑
x

∑
µ

Re
[
Tr
(
g(x)Uµ(x)g†(x + µ̂)

)]
with Nc the dimension of the gauge group and V the lattice volume.

On the gauge fixing process, the quality of the gauge fixing is measured by

θ =
1

NcV

∑
x

Tr
[
∆(x)∆†(x)

]
where

∆(x) =
∑
ν

[Uν(x − aν̂)− Uν(x)− h.c.− trace]

is the lattice version of ∂µAµ = 0.
Two well known methods to fix the gauge:

Relaxation algorithm: overrelaxation
Steepest descent method with FFTs

N. Cardoso Gauge Fixing in GPUs using CUDA and MILC 2/15

Coulomb and Landau Gauge Fixing

Overrelaxation

the relaxation algorithm aims to optimize the value of FU [g] locally, i.e.,
searching the maximum of

f g (x) = ReTr [g(x)K(x)]

for all x, where

K(x) =
∑
µ

(
Uµ(x)g†(x + µ̂) + U†µ(x − µ̂)g†(x − µ̂)

)
the local solution is then given by

g(x) =
K†(x)√
detK†(x)

in the case of the gauge group SU(2).

for N > 2 one iteratively operates in the (N(N − 1)/2) SU(2) subgroups.

the overrelaxation algorithm replaces the gauge transformation g(x) by gω(x)
with ω ∈ [1, 2[in each step of the iteration.

N. Cardoso Gauge Fixing in GPUs using CUDA and MILC 3/15

Coulomb and Landau Gauge Fixing in GPUs using CUDA and MILC
Overrelaxation

Overrelaxation
calculate Fg [U] and θ (optional)

2: while θ ≥ ε do
for site parity = even, odd do

4: for all x with same parity do
for all SU(2) subgroups do

6: local optimization, find g(x) ∈ SU(2)
which is function of Uµ(x) and Uµ(x − µ̂)

8: for all µ do
apply g(x) to Uµ(x) and Uµ(x − µ̂)

10: end for
end for

12: end for
end for

14: calculate Fg [U] and θ
end while

N. Cardoso Gauge Fixing in GPUs using CUDA and MILC 4/15

Coulomb and Landau Gauge Fixing in GPUs using CUDA and MILC
Overrelaxation

Overrelaxation
calculate Fg [U] and θ (optional)

2: while θ ≥ ε do
for site parity = even, odd do

4: for all x with same parity do
for all SU(2) subgroups do

6: local optimization, find g(x) ∈ SU(2)
which is function of Uµ(x) and Uµ(x − µ̂)

8: for all µ do
apply g(x) to Uµ(x) and Uµ(x − µ̂)

10: end for
end for

12: end for
end for

14: calculate Fg [U] and θ
end while

to update a single lattice site: one needs to load 8 gauge
links

Uµ(x)
Uµ(x − µ̂)

one thread per lattice site → high memory traffic and local
memory usage!
solution: 8 threads per lattice site,
Mario Schröck and Hannes Vogt, Comput.Phys.Commun.
184, 1907-1919, 2013.

load gauge links to registers whenever possible
exchange data between threads through shared memory∑

µ → can be done using:
CUDA Atomic functions
without CUDA Atomic functions (requires more shared
memory)

N. Cardoso Gauge Fixing in GPUs using CUDA and MILC 4/15

Coulomb and Landau Gauge Fixing in GPUs using CUDA and MILC
Overrelaxation

Overrelaxation implementation using multi-GPUs

CUDA + MILC + MPI

2D Lattice Example:

Gauge array split by even and odd lattice
sites

Pre calculate interior lattice array index
sites and lattice array index at the
boundaries for each dimension partitioned

Exchange face links

Measure gauge fixing quality
Main loop to perform gauge fixing,

Loop over all lattice sites by even and
odd links separately

update top/bottom and right/left face
links
pack top (same parity) and ghost
(opposite parity) face links
exchange top face (same parity) and
ghost (opposite parity) links
exchange ghost links
update interior links
unpack received links

reunitarize gauge at X steps
measure gauge fixing quality

Uµ(s)

N. Cardoso Gauge Fixing in GPUs using CUDA and MILC 5/15

Coulomb and Landau Gauge Fixing in GPUs using CUDA and MILC
Overrelaxation

Overrelaxation implementation using multi-GPUs

CUDA + MILC + MPI

2D Lattice Example:

Gauge array split by even and odd lattice
sites

Pre calculate interior lattice array index
sites and lattice array index at the
boundaries for each dimension partitioned

Exchange face links

Measure gauge fixing quality
Main loop to perform gauge fixing,

Loop over all lattice sites by even and
odd links separately

update top/bottom and right/left face
links
pack top (same parity) and ghost
(opposite parity) face links
exchange top face (same parity) and
ghost (opposite parity) links
exchange ghost links
update interior links
unpack received links

reunitarize gauge at X steps
measure gauge fixing quality

N. Cardoso Gauge Fixing in GPUs using CUDA and MILC 5/15

Coulomb and Landau Gauge Fixing in GPUs using CUDA and MILC
Overrelaxation

Overrelaxation implementation using multi-GPUs

CUDA + MILC + MPI

2D Lattice Example:

Gauge array split by even and odd lattice
sites

Pre calculate interior lattice array index
sites and lattice array index at the
boundaries for each dimension partitioned

Exchange face links

Measure gauge fixing quality
Main loop to perform gauge fixing,

Loop over all lattice sites by even and
odd links separately

update top/bottom and right/left face
links
pack top (same parity) and ghost
(opposite parity) face links
exchange top face (same parity) and
ghost (opposite parity) links
exchange ghost links
update interior links
unpack received links

reunitarize gauge at X steps
measure gauge fixing quality

N. Cardoso Gauge Fixing in GPUs using CUDA and MILC 5/15

Coulomb and Landau Gauge Fixing in GPUs using CUDA and MILC
Steepest descent method with FFTs

Steepest descent method with FFTs

The naive steepest descent method chooses at each step of the iterative procedure

g(x) = exp

[
α

2

(∑
ν

∆−ν
[
Uν(x)− U†ν(x)

]
− trace

)]

However, when it is applied to larger lattices, this method faces the problem of
critical slowing down.

This problem can be attenuated by Fourier acceleration, Davies et. al,
doi:10.1103/PhysRevD.37.1581, 1987.

At each iteration one chooses

g(x) = exp

[
F̂−1 α

2
p2
maxa2

p2a2 F̂

(∑
ν

∆−ν
[
Uν(x)− U†ν(x)

]
− trace

)]

with
∆−ν (Uµ(x)) = Uµ(x − aν̂)− Uµ(x)

p2 are the eigenvalues of
(
−∂2), a is the lattice spacing and F̂ represents a fast

Fourier transform (FFT).

For the parameter α, the optimal value is 0.08.

For numerical purposes, it is enough to expand to first order the exponential,
followed by a reunitarization.

N. Cardoso Gauge Fixing in GPUs using CUDA and MILC 6/15

Coulomb and Landau Gauge Fixing in GPUs using CUDA and MILC
Steepest descent method with FFTs

Steepest descent method with FFTs
calculate ∆(x), Fg [U] and θ

2: while θ ≥ ε do
for all elements of ∆(x) matrix do

4: apply FFT forward
apply p2

max/p2

6: apply FFT backward
normalize

8: end for
for all x do

10: obtain g(x) from ∆(x) and reunitarize
end for

12: for all x do
for all µ do

14: Uµ(x)→ g(x)Uµ(x)g†(x + µ̂)
end for

16: end for
calculate ∆(x), Fg [U] and θ

18: end while

N. Cardoso Gauge Fixing in GPUs using CUDA and MILC 7/15

Coulomb and Landau Gauge Fixing in GPUs using CUDA and MILC
Steepest descent method with FFTs

Steepest descent method with FFTs
calculate ∆(x), Fg [U] and θ

2: while θ ≥ ε do
for all elements of ∆(x) matrix do

4: apply FFT forward
apply p2

max/p2

6: apply FFT backward
normalize

8: end for
for all x do

10: obtain g(x) from ∆(x) and reunitarize
end for

12: for all x do
for all µ do

14: Uµ(x)→ g(x)Uµ(x)g†(x + µ̂)
end for

16: end for
calculate ∆(x), Fg [U] and θ

18: end while

FFT on GPUs: CUDA CUFFT library
support for 1D, 2D and 3D FFTs;

there is no direct support for 4D FFTs
solution:

4×1D FFTs: necessary reorder data 7
times per ∆(x) element
3D+1D FFTs: necessary reorder data 2
times per ∆(x) element
2×2D FFTs: necessary reorder data 2
times per ∆(x) element

cufftPlanMany() allows the execution of
multiple independent FFTs in parallel.
best choice for our 4D problem: 2D + 2D
FFTs.
N. Cardoso et al., Comput.Phys.Commun.
184, 124-129, 2013. In a Tesla C2075 and
324 lattice volume

2×2D FFTs is 39-43% faster than 4×1D
FFTs
2×2D FFTs is 7-8% faster than 3D+1D
FFTs.

N. Cardoso Gauge Fixing in GPUs using CUDA and MILC 7/15

Coulomb and Landau Gauge Fixing in GPUs using CUDA and MILC
Steepest descent method with FFTs

Steepest descent method with FFTs
calculate ∆(x), Fg [U] and θ

2: while θ ≥ ε do
for all elements of ∆(x) matrix do

4: apply FFT forward
apply p2

max/p2

6: apply FFT backward
normalize

8: end for
for all x do

10: obtain g(x) from ∆(x) and reunitarize
end for

12: for all x do
for all µ do

14: Uµ(x)→ g(x)Uµ(x)g†(x + µ̂)
end for

16: end for
calculate ∆(x), Fg [U] and θ

18: end while

Only single GPU implementation

Too heavy for multi GPU due to the number of FFTs per
gauge fixing step

One solution to avoid using FFTs is to use a multigrid
implementation of the Fourier acceleration method
Cucchieri et. al, Phys.Rev.D57, arXiv:hep-lat/9711047,
1998.
not implemented here!

N. Cardoso Gauge Fixing in GPUs using CUDA and MILC 7/15

Performance results

Performance tests done in Blue Waters
GPUs Tesla K20X with ECC code enabled by default
one GPU per node

Performance results only for SU(3)
Overrelaxation:

single and multi-GPU
Coulomb and Landau
with/without using AtomicAdd()
with/without using texture memory
full SU(3) matrix and 12 real parameters memory storage

Steepest descent method with FFTs:
only single GPU
Coulomb and Landau
with/without using texture memory
full SU(3) matrix and 12 real parameters memory storage

N. Cardoso Gauge Fixing in GPUs using CUDA and MILC 8/15

Results: Landau gauge fixing with Overrelaxation

Single GPU performance Multi-GPU performance, 324 lattice volume

AtomicAdd means using CUDA atomicAdd function
SP/DP means single/double precision
Tex means using Texture memory
12/18 parameters are the number of SU(3) real parameters used to store gauge array in
memory
Also supports 8 real parameters, no performance results done yet.

N. Cardoso Gauge Fixing in GPUs using CUDA and MILC 9/15

Results: Landau gauge fixing with Overrelaxation

GPU Speedup over CPU MILC code in Single node

GPU code: includes MILC ↔ GPU gauge
field copy and reorder

GPU code: only gauge fixing in GPU

The performance impact in converting MILC format to/from GPU format as well as
the copies depends on the number of the gauge fixing steps.
In this example the number of gage fixing iterations was around 170.

N. Cardoso Gauge Fixing in GPUs using CUDA and MILC 10/15

Results: Landau gauge fixing with Overrelaxation

Weak Scaling

Fixed node local lattice volume to 324

Lattice volume: 323 × Nt with Nt = 32× (Number of nodes)

Single precision Double precision

N. Cardoso Gauge Fixing in GPUs using CUDA and MILC 11/15

Results: Landau gauge fixing with Overrelaxation

Weak Scaling

Fixed node local lattice volume to 324

Lattice volume: 323 × Nt with Nt = 32× (Number of nodes)

Single precision

6+1417

USING CUDA Atomic
operations → 1.1− 1.4×

Double precision

6+4715

NOT using CUDA Atomic
operations → 2− 2.4×

N. Cardoso Gauge Fixing in GPUs using CUDA and MILC 11/15

Results: Coulomb gauge fixing with Overrelaxation

Single GPU performance Multi-GPU performance, 324 lattice volume

Changed lattice partition MILC order to T → Z → Y → X .

N. Cardoso Gauge Fixing in GPUs using CUDA and MILC 12/15

Results: GF with Steepest Descent algorithm with Fourier acceleration

Landau gauge fixing Coulomb gauge fixing

Adapted previous code to support SU(N) with N>2, added Coulomb gauge fixing and
even/odd lattice site order

N. Cardoso, P. J. Silva, P. Bicudo, O. Oliveira, Landau Gauge Fixing on GPUs,
Comput.Phys.Commun. 184 (2013) 124-129. arXiv:1206.0675,
doi:10.1016/j.cpc.2012.09.007

N. Cardoso Gauge Fixing in GPUs using CUDA and MILC 13/15

Conclusion

Coulomb and Landau gauge fixing implemented on GPUs

Big speedup using GPUs to perform gauge fixing

Overrelaxation implemented in single and multi-GPUs

Steepest descent algorithm with Fourier acceleration converges faster than
overrelaxation algorithm, in general
However, steepest descent algorithm with Fourier acceleration requires 1.5× more
memory.

Steepest descent algorithm with Fourier acceleration not implemented in
multi-GPU

needs multi-GPU 4D FFTs
needs much more data exchange between GPUs
needs to perform 2k FFTs per step, with k the number of ∆(x) elements
one solution to avoid using FFTs is to use a multigrid implementation of the Fourier
acceleration method
Cucchieri et. al, Phys.Rev.D57, arXiv:hep-lat/9711047, 1998.
not implemented here!

this library supports:
SU(N) with N>2, maximum N supported is limited by hardware resources
SU(3) parameterization with 8 and 12 real numbers

N. Cardoso Gauge Fixing in GPUs using CUDA and MILC 14/15

Thanks

N. Cardoso Gauge Fixing in GPUs using CUDA and MILC 15/15

Results
Landau gauge fixing: GPU performance, single node

Using MILC stop criterium 10−7.
In this example, the steepest descent method with FFTs only needed around 17
iterations to converged and the overrelaxation around 140-180 iterations.

Speed up of the GPU Landau gauge fixing with the steepest descent method with
FFTs over GPU Landau gauge fixing with overrelaxation. Right figure includes
the time to copy and reorder from MILC format to GPU format, the left figure
does not include this time.

N. Cardoso Gauge Fixing in GPUs using CUDA and MILC 16/15

Results: Example

Gauge fixing quality results example

MILC input file for su3_ora:

prompt 0
nx 32
ny 32
nz 32
nt 32
(...)
trajecs 5
traj_between_meas 1
beta 6.0
steps_per_trajectory 4
qhb_steps 4
(...)

N. Cardoso Gauge Fixing in GPUs using CUDA and MILC 17/15

Results: Example

Landau gauge fixing quality results

θ
10−15

10−12

10−9

10−6

10−3

1

1000

Number of iterations
0 2500 5000 7500 104 1.25×104

θ

10−15

10−12

10−9

10−6

10−3

1

1000

Number of iterations
0 250 500 750 1000125015001750

Steepest Descent with FFTs
Overrelaxation

F g

0

0.2

0.4

0.6

0.8

1

Number of iterations
0 2500 5000 7500 104 1.25×104 1.5×104

F g

0

0.2

0.4

0.6

0.8

1

Number of iterations
0 5 10 15 20

Number of iterations to achieve a gauge fixing quality of θ < 10−15. In these results,
θ parameter was used as stop criterium instead of the default MILC criterium.

N. Cardoso Gauge Fixing in GPUs using CUDA and MILC 17/15

Results: Example

Coulomb gauge fixing quality results

θ
10−15

10−12

10−9

10−6

10−3

1

1000

Number of iterations
0 2000 4000 6000 8000

θ

10−6

10−3

1

Number of iterations
0 500 1000 1500 2000 2500

Steepest Descent with FFTs
Overrelaxation

F g

0

0.2

0.4

0.6

0.8

1

Number of iterations
0 2000 4000 6000 8000

F g

0

0.2

0.4

0.6

0.8

1

Number of iterations
0 5 10 15 20 25 30

Number of iterations to achieve a gauge fixing quality of θ < 10−15. In these results,
θ parameter was used as stop criterium instead of the default MILC criterium.

N. Cardoso Gauge Fixing in GPUs using CUDA and MILC 17/15

	Introduction
	Gauge Fixing in GPUs
	Results
	Conclusion
	Appendix

