Volume Effects on the Extraction of Form Factors at Zero Momentum

Brian C. Tiburzi

The City College of New York

RIKEN BNL Research Center
Volume Effects at Zero Momentum

I. Rome Method & extension to radii
II. The method in a finite volume
III. Addressing finite volume effects

B.C. Tiburzi, arXiv:1407.????
The Rome Method

On the extraction of zero momentum form factors on the lattice

G.M. de Divitiis, R. Petronzio, N. Tantalo (Rome U., Tor Vergata & INFN, Rome2)

- Momentum extrapolation required for many phenomenological applications

\[
C(p_i) = p_i F(p^2)
\]

\[
\frac{\partial C(\vec{p})}{\partial p_i} \bigg|_{\vec{p}=0}
\]

Form Factor

\[
C(p_i)/p_i
\]

Extrapolate

\[
F(0) = \int DU \mathcal{P}[U] C[0, U]
\]

Taylor Series Coefficient

\[
C[\vec{p}, U] = C^{(0)}[U] + p_i C^{(1)}_i [U] + \cdots
\]

Zero Momentum

\[
F(0) = \int DU \mathcal{P}[U] C_i^{(1)}[U]
\]

Taylor Series Coefficient Correlator

\[
p_i = 0
\]

F(0)
Taylor Series Coefficient Correlator

On the extraction of zero momentum form factors on the lattice
G.M. de Divitiis, R. Petronzio, N. Tantalo (Rome U., Tor Vergata & INFN, Rome2)

• Momentum expand quark propagator (action dependent)

\[S(\vec{p}) = S(\vec{0}) - i\vec{p} \cdot S(\vec{0})\tilde{V}S(\vec{0}) + \cdots \]

Form Factor @ Zero Momentum

\[\frac{\partial C(\vec{p})}{\partial p_k} \bigg|_{\vec{p}=0} = \text{Tr} \left[S\gamma_5 \frac{\partial S}{\partial p_k} \gamma_k S\gamma_5 \right] = \text{Tr} \left[S\gamma_5 SV_k S\gamma_k S\gamma_5 \right] \]

Applications:
- form factors of flavor-changing currents @ end point
- hadronic vacuum polarization @ zero momentum

• Vertices often require momentum expansion too (point-split currents)
Applying the Method to Radii

- Measurement of *muonic hydrogen spectrum* leads to an extraction of the proton radius which is 4% smaller than CODATA value (*hydrogen + e-p scattering*).

- Unprecedented precision: $4\% = 7\sigma$

\[
F(q^2) = 1 - \frac{q^2}{6} < r^2 > + \ldots
\]

Experimental electron-proton scattering data

Lattice QCD calculations of proton radius

Largely limited to “connected”, isovector

Requires fine lattice

\[
\delta < r^2 > = [0.2 \text{ fm}]^2 \sim (2a)^2 \sim \lambda^2_p
\]

Model small momentum transfer behavior...
Applying the Method to (Meson) Radii

- Current matrix element \(\langle \phi(p')|J_\mu|\phi(p)\rangle = e(p' + p)_\mu F(q^2) \)

\[
F(q^2) = 1 - \frac{q^2}{6} <r^2> + \ldots
\]

- Rest frame (similar findings in Breit kinematics)

\[
q^2 = \bar{q}^2[1 + O(\bar{q}^2/m_\pi^2)]
\]

- Lattice 3-pt. correlation function (ground-state saturation)

\[
C_4(q, \bar{q} | x_4, y_4) = i(E' + m_\pi)F(q^2)|Z|^2 \frac{e^{-E'(x_4-y_4)}e^{-m_\pi y_4}}{2E' 2m_\pi}
\]

\(p = 0 \quad \bar{p}' = \bar{q} \)

Pion form factor is connected
Well-tested lattice calculation
Applying the Method to (Meson) Radii

- Current matrix element \(\langle \phi(\vec{p}') | J_\mu | \phi(\vec{p}) \rangle = e(p' + p)_\mu F(q^2) \)

\[
F(q^2) = 1 - \frac{q^2}{6} < r^2 > + \ldots
\]

- Rest frame (similar findings in Breit kinematics)

\[
q^2 = \bar{q}^2 [1 + O(q^2/m^2_\pi)]
\]

- Lattice 3-pt. correlation function (ground-state saturation)

\[
C_4(q, 0 | x_4, y_4) = i(E' + m_\pi) F(q^2) | Z |^2 \frac{e^{-E'(x_4-y_4)} e^{-m_\pi y_4}}{2E' 2m_\pi}
\]

\[
- \frac{3}{C_4(0)} \frac{\partial^2 C_4}{\partial q^2_1} \bigg|_{q=0} = < r^2 > + \frac{3}{2} \frac{1}{m^2_\pi} + \frac{x_4 - y_4}{m_\pi}
\]

Not impossible, not particularly clean
Applying the Method to (Meson) Radii

- Current matrix element \(\langle \phi(p'') | J_\mu | \phi(p') \rangle = e(p' + p)_\mu F(q^2) \)

 \[F(q^2) = 1 - \frac{q^2}{6} < r^2 > + \ldots \]

- Current matrix element in arbitrary frame

 \[q^2 = 2 [E' E - m_\pi^2 - p'' \cdot \bar{p}] \]

- Lattice 3-pt. correlation function (ground-state saturation)

 \[C_4(p'', \bar{p}|x_4, y_4) = i(E' + E)_4 F(q^2)|Z|^2 e^{\frac{E'(x_4 - y_4) E y_4}{2E' 2E}} \]

\[\frac{\partial^2 C_4}{\partial p'_1 \partial p_1} \bigg|_{\bar{p}'=\bar{p}=0} \]

\[\frac{3}{C_4(0)} \frac{\partial^2 C_4}{\partial p'_1 \partial p_1} \bigg|_{\bar{p}'=\bar{p}=0} = < r^2 > \]

Exercise

\[\frac{1575}{C_4(0)} \frac{\partial^6 C_4}{\partial p'_1 \partial p'_2 \partial p'_3 \partial p_2 \partial p_3} \bigg|_{\bar{p}'=\bar{p}=0} = < r^6 > \]
Rome Method in a Finite Volume

Taylor Series Coefficient
\[C[p, U] = C^{(0)}[U] + p_i C_i^{(1)}[U] + \cdots \]

\[F(0) = \int D\bar{U} P[U] C_i^{(1)}[U] \]

Taylor Series Coefficient Correlator

- Infinite volume limit is exact: continuous momenta admit differentiation
- To address finite volume effects must be able to derive expansion on a **fixed-size** lattice

Introduce: active and spectator quarks
\[\psi(x + L) = e^{i\theta} \psi(x) \]

Continuous twist parameters enable differentiation in a finite volume
\[C[p, U] = C^{(0)}[U] + p_i C_i^{(1)}[U] + \cdots \]

Calculated at vanishing twist, i.e. strictly periodic

- Recipe for volume effects: compute Taylor coeffs. on torus from twisted active quarks
Volume Effects at Zero Momentum

- Example: ascertain volume effect on determination of pion charge radius with ChPT

\[\frac{\partial^2 C_4}{\partial p_1' \partial p_1} \bigg|_{\bar{p}' = \bar{p} = 0} \]

- Partial twisting is not sick from partial quenching \(m_{\text{sea}} = m_{\text{val}} \)

- Determine pion current matrix element using partially twisted ChPT

Frame dependence: no boost invariance

Isospin twisted --> rest frame result

Breit kinematics \(\bar{p}' = -\bar{p} = \frac{q}{2} \)

F.-J. Jiang, B.C. Tiburzi PRD\textbf{78}, 037501 (2008)

For method @ zero momentum need arbitrary frame
Finite Volume Computation

\[\mathcal{M}_\mu(p', \bar{p}) = \langle \pi'^+(0) | J_\mu | \pi^+(0) \rangle \]

\[J_\mu = \bar{u}' \gamma_\mu u_0 \]

- Time-component of current \(\Delta M_4 = \mathcal{M}_4(L) - \mathcal{M}_4(\infty) \)

\[\Delta M_4 = (p' + p)_4 \Delta F + q_4 \Delta G \]

\[\Delta G \text{ exceptionally messy in arbitrary frame} \]

\[\left. \frac{\partial^2 (q_4 \Delta G)}{\partial p'_1 \partial p_1} \right|_{p'=p=0} = \left. \left(q_4 \frac{\partial^2 \Delta G}{\partial p'_1 \partial p_1} \right) \right|_{p'=p=0} = 0 \]

\[\Delta F \text{ fortunately simpler} \]

\[\Delta F \sim \frac{e^{-m_\pi L}}{(m_\pi L)^{3/2}} \quad \Delta r^2 \sim (m_\pi L)^{1/2} e^{-m_\pi L} \]

\[\Delta r^4 \sim (m_\pi L)^{5/2} e^{-m_\pi L} \quad \Delta r^6 \sim (m_\pi L)^{9/2} e^{-m_\pi L} \]

Originally found in

Origin found in
J. Bijnens, J. Relefors JHEP1405, 015 (2014)

\[\text{... needed to maintain WTI} \]
Finite Volume Results

\begin{align*}
\Delta r^2_n & \sim (m_\pi L)^{1/2} e^{-m_\pi L} \\
\Delta r^4 & \sim (m_\pi L)^{5/2} e^{-m_\pi L} \\
\Delta r^6 & \sim (m_\pi L)^{9/2} e^{-m_\pi L}
\end{align*}

\begin{align*}
\langle r^2 \rangle_{\text{phys}} &= [0.67 \text{ fm}]^2 \\
\langle r^4 \rangle_{\chi\text{PT}} &= [0.77 \text{ fm}]^4 \\
\langle r^6 \rangle_{\chi\text{PT}} &= [1.5 \text{ fm}]^6
\end{align*}
Summarizing Volume Effects at Zero Momentum

I. Extension of Rome Method to radii:
 Need initial- & final-state quarks to isolate radii cleanly

II. Addressed finite volume effects:
 Twist angle differentiation, evaluate at zero twist

III. Pion radius in chiral perturbation theory:
 SU(5|3) computation shows volume dependence at %-level
I. Extension of *Rome Method* to radii:
 Need *initial*-* & *final-state* quarks to isolate radii cleanly

II. Addressed finite volume effects:
 Twist angle differentiation, evaluate at zero twist

III. Pion radius in chiral perturbation theory:
 SU(5|3) computation shows volume dependence at %-level

IV. Isovector nucleon magnetic moment + charge & magnetic radii:
 “Straightforward” generalization, SU(6|4), magnetic more volume sensitive

V.Disconnected current insertion:
 Expected to be small, no obvious generalization of method