Deconfining temperatures in SO(N) and SU(N) gauge theories Lattice 2014

Richard Lau and Michael Teper

Rudolf Peierls Centre for Theoretical Physics University of Oxford

27 June 2014

Talk Structure

- **1** SO(N) and SU(N)
- **2** Deconfinement
- **3** SO(N) Measurements
- **4** Equivalences

Why SO(N)?

• Lie algebra equivalence

$$SO(4) \sim SU(2) imes SU(2)$$

 $SO(6) \sim SU(4)$

• Large-*N* equivalence¹²³

$$SO(2N \to \infty) \sim SU(N \to \infty)$$

 $g^2|_{SO(2N \to \infty)} = g^2|_{SU(N \to \infty)}$

• No sign problem

¹C. Lovelace, Nucl. Phys. B201 (1982) 333

²A. Cherman, M. Hanada, and D. Robles-Llana, Phys. Rev. Lett. 106, 091603 (2011)

³M. Unsal and L. Yaffe, Phys. Rev. D 74, 105019 (2006)

 SO(N) and SU(N)
 Deconfinement
 SO(N) Measurements
 Equivalences
 Conclusions

 0000
 00000
 0000
 0
 0

Going between SU(N) to SO(2N)

Our approach

- Continuum limits of specific SO(N)
- Large-N extrapolation

Lattice Setup

- D = 3 + 1
 - Bulk transition at very small lattice spacing
 - Need very large lattices for continuum extrapolation.⁴
- D = 2 + 1
 - Bulk transition at larger lattice spacing
- SO(N) pure gauge action

$$S = \beta \sum_{p} \left(1 - \frac{1}{N} \operatorname{Tr} U_{p} \right)$$

⁴e.g. P. de Forcrand and O. Jahn, Nucl. Phys. B651 (2003) 125

Previous large-N results⁵

• String tensions

$$\frac{\sqrt{\sigma}}{g^2 \tilde{N}}\Big|_{SO(\infty)} = 0.1981(6) \qquad SO(N = 2\tilde{N})$$
$$\frac{\sqrt{\sigma}}{g^2 \tilde{N}}\Big|_{SU(\infty)} = 0.1974(2) \qquad SU(N = \tilde{N})$$

• Mass spectrum

$$\frac{M_{0+}}{\sqrt{\sigma}}\Big|_{SO(\infty)} = 4.14(3) \qquad SO(2N)$$
$$\frac{M_{0+}}{\sqrt{\sigma}}\Big|_{SU(\infty)} = 4.11(2) \qquad SU(N)$$

⁵RL and MT, Lattice 2013

Deconfinement on the lattice

• Finite temperature theory

$$T=\frac{1}{a(\beta)L_t}$$

• Deconfining temperature

$$T_c = \frac{1}{a(\beta_c)L_t}$$

• Order parameter

$$|\overline{I_p}|$$

Identifying deconfinement

Histograms of l_p for an SO(6) 20²3 volume

First order transitions

$$\chi_{|\overline{I_p}|}$$
 for an *SO*(8) $L_t = 5$ volume

Second order transitions

$$\chi_{|\overline{I_p}|}$$
 for an SO(4) $L_t = 2$ volume

<i>SO</i> (<i>N</i>) and <i>SU</i> (<i>N</i>)	Deconfinement 00000●	<i>SO</i> (<i>N</i>) Measurements	Equivalences 0000	Conclusions 0
Reweighting ⁶				

$$P(S_i|\beta) = \frac{1}{Z(\beta)} D(S_i) e^{-\beta S_i}$$
(1)

Normalised data histogram $N_k(S_i)$

$$\Rightarrow \qquad N_k(S_i) \approx \frac{1}{Z(\beta_k)} D(S_i) e^{-\beta_k S_i} \tag{2}$$

$$P(S_i|\beta) \approx \frac{N_k(S_i)e^{(\beta_k - \beta)S_i}}{\sum_j N_k(S_j)e^{(\beta_k - \beta)S_j}}$$
(3)

$$\Rightarrow \qquad \langle O(\beta) \rangle \approx \sum_{i} O(S_{i}) P(S_{i}|\beta) \tag{4}$$

⁶A. Ferrenberg and R. Swendsen, Phys. Rev. Lett. 63, 11951198 (1989)

Deconfining temperatures in SO(N) and SU(N) gauge theories

 \Rightarrow

Infinite volume limits

 $\beta_c(\infty) = 29.872(21)$

 $10^{5}/V$

10

Continuum limits: SO(4)

SO(N) deconfining temperatures

$SO(4) \sim SU(2) \times SU(2)$

$$\sigma|_{SO(4)} = \sigma|_{SU(2) \times SU(2)}$$
$$= 2 \sigma|_{SU(2)}$$

$$\frac{T_c}{\sqrt{\sigma}}\Big|_{SO(4) \text{ equiv}} = \frac{T_c}{\sqrt{\sigma}}\Big|_{SU(2)\times SU(2)}$$
$$= \frac{1}{\sqrt{2}} \frac{T_c}{\sqrt{\sigma}}\Big|_{SU(2)}$$
$$= 0.7949(58)$$
(5)

$$\left. \frac{T_c}{\sqrt{\sigma}} \right|_{SO(4)} = 0.7844(31) \tag{6}$$

<i>SO</i> (<i>N</i>) and <i>SU</i> (<i>N</i>)	Deconfinement	<i>SO</i> (<i>N</i>) Measurements	Equivalences	Conclusions
0000	000000		0●00	0

 $SO(6) \sim SU(4)$

$$\sigma_{f}|_{SO(6)} = \sigma_{2A}|_{SU(4)}$$

$$\frac{T_{c}}{\sqrt{\sigma_{f}}}\Big|_{SO(6) \text{ equiv}} = \frac{T_{c}}{\sqrt{\sigma_{f}}}\Big|_{SU(4)} \sqrt{\frac{\sigma_{f}}{\sigma_{2A}}}\Big|_{SU(4)}$$

$$= 0.8163(62)$$
(7)

$$\frac{T_c}{\sqrt{\sigma_f}}\Big|_{SO(6)} = 0.8105(42)$$
(8)

⁷J. Liddle and MT, arXiv:0803.2128

$$\frac{SO(N) \text{ and } SU(N)}{0000} \xrightarrow{\text{Deconfinement}}_{00000} \frac{SO(N) \text{ Measurements}}{0000} \xrightarrow{\text{Equivalences}}_{0000} \xrightarrow{\text{Conclusions}}_{0}$$

 $SO(N = 2\tilde{N})$ and $SU(N)^8$ large-N deconfining temperatures

$$\frac{T_c}{\sqrt{\sigma}}\Big|_{SO(\infty)} = 0.9076(41)$$
$$\frac{T_c}{\sqrt{\sigma}}\Big|_{SU(\infty)} = 0.9030(29)$$

⁸J. Liddle and MT, arXiv:0803.2128

<i>SO</i> (<i>N</i>) and <i>SU</i> (<i>N</i>)	Deconfinement	<i>SO(N)</i> Measurements	Equivalences	Conclusions
0000	000000		0000	•
Conclusions				

- There are large-*N* equivalences between *SO*(*N*) and *SU*(*N*) gauge theories.
- Their pure gauge theories in D = 2 + 1 have matching large-N physical properties.
 - String tension and mass spectrum⁹
 - Deconfining temperature
- *SO*(*N*) theories may provide a starting point for problems in *SU*(*N*) QCD theories at finite chemical potential.