$\begin{array}{l} {\rm K} {\rightarrow} \pi \mbox{ matrix elements of the} \\ {\rm chromomagnetic operator} \\ {\rm on the lattice} \end{array}$

In collaboration with:

M. Constantinou, (M. Costa,)R. Frezzotti,

G. Martinelli, D. Meloni, H. Panagopoulos, S. Simula

See also a poster

Lattice 2014

The 32nd International Symposium on Lattice Field Theory

June 23-28, 2014 Columbia University, New York, USA

The effective $\Delta S=1$ Hamiltonian of <u>dim=5</u> S_R d_L contains four magnetic operators: W $\mathbf{H}_{d=5}^{\Delta S=1} = \sum \left(\mathbf{C}_{\gamma}^{i} \mathbf{Q}_{\gamma}^{i} + \mathbf{C}_{g}^{i} \mathbf{Q}_{g}^{i} \right) + \text{h.c.}$ С С SM g,γ $Q_{\gamma}^{\pm} = \frac{Q_{d}e}{16\pi^{2}} \left(\overline{s}_{L} \sigma^{\mu\nu} F_{\mu\nu} d_{R} \pm \overline{s}_{R} \sigma^{\mu\nu} F_{\mu\nu} d_{L} \right)$ \mathbf{S}_{R} d ¦ S_R Χ ∕ $Q_{g}^{\pm} = \frac{g}{16\pi^{2}} \left(\overline{s}_{L} \sigma^{\mu\nu} G_{\mu\nu} d_{R} \pm \overline{s}_{R} \sigma^{\mu\nu} G_{\mu\nu} d_{L} \right)$ $\{g, \gamma\}$ **BSM** C_{SM} C_{BSM} <u>For $M_{NP} \sim 1 \text{ TeV}$:</u> $\sim 1/M_{\rm W}$ $\sim 1/M_{NP}$ • Dim = 5 $\sim 10^{-3} / 10^{-2} \sim 10^{-1}$ $\sim \alpha_{s}(M_{NP})$ $\sim \alpha_{\rm W}(M_{\rm W})$ • ΔF ≠ 0 ~ 0.09 / 0.03 ~ 3 ~δ_{ι R} • LR chirality $\sim m_s / M_w$ Model dep. $/ 10^{-3} \sim 1$?

The EMO

The matrix element is proportional to the tensor form factor, parameterized as:

$$\left\langle \pi^{0} \left| \mathbf{Q}_{\gamma}^{+} \right| \mathbf{K}^{0} \right\rangle = \frac{\mathbf{Q}_{d} \mathbf{e}}{16\pi^{2}} \mathbf{F}_{\mu\nu} \left\langle \pi^{0} \left| \mathbf{\overline{s}} \sigma^{\mu\nu} \mathbf{d} \right| \mathbf{K}^{0} \right\rangle = \mathbf{i} \frac{\mathbf{Q}_{d} \mathbf{e} \sqrt{2}}{16\pi^{2} \mathbf{M}_{K}} \mathbf{p}_{\pi}^{\mu} \mathbf{p}_{K}^{\nu} \mathbf{F}_{\mu\nu} \mathbf{B}_{T}^{\mu} \mathbf{R}_{T}^{\mu} (\mathbf{q}^{2})$$

• It has been already computed with Lattice QCD

Nf=0: Becirevic, V.L., Martinelli, Mescia, PLB 501 (2001) 98

Nf=2: ETMC, Baum, V.L., Martinelli, Orifici, Simula, PRD84 (2011) 074503 (

$$B_{T} = 0.655(24)$$

It contributes to the rare kaon decay

 $\mathsf{BR}(\mathsf{K}_{\mathsf{L}} \rightarrow \pi^{0} e^{+} e^{-})_{\mathsf{EMO}} \sim (\mathsf{C}_{\gamma} \mathsf{B}_{\mathsf{T}})^{2}$

The CMO Several matrix elements are of phenomenological interest:

•
$$\left\langle \pi^{0} \left| Q_{g}^{+} \right| K^{0} \right\rangle = -\frac{11}{32\sqrt{2}\pi^{2}} \frac{M_{K}^{2}(p_{K} \cdot p_{\pi})}{m_{s} + m_{d}} B_{CMO}^{K\pi}$$

• $\left\langle \pi^{+}\pi^{-} \left| Q_{g}^{-} \right| K^{0} \right\rangle = i \frac{11}{32\pi^{2}} \frac{M_{K}^{2} M_{\pi}^{2}}{f_{\pi}(m_{s} + m_{d})} B_{CMO}^{K2\pi}$
• $\left\langle \pi^{+}\pi^{+}\pi^{-} \left| Q_{g}^{+} \right| K^{+} \right\rangle = -\frac{11}{16\pi^{2}} \frac{M_{K}^{2} M_{\pi}^{2}}{f_{\pi}^{2}(m_{s} + m_{d})} B_{CMO}^{K3\pi}$

K⁰ – K⁰ mixing (long dist.) X.-G. He et al., PRD61 (2000) 071701

Relevant for:

ε'/ε, ΔI=1/2 Buras et al., NPB 566 (2000) 3

𝔅𝕐 in K→ 3π D'Ambrosio, Isidori, Martinelli, PLB 480 (2000) 164

At LO in ChPT, the various B-parameters are all equal:

$$\mathbf{Q}_{g}^{\pm} = \frac{11}{256\pi^{2}} \frac{f_{\pi}^{2} M_{K}^{2}}{m_{s} + m_{d}} \mathbf{B}_{CMO} \Big[U(D_{\mu}U^{\dagger})(D^{\mu}U) \pm (D_{\mu}U^{\dagger})(D^{\mu}U)U^{\dagger} \Big]_{23} \Big]$$

B_{CMO} ≈ 0.1-0.5 in the chiral quark model [Bertolini et al., NPB 449 (1995) 197]

Renormalization

- A challenging aspect in the study of the CMO is its renormalization pattern, which involves the mixing among 13 operators (off-shell),
 2 of which of lower dimension
- For on-shell matrix elements, the mixing allowed by the symmetries of the action is:

$$\hat{O}_{CM} = Z_{CM} \left[O_{CM}^{bare} - \left(\frac{c_{13}}{a^2} + c_2(m_s^2 + m_d^2) + c_3m_sm_d \right) S - \frac{c_{12}}{a}(m_s + m_d)P - c_4O_{DD} \right]$$
where:
$$O_{CM} = g \ \overline{s} \sigma_{\mu\nu}G_{\mu\nu}d \quad , \quad S = \overline{s} d \quad , \quad O_{DD} = \overline{s} \ \overline{D}_{\mu} \ \overline{D}_{\mu}d \quad$$

$$+ \quad P = \overline{s}(i\gamma_5)d \quad Wrong Parity$$
[Twisted Mass]

Renormalization

$$\hat{O}_{CM} = Z_{CM} \left[O_{CM}^{\text{bare}} - \left(\frac{c_{13}}{a^2} + c_2(m_s^2 + m_d^2) + c_3m_sm_d \right) S - \frac{c_{12}}{a}(m_s + m_d)P - c_4O_{DD} \right]$$
A perturbative determination of power

• A perturbative determination of power divergent coefficients may be not reliable

[Maiani, Martinelli, Sachrajda, NPB 368 (1992) 281]

$$\left(c^{NP} \sim \frac{1}{a}e^{-\frac{1}{\beta_0 g^2}} \sim \Lambda_{QCD}\right)$$

• We must impose non-perturbative subtraction conditions:

$$\lim_{m_s,m_d\to 0} \left\langle \pi(0) \left| O_{CM}^{\text{sub}} \right| K(0) \right\rangle = \lim_{m_s,m_d\to 0} \left\langle \pi(0) \left| \left(O_{CM}^{\text{bare}} - \left(\frac{c_{13}}{a^2} \right) S - c_4^{\text{PT}} O_{DD} \right) \right| K(0) \right\rangle = 0$$

suggested by the chiral expansion: $\langle \pi^{\pm}(0) | Q_g^{+} | K^{\pm}(0) \rangle \propto p_K \cdot p_{\pi} = M_K M_{\pi}$

Perturbation theory

[see Marios Costa's poster]

 Z_{CM} and the $c_{2,3,4}$ of the dim=5 operators are determined in PT

Off shell external particles in order to avoid IR divergences

Gauge noninvariant operators, which are BRST invariant and vanish by the equation of motion, must be also taken into account

13 operators

$$\begin{aligned} \mathcal{O}_{1} &= g_{0} \overline{\psi}_{s} \sigma_{\mu\nu} G_{\mu\nu} \psi_{d} \\ \mathcal{O}_{2} &= (m_{d}^{2} + m_{s}^{2}) \overline{\psi}_{s} \psi_{d} \\ \mathcal{O}_{3} &= m_{d} m_{s} \overline{\psi}_{s} \psi_{d} \\ \mathcal{O}_{4} &= \overline{\psi}_{s} \overleftarrow{D}_{\mu} \overrightarrow{D}_{\mu} \psi_{d} \\ \mathcal{O}_{5} &= \overline{\psi}_{s} (-\overleftarrow{D} + m_{s}) (\overrightarrow{D} + m_{d}) \psi_{d} \\ \mathcal{O}_{6} &= \overline{\psi}_{s} (\overrightarrow{D} + m_{d})^{2} \psi_{d} + \overline{\psi}_{s} (-\overleftarrow{D} + m_{s})^{2} \psi_{d} \\ \mathcal{O}_{7} &= m_{s} \overline{\psi}_{s} (\overrightarrow{D} + m_{d}) \psi_{d} + m_{d} \overline{\psi}_{s} (-\overleftarrow{D} + m_{s}) \psi_{d} \\ \mathcal{O}_{8} &= m_{d} \overline{\psi}_{s} (\overrightarrow{D} + m_{d}) \psi_{d} - \overline{\psi}_{s} (-\overleftarrow{D} + m_{s}) \overrightarrow{\psi}_{d} \\ \mathcal{O}_{9} &= \overline{\psi}_{s} \overleftarrow{\mathcal{P}} (\overrightarrow{\mathcal{P}} + m_{d}) \psi_{d} - \overline{\psi}_{s} (-\overleftarrow{\mathcal{P}} + m_{s}) \overrightarrow{\mathcal{P}} \psi_{d} \\ \mathcal{O}_{10} &= \overline{\psi}_{s} \overrightarrow{\mathcal{P}} (\overrightarrow{\mathcal{P}} + m_{d}) \psi_{d} - \overline{\psi}_{s} (-\overleftarrow{\mathcal{P}} + m_{s}) \overrightarrow{\mathcal{P}} \psi_{d} \\ \mathcal{O}_{11} &= i r_{d} \overline{\psi}_{s} \gamma_{5} (\overrightarrow{\mathcal{P}} + m_{d}) \psi_{d} + i r_{s} \overline{\psi}_{s} (-\overleftarrow{\mathcal{P}} + m_{s}) \gamma_{5} \psi_{d} \\ \mathcal{O}_{12} &= i (r_{d} m_{d} + r_{s} m_{s}) \overline{\psi}_{s} \gamma_{5} \psi_{d} \\ \mathcal{O}_{13} &= \overline{\psi}_{s} \psi_{d}, \end{aligned}$$

Perturbation theory

2mm

[see Marios Costa's poster]

2mm

$$\begin{aligned} Z_1^{L,\overline{\text{MS}}} &= 1 + \frac{g^2}{16\pi^2} \left(N_c \left(-7.9438 + \frac{1}{2} \log \left(a^2 \bar{\mu}^2 \right) \right) + \frac{1}{N_c} \left(4.4851 - \frac{5}{2} \log \left(a^2 \bar{\mu}^2 \right) \right) \right) \\ Z_2^{L,\overline{\text{MS}}} &= \frac{g^2 C_F}{16\pi^2} \left(4.5370 + 6 \log \left(a^2 \bar{\mu}^2 \right) \right) \\ Z_3^{L,\overline{\text{MS}}} &= 0 \\ Z_4^{L,\overline{\text{MS}}} &= 0 \end{aligned} \qquad \begin{aligned} Z_{12}^{L,\overline{\text{MS}}} &= -\frac{1}{a} \frac{g^2 C_F}{16\pi^2} \left(-3.2020 \right) \\ Z_{13}^{L,\overline{\text{MS}}} &= \frac{1}{a^2} \frac{g^2 C_F}{16\pi^2} \left(36.0613 \right) \end{aligned} \\ Z_5^{L,\overline{\text{MS}}} &= \frac{g^2}{16\pi^2} \left(N_c \left(4.2758 - \frac{3}{2} \log \left(a^2 \bar{\mu}^2 \right) \right) + \frac{1}{N_c} \left(-3.7777 + 3 \log \left(a^2 \bar{\mu}^2 \right) \right) \right) \\ Z_6^{L,\overline{\text{MS}}} &= 0 \\ Z_7^{L,\overline{\text{MS}}} &= -\frac{Z_5^{L,\overline{\text{MS}}}}{2} \\ Z_8^{L,\overline{\text{MS}}} &= \frac{g^2 C_F}{16\pi^2} \left(-3.7760 \right) \\ Z_{10}^{L,\overline{\text{MS}}} &= \frac{g^2 C_F}{16\pi^2} \left(3.7777 - 3 \log \left(a^2 \bar{\mu}^2 \right) \right) \\ Z_9^{L,\overline{\text{MS}}} &= \frac{Z_5^{L,\overline{\text{MS}}}}{2} \\ Z_{11}^{L,\overline{\text{MS}}} &= \frac{1}{a} \frac{g^2 C_F}{16\pi^2} \left(-3.2020 \right) \end{aligned}$$

CIVI	$\left(\frac{m_s}{m_d}\right) \approx$	m _s m _d S	O _{DD}	$(\underline{m_s + m_d}) P /$	a S/a^2	
Z _{CM}	c2	C 3	C 4	C 12	c 13	Red:
1.78	0.15	0	0	0.085	0.96	$g_0^2 = 6 / \beta$
1.75	0.10	0	0	0.083	0.94	Blue:
1.68	-0.04	0	0	0.077	0.87	$\tilde{g}^2 = g_0^2 / U_{PL}$
	Z _{CM} 1.78 1.75 1.68	Z _{CM} C2 1.78 0.15 1.75 0.10 1.68 -0.04	Z _{CM} C2 C3 1.78 0.15 0 1.75 0.10 0 1.68 -0.04 0	Z _{CM} C2 C3 C4 1.78 0.15 0 0 1.75 0.10 0 0 1.68 -0.04 0 0	Z _{CM} C2 C3 C4 C12 1.78 0.15 0 0 0.085 1.75 0.10 0 0 0.083 1.68 -0.04 0 0 0.077	Z_CMC2C3C4C12C131.780.15000.0850.961.750.10000.0830.941.68-0.04000.0770.87

Rather large 1-loop correction...

The numerical simulation

- Nf = 2 + 1 + 1 dynamical quarks
- Twisted mass / Osterwalder-Seiler fermions Iwasaki gluon action
- a ≃ 0.089, 0.082, 0.062 fm
- Mpi ~ 210 450 MeV

Same setup of ETM Collaboration, Carrasco et al., arXiv: 1403.4504 [hep-lat]

ensemble	β	V/a^4	$a\mu_{sea} = a\mu_{\ell}$	$a\mu_{\sigma}$	$a\mu_{\delta}$	N_{cfg}	$a\mu_s$
A30.32	1.90	$32^3\times 64$	0.0030	0.15	0.19	150	0.0145, 0.0185, 0.0225
A40.32			0.0040			100	
A50.32			0.0050			150	
A60.24	1.90	$24^3 \times 48$	0.0060	0.15	0.19	150	
A80.24			0.0080			150	
A100.24			0.0100			150	
B25.32	1.95	$32^3 \times 64$	0.0025	0.135	0.170	150	0.0141, 0.0180, 0.0219
B35.32			0.0035			150	
B55.32			0.0055			150	
B75.32			0.0075			80	
B85.24	1.95	$24^3 \times 48$	0.0085	0.135	0.170	150	
D15.48	2.10	$48^3 \times 96$	0.0015	0.12	0.1385	60	0.0118, 0.0151, 0.0184
D20.48			0.0020			100	
D30.48			0.0030			100	

The "subtracted" CMO

$$Z_{CM} \left\langle \pi \left| O_{CM}^{sub} \right| K \right\rangle = Z_{CM} \left\langle \pi \left| \left(O_{CM}^{bare} - c_2 (m_s^2 + m_d^2) S - \frac{c_{13}}{a^2} S - \frac{c_{12}}{a} (m_s + m_d) P \right) \right| K \right\rangle$$

$$c_3^{PT-1\ell} = c_4^{PT-1\ell} = 0$$

The "subtracted" CMO

$$Z_{CM} \langle \pi | O_{CM}^{sub} | K \rangle = Z_{CM} \langle \pi | \left(O_{CM}^{bare} - c_2 (m_s^2 + m_d^2) S - \frac{c_{13}}{a^2} S - \frac{c_{12}}{a} (m_s + m_d) P \right) | K \rangle$$

$$c_3^{PT-1\ell} = c_4^{PT-1\ell} = 0$$

Chiral extrapolation and results

 $Q_{g}^{+} \propto \mathbf{B}_{CMO} \left[U(D_{\mu}U^{\dagger})(D^{\mu}U) + (D_{\mu}U^{\dagger})(D^{\mu}U)U^{\dagger} \right]_{23}$

The parameter ${\bf B}$ is independent of quark masses (and momenta) up to NLO chiral corrections

For K→π higher order chiral corrections are large

Chiral extrapolation and results

$$\left\langle \pi^{+} \left| \hat{Q}_{g}^{+} \right| K^{+} \right\rangle \propto \mathbf{B}_{CMO}^{LO} \left(\mathbf{p}_{K} \cdot \mathbf{p}_{\pi} \right) \left[1 + \alpha M_{K}^{2} + \beta M_{\pi}^{2} + \gamma \left(\mathbf{p}_{\pi} \cdot \mathbf{p}_{K} \right) + \ldots \right] =$$

$$\stackrel{=}{_{\vec{p}_{K} = \vec{p}_{\pi} = 0}} \mathbf{B}_{CMO}^{LO} M_{K} M_{\pi} \left[\alpha' + \beta' m_{1} + \gamma' m_{1}^{1/2} + \ldots \right] -$$
F1

Different chiral fits: $\longrightarrow B_{CMO}^{K\pi} = 0.22(2)$ F1 + m^{3/2} \longrightarrow B^{K π}_{CMO} = 0.36(8) F1 + m² \longrightarrow B^{K π}_{CMO} = 0.34(7) $B_{CMO} = 0.29(9)_{chiral}(6)_{PT} =$ = 0.29(11)

Phenomenological implications

SM contribution is smaller. NP couplings can be larger

The Wilson coefficients of the CMO and the EMO are typically closely related.

E.g. in SUSY models:

 C_{g}^{\pm}

$$C_{\gamma}^{\pm}(m_{\tilde{g}}) = \frac{\pi \,\alpha_{s}(m_{\tilde{g}})}{m_{\tilde{g}}} \left[(\delta_{LR}^{D})_{21} \pm (\delta_{LR}^{D})_{12}^{*} \right] F_{0}(m_{\tilde{g}}^{2} / m_{\tilde{q}}^{2})$$

 $K_1 \rightarrow \pi^0 e^+ e^-$

$$C_{g}^{\pm}(m_{\tilde{g}}) = \frac{\pi \,\alpha_{s}(m_{\tilde{g}})}{m_{\tilde{g}}} \Big[(\delta_{LR}^{D})_{21} \pm (\delta_{LR}^{D})_{12}^{*} \Big] G_{0}(m_{\tilde{g}}^{2} / m_{\tilde{q}}^{2}) \quad \bigstar \quad \epsilon'/\epsilon , \quad \mathsf{K} \to 3\pi, \dots$$

Gabbiani, Gabrielli, Masiero, Silvestrini, NPB 477 (1996) 321

CONCLUSIONS

- The CMO can receive potentially large contributions from New Physics
- We have performed the first lattice QCD calculation of the $K \rightarrow \pi$ matrix element:

$$B_{CMO} = 0.29(11)$$

- The main sources of error are the chiral extrapolation and the (large) 1-loop multiplicative renormalization
- The lattice result differs from previous estimates and will provide interesting bounds on BSM physics effects

A phenomenological analysis is in progress

BACKUP SLIDES

B_{CMO} in the chiral quark model

• The expression of the CMO in ChPT is determined, at LO, up to a single multiplicative low energy constant:

$$\mathbf{Q}_{g}^{\pm} = \mathbf{G}_{CMO} \left[U(D_{\mu}U^{\dagger})(D^{\mu}U) \pm (D_{\mu}U^{\dagger})(D^{\mu}U)U^{\dagger} \right]_{23}$$

• In the chiral quark model: [Bertolini, Eeg, Fabbrichesi, NPB 449 (1995) 197]

$$\mathbf{G}_{\mathbf{CMO}}^{\mathbf{\chi}\mathbf{QM}} = -\frac{11}{128\pi^2} \left\langle \overline{\mathbf{q}} \mathbf{q} \right\rangle_{\mathbf{G}} \equiv -\frac{11}{128\pi^2} \left[-\frac{1}{12M} \left\langle \frac{\mathbf{\alpha}_{\mathbf{s}}}{\pi} \mathbf{G} \mathbf{G} \right\rangle \right]$$

M ≈ Λ_{QCD} "constituent" quark mass

• The B-parameter is defined as:

$$\mathbf{G}_{CMO} = -\frac{11}{128\pi^2} \langle \overline{\mathbf{q}} \mathbf{q} \rangle \mathbf{B}_{CMO} = \frac{11}{256\pi^2} \frac{\mathbf{f}_{\pi}^2 \mathbf{M}_{K}^2}{\mathbf{m}_{s} + \mathbf{m}_{d}} \mathbf{B}_{CMO}$$

• Therefore, in the XQM:

$$\mathbf{B_{CMO}^{\chi QM}} = \frac{\left\langle \overline{q}q \right\rangle_{G}}{\left\langle \overline{q}q \right\rangle} = 2\frac{\left\langle (\alpha_{s} / \pi)GG \right\rangle / (12 M)}{f_{\pi}^{2}M_{K}^{2} / (m_{s} + m_{d})}$$

• The value of the gluon condensate is poorly known. Current estimates can be summarized as:

$$\left\langle \left\langle \frac{\alpha_{\rm s}}{\pi} \, {\rm G} {\rm G} \right\rangle = 0 \pm 0.012 \, {\rm GeV}^4 \right\rangle$$

Using also M = 0.1 - 0.4 GeV one finds:

$$B_{CMO}^{\chi QM} = 0.1 - 0.5$$

The mixing pattern is determined by the symmetries of the action. In the TM-OS case the relevant symmetries are:

a)
$$P \times D_d \times (m \leftrightarrow -m)$$

b) $D_d \times R_5$
c) $C \times (s \leftrightarrow d)$ or \tilde{c}) $C \times P \times (s \leftrightarrow d)$
if $r_s = r_d$ if $r_s = -r_d$

Ope	erators	$\mathcal{P} imes \mathcal{D}_d imes$	$\mathcal{D}_d imes \mathcal{R}_5$	$\mathcal{C} imes \mathcal{S}$	$\mathcal{C} \times \mathcal{P} \times \mathcal{S}$		
		$(m \rightarrow -m)$		if $r_s = r_d$	if $r_s = -r_d$		
Din	Dimension 3 operators						
\checkmark	$\overline{\psi}_{s}\psi_{d}$	—	+	+	+		
	$i\overline{\psi}_s\gamma_5\psi_d$	+	+	+	—		
Din	Dimension 4 operators						
	$(m_d + m_s)\overline{\psi}_s\psi_d$	+	+	+	+		
	$(m_d - m_s)\overline{\psi}_s\psi_d$	+	+	—	—		
(+)	$i(m_d + m_s)\overline{\psi}_s\gamma_5\psi_d$	_	+	+	—		
(-)	$i (m_d - m_s) \overline{\psi}_s \gamma_5 \psi_d$	_	+	—	+		
	$\overline{\psi}_s(\not\!\!\!D + m_d)\psi_d + \overline{\psi}_s(-\not\!\!\!\!D + m_s)\psi_d$	+	+	+	+		
	$\overline{\psi}_{s}(\overrightarrow{p}+m_{d})\psi_{d}-\overline{\psi}_{s}(-\overleftarrow{p}+m_{s})\psi_{d}$	+	+	—	_		
(+)	$i \overline{\psi}_s \gamma_5 (\overrightarrow{D} + m_d) \psi_d + i \overline{\psi}_s (-\overleftarrow{D} + m_s) \gamma_5 \psi_d$	—	+	+	—		
(-)	$i \overline{\psi}_s \gamma_5 (\overrightarrow{D} + m_d) \psi_d - i \overline{\psi}_s (-\overleftarrow{D} + m_s) \gamma_5 \psi_d$	-	+	—	+		
Dimension 5 operators							
\checkmark	$g_0 \overline{\psi}_s \sigma_{\mu u} G_{\mu u} \psi_d$	—	+	+	+		
	$i g_0 \overline{\psi}_s \gamma_5 \sigma_{\mu u} G_{\mu u} \psi_d$	+	+	+	-		
\checkmark	$(m_d^2 + m_s^2)\overline{\psi}_s\psi_d$	—	+	+	+		
	$i \left(m_d^2 + m_s^2\right) \overline{\psi}_s \gamma_5 \psi_d$	+	+	+	—		
	$(m_d^2-\overline{m_s^2})\overline{\psi}_s\psi_d$	_	+	—	_		
	$i\left(m_{d}^{2}-m_{s}^{2} ight)\overline{\psi}_{s}\gamma_{5}\psi_{d}$	+	+	—	+		
\checkmark	$m_d m_s \overline{\psi}_s \psi_d$	—	+	+	+		
	$i m_d m_s \overline{\psi}_s \gamma_5 \psi_d$	+	+	+	_		

Ope	rators	$\mathcal{P} imes \mathcal{D}_d imes$	$\mathcal{D}_d imes \mathcal{R}_5$	$\mathcal{C} \times \mathcal{S}$	$\mathcal{C} \times \mathcal{P} \times \mathcal{S}$
		$(m \rightarrow -m)$		if $r_s = r_d$	if $r_s = -r_d$
	$m \overline{ab} (\overline{b} + m) ab + m \overline{ab} (\overline{b} + m) ab +$				
V	$m_s\psi_s(\mathcal{D} + m_d)\psi_d + m_d\psi_s(-\mathcal{D} + m_s)\psi_d$	_	+	+	+
~	$\frac{m_d \psi_s (\mathcal{D} + m_d) \psi_d + m_s \psi_s (-\mathcal{D} + m_s) \psi_d}{(\mathcal{D} + \mathcal{D})^2}$	_	+	+	+
	$\frac{m_s\psi_s(\mathcal{P}+m_d)\psi_d - m_d\psi_s(-\mathcal{P}+m_s)\psi_d}{\overrightarrow{\qquad}}$	-	+	_	_
	$\frac{m_d\psi_s(\not\!\!D+m_d)\psi_d-m_s\psi_s(-\not\!\!D+m_s)\psi_d}{\Rightarrow}$	-	+	_	_
	$i m_s \overline{\psi}_s \gamma_5 (\not D + m_d) \psi_d + i m_d \overline{\psi}_s (-\not D + m_s) \gamma_5 \psi_d$	+	+	+	_
	$i m_d \overline{\psi}_s \gamma_5 (\overline{\not\!\!D} + m_d) \psi_d + i m_s \overline{\psi}_s (-\overline{\not\!\!D} + m_s) \gamma_5 \psi_d$	+	+	+	_
	$i m_s \overline{\psi}_s \gamma_5 (\overrightarrow{D} + m_d) \psi_d - i m_d \overline{\psi}_s (-\overleftarrow{D} + m_s) \gamma_5 \psi_d$	+	+	_	+
	$i m_d \overline{\psi}_s \gamma_5 (\overrightarrow{D} + m_d) \psi_d - i m_s \overline{\psi}_s (-\overleftarrow{D} + m_s) \gamma_5 \psi_d$	+	+	_	+
\checkmark	$\overline{\psi}_{s}(\overrightarrow{D}+m_{d})^{2}\psi_{d}+\overline{\psi}_{s}(-\overleftarrow{D}+m_{s})^{2}\psi_{d}$	—	+	+	+
	$\overline{\psi}_s(D + m_d)^2 \psi_d - \overline{\psi}_s(-D + m_s)^2 \psi_d$	-	+	-	-
	$i \overline{\psi}_s \gamma_5 (\overrightarrow{D} + m_d)^2 \psi_d + i \overline{\psi}_s (-\overleftarrow{D} + m_s)^2 \gamma_5 \psi_d$	+	+	+	_
	$i \overline{\psi}_s \gamma_5 (\overrightarrow{D} + m_d)^2 \psi_d - i \overline{\psi}_s (-\overleftarrow{D} + m_s)^2 \gamma_5 \psi_d$	+	+	—	+
\checkmark	$\overline{\psi}_s \overline{D}_\mu \overline{D}_\mu \psi_d$	—	+	+	+
	$i \overline{\psi}_s \gamma_5 \overline{D}_\mu \overline{D}_\mu \psi_d$	+	+	+	_
\checkmark	$\overline{\psi}_s(-\overleftarrow{\not\!\!\!D}+m_s)(\overrightarrow{\not\!\!\!\!D}+m_d)\psi_d$	—	+	+	+
	$i\overline{\psi}_s(-D+m_s)\gamma_5(D+m_d)\psi_d$	+	+	+	—
\checkmark	$\overline{\psi}_s \not\!$	—	+	+	+
\checkmark	$\overline{\psi}_s \not \! \partial (\not \! D + m_d) \psi_d - \overline{\psi}_s (- \not \! D + m_s) \not \! \partial \psi_d$	—	+	+	+
	$\overline{\psi}_{s} \not \partial (\not D + m_{d}) \psi_{d} + \overline{\psi}_{s} (-\not D + m_{s}) \not \partial \psi_{d}$	—	+	_	_
	$\overline{\psi}_{s}\overrightarrow{\not{D}}(\overrightarrow{\not{D}}+m_{d})\psi_{d}+\overline{\psi}_{s}(-\overleftarrow{\not{D}}+m_{s})\overleftarrow{\not{\partial}}\psi_{d}$	-	+	_	_
	$i \overline{\psi}_s \not \overline{\partial} \gamma_5 (\overrightarrow{p} + m_d) \psi_d - i \overline{\psi}_s (-\overleftarrow{p} + m_s) \gamma_5 \overrightarrow{\partial} \psi_d$	+	+	+	_
	$i \overline{\psi}_s \overrightarrow{p} \gamma_5 (\overrightarrow{p} + m_d) \psi_d - i \overline{\psi}_s (-\overleftarrow{p} + m_s) \gamma_5 \overleftarrow{p} \psi_d$	+	+	+	_
	$i \overline{\psi}_s \overleftarrow{\partial} \gamma_5 (\overrightarrow{D} + m_d) \psi_d + i \overline{\psi}_s (-\overleftarrow{D} + m_s) \gamma_5 \overrightarrow{\partial} \psi_d$	+	+	_	+
	$i \overline{\psi}_s \overrightarrow{p} \gamma_5 (\overrightarrow{p} + m_d) \psi_d + i \overline{\psi}_s (-\overleftarrow{p} + m_s) \gamma_5 \overleftarrow{p} \psi_d$	+	+	_	+

Interpolation to the physical strange mass

Importance of a <u>non perturbative</u> determination of c_{13}/a^2

β	c ₁₃ [NP]	c ₁₃ [PT-1ℓ]
1.90	0.8978 (2)	0.96
1.95	0.8768 (3)	0.94
2.10	0.8164 (7)	0.87

 $c_{13} [PT-1\ell] / c_{13} [NP] - 1 \approx 6-7 \%$

