Updated results from maximally twisted mass lattice QCD at the physical point

Humboldt-Universität zu Berlin
John von Neumann Institute for Computing (NIC), DESY, Zeuthen
Supported in full by FNR AFR PhD grant 2773315

Overview

1. Introduction
2. Isospin Breaking
3. Strange/Charm Quark Masses
4. Pseudoscalar Meson Decay Constants
5. Preliminary Results
6. Conclusion and Outlook
Introduction

Action

- Lattice 2013: introduced twisted mass action with clover term

 \[S = \beta \sum_{x;P} \left[b_0 \left\{ 1 - \frac{1}{3} \text{ReTr} P^{1 \times 1}(x) \right\} + b_1 \left\{ 1 - \frac{1}{3} \text{ReTr} P^{1 \times 2}(x) \right\} \right]
 + \sum_x \bar{\chi}(x) \left[D_W(U) + m_0 + i\mu\gamma^5\tau^3 + \frac{i}{4} C_{SW} \sigma^{\mu\nu} F^{\mu\nu}(U) \right] \chi(x) \]

- \(N_f = 2 \)
- \(b_0 = 1 - 8b_1, \ b_1 = -0.331 \)
 [Iwasaki; 1983]
- \(C_{SW} = 1.57551 \) from Padé fit of CP-PACS data

- Automatic \(O(a) \) improvement at maximal twist
- Clover term to stabilize simulations, control certain \(O(a^2) \) effects
- Important: clover term does not spoil \(O(a) \) improvement!
Isospin Breaking

In the past: affected stability of simulations and forced $m_\pi^\pm \gtrsim 230$ MeV

Shown here in units allowing comparison to c_2 LEC [JHEP 1305 (2013) 038]

In physical units $\sim 20(20)$ MeV at $a \sim 0.091(1)$ fm

confirms expectation from stable simulations

Note: computed on $24^3 \cdot 48$ lattice and $m_\pi^\pm \sim 340$ MeV, currently no variance reduction implemented
Isospin Breaking

Baryon sector

For Δ, isospin splitting still compatible with 0

For Ξ, indications that isospin splitting reduced markedly
 - For old $N_f = 2 + 1 + 1$, note linear scaling with a^2

$N_f = 2 + 1 + 1$ spectrum with old action [arXiv:1406.4310]
Strange/Charm Quark Masses

Mass ratios

Lattice 2013

- $\mu_c/\mu_s = 11.85(16)$ (HPQCD) [Phys. Rev. Lett. 104, 132003 (2010)]

⇒ ratios of decay constants consistent with PDG/FLAG values. But:

- Not impressive - ratios f_{PS}^b/f_{PS}^a have large uncertainties → with 2013 statistics, quite insensitive to heavy quark masses
- FLAG/HPQCD ratios → large uncertainties in quark masses
 - Ability to tune charm mass important for $N_f = 2 + 1 + 1$

- Can we do better?

- Because we are at the physical point, try to match m_K/m_π and m_D/m_π directly using linear interpolations
 ⇒ Check consistency with FLAG/HPQCD
Strange/Charm Quark Masses

Summary

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>L/a</td>
<td>48</td>
</tr>
<tr>
<td>T/a</td>
<td>96</td>
</tr>
<tr>
<td>(\beta)</td>
<td>2.10</td>
</tr>
<tr>
<td>(b_1)</td>
<td>-0.331</td>
</tr>
<tr>
<td>(\kappa)</td>
<td>0.13729</td>
</tr>
<tr>
<td>(a\mu_1)</td>
<td>(9 \times 10^{-4})</td>
</tr>
<tr>
<td>(C_{SW})</td>
<td>1.57551</td>
</tr>
<tr>
<td>(N_{\text{traj}})</td>
<td>(\geq 5000)</td>
</tr>
<tr>
<td>(< P >)</td>
<td>0.603526(4)</td>
</tr>
<tr>
<td>(\tau_{\text{int}}(< P >))</td>
<td>14.0(5.0)</td>
</tr>
<tr>
<td>(am_{\text{PCAC}})</td>
<td>(8(1) \times 10^{-5})</td>
</tr>
<tr>
<td>(m_\pi L)</td>
<td>3.00(2)</td>
</tr>
<tr>
<td>(a)</td>
<td>0.091(1) fm (^a)</td>
</tr>
</tbody>
</table>

- linearly interpolate \(m_K/m_\pi\) and \(m_D/m_\pi\) to physical values
- 1D/2D lin. model for other quantities to see effect of \(\mu_s, \mu_c\) quark mass tuning

\(\Rightarrow\) Discrepancies will provide hints of FS/discretisation artefacts

Analysis based on:
- 675 measurements
- Osterwalder-Seiler valence quarks
- fuzzed and local interpolating fields
- timeslice sources with spin dilution
- 16 mass combinations
- \(\mu_s/\mu_1 \in [26.4, 28.8]\)
- \(\mu_c/\mu_s \in [10.9, 13.3]\)

\(^a\)note: no FS corrections for \(f_\pi\), but same result from nucleon mass
Strange/Charm Quark Masses

matching m_K/m_π and m_D/m_π

\[
\begin{align*}
\frac{m_s}{m_{ud}} &= 27.73(17) \\
\frac{m_c}{m_{ud}} &= 344.8(2.2) \\
\frac{m_c}{m_s} &= 12.43(11)
\end{align*}
\]
Strange/Charm Quark Masses

Quark mass ratios in practice

- only very mild dependence on $a\mu_s$ tuning at physical point
- FLAG ratio and m_K/m_π consistent
- $a\mu_s$ from m_K/f_K comes with large uncertainty
- note: these are %-level effects!
Strange/Charm Quark Masses

Quark mass ratios in practice

\[\frac{m_{D_s}}{f_{D_s}} \]

- seems to prefer heavier \(a\mu_c \) from \(m_D/m_\pi \), but need to keep in mind \(O(a^2) \) artefacts

- from lattice \(m_{D_s}/f_{D_s} = 7.9(2) \) would seem to prefer even larger \(a\mu_c \)
Pseudoscalar Meson Decay Constants

Kaon decay constant

\[\frac{f_K}{f_\pi} \]

- old \(N_f = 2 \)
- new \(N_f = 2 \)
- tm-clover
- as shown previously, quite insensitive to \(\sim 10\% \) changes in \(a\mu_s \)
- but from old data, \(\mathcal{O}(a^2) \) effects not negligible!

B. Kostrzewa (bartosz.kostrzewa@desy.de)

mtmLQCD © the phys. point
Pseudoscalar Meson Decay Constants

D meson decay constant

\[\frac{f_D}{f_\pi} \]

- old \(N_f = 2 \) data
- new \(N_f = 2 \) tm-clover
- Residual discrepancy probably signpost for discretization artefacts (\(\sim 5\% \))

<table>
<thead>
<tr>
<th>(a) (fm)</th>
<th>(f_D(\text{lat}) / f_\pi(\text{PDG}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.054</td>
<td>1.5</td>
</tr>
<tr>
<td>0.067</td>
<td>1.6</td>
</tr>
<tr>
<td>0.085</td>
<td>1.7</td>
</tr>
<tr>
<td>0.098</td>
<td>1.8</td>
</tr>
</tbody>
</table>

\(m_\pi(\text{lat}) / m_\pi(\text{PDG}) \)²

B. Kostrzewa (bartosz.kostrzewa@desy.de)
Pseudoscalar Meson Decay Constants

D_s meson decay constant

\[\frac{f_{D_s}}{f_\pi} \]

- **old** $N_f = 2$
- **new** $N_f = 2$
- tm-clover
- without chiral extrapolation \rightarrow high statistical precision

\[\left(\frac{m_\pi^{(\text{lat})}}{m_\pi^{(\text{PDG})}} \right)^2 \]

- $a = 0.098$ fm
- $a = 0.085$ fm
- $a = 0.067$ fm
- $a = 0.054$ fm
- lat./lat. (this work)
- PDG/PDG

B. Kostrzewa (bartosz.kostrzewa@desy.de)
Pseudoscalar Meson Decay Constants

D_s and D meson decay constant ratio

\[\frac{f_{D_s}}{f_D} \]

- old $N_f = 2$
- old $N_f = 2$ chiral extrapolation
- new $N_f = 2$
- tm-clover
- good statistical precision
- \(\rightarrow \) will allow for good study of discretization artefacts

ETMC C.L. [2011]
PDG/PDG
lat./lat. (this work)

\[a = 0.054 \text{ fm} \]
\[a = 0.067 \text{ fm} \]
\[a = 0.085 \text{ fm} \]
\[a = 0.098 \text{ fm} \]

\[\left(\frac{m_{\pi}^{(\text{lat})}}{m_{\pi}^{(\text{PDG})}} \right)^2 \]

B. Kostrzewa (bartosz.kostrzewa@desy.de)
Pseudoscalar Meson Decay Constants

Summary

- $Q_{\text{lat}} \div Q_{\text{phys}}$ for example: $Q_{\text{lat}} = \frac{m_{\pi}^{\text{lat}}}{f_{\pi}^{\text{lat}}} \quad Q_{\text{phys}} = \frac{m_{\pi}^{\text{phys}}}{f_{\pi}^{\text{phys}}}$

- Using μ_s and μ_c from m_K/m_π and m_D/m_π matching
Preliminary Results

Pion $\langle x \rangle$

- $\langle x \rangle_\pi$
 - [nucl-ex/0702002]
 - $N_f = 2$ tm-clover
- Opportunity for conclusive result in near future, but requires effort also on pheno. side to improve error analysis.

- $\langle x \rangle_{MS}^{(r_0 M_\pi)^2}$
 - $\beta = 3.9$-ensembles $L = 24$
 - $\beta = 3.9$-ensembles $L = 32$
 - $\beta = 4.05$-ensembles $L = 32$
 - $\beta = 4.20$-ensembles $L = 48$
 - $N_f = 2$ tm-clover $L = 24$
 - $N_f = 2$ tm-clover $L = 48$
 - pheno
Preliminary Results

Nucleon mass

\[\frac{m_N}{m_\pi} \]

Full consistency with experiment

B. Kostrzewa (bartosz.kostrzewa@desy.de)

mtmLQCD © the phys. point

27nd June 2014
Conclusion and Outlook

- $N_f = 2, \beta = 2.1, L_s = 48$: high statistics
- Quite confident that isospin splitting is small for pion, baryons
- Meson observables with high precision
 \[\Rightarrow \] with added systematics and continuum limit can pin down:
 - FS / lattice artefacts
 - strange/charm unquenching
- Seem to be at 2-5 % level depending on quantity

- $N_f = 2 + 1 + 1$ sea quark tuning OK with this kind of uncertainty
 \[\Rightarrow \] At phys. point, use m_K/m_π and m_D/m_π as tuning condition
 \[\Rightarrow \] Work ongoing, but certain aspects of tuning turned out to be more involved than expected

- Outlook
 - $N_f = 2$ continuum limit
 - $N_f = 2 + 1 + 1$