

Comparison of lattice definitions of the topological charge

Krzysztof Cichy John von Neumann Institute for Computing (NIC), DESY Zeuthen, Germany Adam Mickiewicz University, Poznań, Poland

in collaboration with:

Arthur Dromard, Elena Garcia-Ramos, Chris Michael, Konstantin Ottnad, Carsten Urbach, Marc Wagner, Urs Wenger, Falk Zimmermann

Presentation
$\mathbf{outline}$

- Introduction
- Results
- Conclusions

1. Introduction

- Motivation
- Short overview of employed definitions
- 2. Results
 - Comparison at a single lattice spacing
 - Increase of correlation towards the continuum limit
 - Topological susceptibility
- 3. Conclusions

Presentation outline

Introduction

Motivation

- Definitions
- Index
- Spectral flow
- Spectral projectors
- Fermionic disc.
- Field theoretic
- Lattice setup
- Results
- Conclusions

Motivation

- theoretical
 - \star there are many definitions of the topological charge
 - \star which of them should one use for different purposes?
 - \diamond $\,$ to compute the topological susceptibility
 - \diamond to sort configurations according to the topological charge
 - \diamond for weighting results with the topological charge
 - \star what are the pros and cons of different definitions?
 - \star which definitions are theoretically clean and which are "suspicious"?
- practical
 - $\star~$ quite a lot of data for the topological charge from different definitions and several projects

Definitions

Presentation outline

Introduction

Motivation

Definitions Index

Spectral flow

Spectral projectors

Fermionic disc.

Field theoretic

Lattice setup

Results

Conclusions

- index of the overlap Dirac operator [K.C., E. García Ramos, K. Jansen]
- spectral flow of the Hermitian Wilson-Dirac operator [U. Wenger]
- spectral projectors [K.C., E. García Ramos, K. Jansen]
- fermionic from disconnected loops [C. Michael, K. Ottnad, C. Urbach, F. Zimmermann]
- field theoretic with HYP smearing [U. Wenger, F. Zimmermann]
- field theoretic with APE smearing [A. Dromard, M. Wagner, F. Zimmermann]
- field theoretic with cooling [A. Dromard, M. Wagner]
- field theoretic with gradient flow [U. Wenger]

Index of the overlap Dirac operator

Presentation outline

Introduction

Motivation

Definitions

Index

Spectral flow Spectral projectors Fermionic disc. Field theoretic Lattice setup

Results

Conclusions

- Chirally symmetric fermionic discretizations allow exact zero modes of the Dirac operator.
- The famous Atiyah-Singer index theorem [M. Atiyah, I.M. Singer, Ann. Math. 93, 139 (1971) 168] relates the topological charge to the number of zero modes of the Dirac operator:

 $Q = n_- - n_+$

- This is quite remarkable, because a property of gauge fields is linked to a fermionic observable.
- uniqueness: dependence on the *s* parameter of the kernel warning: locality [K. C., V. Drach, E. García Ramos, G. Herdoiza, K. Jansen, Nucl.Phys. **B**869 (2013) 131-163, arXiv:1211.1605 [hep-lat]]
- pros: theoretically clean, integer-valued, no renormalization
- cons: cost, cost, cost...

Presentation outline

- Introduction
- Motivation
- Definitions
- Index Spectral flow
- Spectral projectors Fermionic disc. Field theoretic Lattice setup
- Results
- Conclusions

Spectral flow of the Hermitian Wilson-Dirac operator

- closely related and actually equivalent to the index
- $\mathbf{uniqueness}$: dependence on the s parameter of the kernel
- pros: theoretically clean, integer-valued, no renormalization, one computation leads to the whole *s*-dependence of the index
- cons: cost (although still cheaper than index), non-trivial to analyze data

Presentation outline

- Introduction
- Motivation
- Definitions
- Index
- Spectral flow

Spectral projectors

Fermionic disc. Field theoretic Lattice setup

Results

Conclusions

Spectral projectors

- another fermionic definition, introduced in: [L. Giusti, M. Lüscher, 2008], [M. Lüscher, F. Palombi, 2010]
 - \mathbb{P}_M projector to the subspace of eigenmodes of $D^{\dagger}D$ with eigenvalues below M^2 , evaluated stochastically
 - $Q = \operatorname{Tr} \{\gamma_5 \mathbb{P}_M\}$ for chirally symmetric fermions
- spectral projectors are then also equivalent to the index (=stochastic way of counting the zero modes)
- for non-chirally symmetric fermions it still gives a clean definition, although chirality of modes is no longer $\pm 1 \longrightarrow \pm 1 + \mathcal{O}(a^2)$
- in practice, one evaluates the observable:

$$\mathcal{C} = \frac{1}{N} \sum_{k=1}^{N} \left(\mathbb{P}_M \eta_k, \gamma_5 \mathbb{P}_M \eta_k \right),$$

- uniqueness: dependence on the M of \mathbb{P}_M
- pros: theoretically clean, still rather cheap
- cons: stochastic ingredient, non-integer, Z_S/Z_P needed

Fermionic from disconnected loops

Presentation outline

- Introduction
- Motivation
- Definitions
- Index
- Spectral flow
- Spectral projectors

Fermionic disc.

- Field theoretic Lattice setup
- Results
- Conclusions

• another fermionic definition, given by Chris Michael:

$$N_f Q = m_q \sum \bar{\psi} \gamma_5 \psi = \sum \frac{m_q \gamma_5}{D + m_q},$$

in the limit as $m_q \to 0$.

- allows for a Q computation as a by-product of evaluation of disconnected loops
- uniqueness: yes
- pros: cheap if treated as a by-product
- cons: unclear to what extent it is valid, stochastic ingredient, non-integer, Z_S/Z_P needed

Presentation outline

Introduction

Motivation

Definitions

Index

Spectral flow

Spectral projectors

Fermionic disc. Field theoretic

Lattice setup

Results

Conclusions

Field theoretic

- a very natural definition
- in the continuum:

$$Q = \frac{1}{32\pi^2} \int d^4x \,\epsilon_{\mu\nu\rho\sigma} \mathrm{tr}[F_{\mu\nu}(x)F_{\rho\sigma}]$$

- on the lattice one has to choose some discretization
- renormalization:

 $q_R[U] = \operatorname{round}(Zq_{\operatorname{bare}}[U]),$

Z is the (non-zero) solution of:

$$\min \sum_{U} \left(Zq_{\text{bare}} - \text{round}(Zq_{\text{bare}}[U]) \right)^2$$

• smoothing of gauge fields needed

SEB TR9

Presentation

Introduction Motivation

Definitions

Spectral flow

Field theoretic Lattice setup

Spectral projectors Fermionic disc.

outline

Index

Results

Conclusions

Field theoretic

- smoothing:
 - ★ cooling an iterative minimization of the lattice action, eliminates rough topological fluctuations while keeping large instantons unchanged and decreases renormalization effects by smoothing out the UV noise
 - [B. Berg, 1981], [Y. Iwasaki et al., 1983], [M. Teper, 1985],
 - [E. Ilgenfritz et al., 1986]
 - ★ HYP/APE smearing [M. Albanese et al., 1987], [A. Hasenfratz,
 F. Knechtli, 2001]
 - \star gradient flow (GF) [M. Lüscher, 2010]
- GF is very important from the point of view of validity of the field theoretic approach
- uniqueness: discretization of F, level of smoothing
- pros: very cheap (but: cost of smoothing), theor. clean if GF used for smoothing and no renorm. then [M. Lüscher, P. Weisz, 2011]
- cons: HYP/APE or cooling a bit *ad hoc* (require renorm.)

Lattice setup

Ensemble	eta	lattice	$a\mu_l$	$\mu_R \; [\text{MeV}]$	κ_c	$L \; [\mathrm{fm}]$	$m_{\pi}L$
b40.16	3.90	$16^3 \times 32$	0.004	21	0.160856	1.4	2.5
c30.20	4.05	$20^3 \times 40$	0.003	19	0.157010	1.3	2.4
d20.24	4.20	$24^3 \times 48$	0.002	15	0.154073	1.3	2.4
e17.32	4.35	$32^3 \times 64$	0.00175	16	0.151740	1.5	2.4
Ensemble	eta	lattice	$a\mu_l$	$\mu_{l,R}$ [MeV]	κ_c	L [fm]	$m_{\pi}L$
A30.32	1.90	$32^3 \times 64$	0.0030	13	0.163272	2.8	4.0
A40.32	1.90	$32^3 \times 64$	0.0040	17	0.163270	2.8	4.5
A50.32	1.90	$32^3 \times 64$	0.0050	22	0.163267	2.8	5.1
A60.24	1.90	$24^3 \times 48$	0.0060	26	0.163265	2.1	4.2
A80.24	1.90	$24^3 \times 48$	0.0080	35	0.163260	2.1	4.8
B25.32	1.95	$32^3 \times 64$	0.0025	13	0.161240	2.5	3.4
B35.32	1.95	$32^3 \times 64$	0.0035	18	0.161240	2.5	4.0
B55.32	1.95	$32^3 \times 64$	0.0055	28	0.161236	2.5	5.0
B75.32	1.95	$32^3 \times 64$	0.0075	38	0.161232	2.5	5.8
B85.24	1.95	$24^3 \times 48$	0.0085	45	0.161231	1.9	4.7
D20.48	2.10	$48^3 \times 96$	0.0020	12	0.156357	2.9	3.9
D30.48	2.10	$48^3 \times 96$	0.0030	19	0.156355	2.9	4.7
D45.32	2.10	$32^3 \times 64$	0.0045	29	0.156315	1.9	3.9

Histograms – b40.16

LATTICE 2014 – New York – 12 / 27

Histograms – b40.16

Field theoretic definition

10 HYP iterations

40 HYP iterations

Krzysztof Cichy

LATTICE 2014 – New York – 13 / 27

Histograms – b40.16

Field theoretic definition with cooling

5 steps with tol. 5%

10 steps with tol. 1%

Krzysztof Cichy

LATTICE 2014 – New York – 14 / 27

Cooling vs. APE/HYP smearing

Field theoretic definition

cooling

APE/HYP smearing

Europeq.

955

ÂM

SFB TR9

Krzysztof Cichy

LATTICE 2014 - New York - 15 / 27

Krzysztof Cichy

LATTICE 2014 – New York – 16 / 27

LATTICE 2014 – New York – 17 / 27

Krzysztof Cichy

LATTICE 2014 – New York – 18 / 27

Krzysztof Cichy

LATTICE 2014 – New York – 19 / 27

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
1	1.000(0)	0.889(12)	0.950(7)	0.877(15)	0.951(4)	0.929(9)	0.924(10)	0.585(51)	0.473(45)	0.864(16)	0.827(21)	0.814(20)	0.180(59)	0.907(12)	0.889(15)	0.909(10)	0.838(19)	0.830(20)	0.810(21)	0.889(12)	0.848(18)
2	0.889(12)	1.000(0)	0.903(10)	0.881(11)	0.901(10)	0.893(10)	0.888(11)	0.570(42)	0.489(45)	0.849(16)	0.807(22)	0.792(22)	0.208(40)	0.892(11)	0.874(13)	0.987(1)	0.850(16)	0.836(18)	0.795(21)	1.000(0)	0.867(14)
3	0.950(7)	0.903(10)	1.000(0)	0.898(10)	0.990(2)	0.937(6)	0.933(6)	0.553(43)	0.461(48)	0.864(16)	0.822(22)	0.806(23)	0.168(44)	0.924(8)	0.906(9)	0.923(9)	0.847(16)	0.837(18)	0.808(20)	0.903(10)	0.863(14)
4	0.877(15)	0.881(11)	0.898(10)	1.000(0)	0.907(9)	0.855(13)	0.847(13)	0.499(46)	0.395(50)	0.775(25)	0.733(31)	0.715(33)	0.184(41)	0.834(15)	0.811(17)	0.875(12)	0.770(21)	0.752(24)	0.725(25)	0.881(11)	0.782(21)
5	0.951(4)	0.901(10)	0.990(2)	0.907(9)	1.000(0)	0.935(6)	0.928(6)	0.549(42)	0.456(51)	0.865(15)	0.823(21)	0.808(22)	0.173(43)	0.919(8)	0.901(9)	0.920(8)	0.845(15)	0.836(16)	0.806(20)	0.901(10)	0.859(14)
6	0.929(9)	0.893(10)	0.937(6)	0.855(13)	0.935(6)	1.000(0)	0.994(0)	0.561(46)	0.455(44)	0.916(9)	0.867(16)	0.853(17)	0.155(45)	0.967(3)	0.944(5)	0.928(7)	0.882(12)	0.880(12)	0.834(15)	0.893(10)	0.898(10)
7	0.924(10)	0.888(11)	0.933(6)	0.847(13)	0.928(6)	0.994(0)	1.000(0)	0.561(48)	0.454(47)	0.923(8)	0.875(16)	0.860(17)	0.154(41)	0.972(2)	0.951(5)	0.926(8)	0.892(11)	0.890(11)	0.842(15)	0.888(11)	0.906(10)
8	0.585(51)	0.570(42)	0.553(43)	0.499(46)	0.549(42)	0.561(46)	0.561(48)	1.000(0)	0.593(34)	0.707(46)	0.716(44)	0.716(47)	0.093(39)	0.619(40)	0.608(41)	0.581(42)	0.619(38)	0.613(40)	0.649(36)	0.570(42)	0.613(40)
9	0.473(45)	0.489(45)	0.461(48)	0.395(50)	0.456(51)	0.455(44)	0.454(47)	0.593(34)	1.000(0)	0.545(44)	0.558(42)	0.566(38)	0.053(45)	0.516(47)	0.502(52)	0.501(46)	0.519(45)	0.510(44)	0.553(39)	0.489(45)	0.520(45)
10	0.864(16)	0.849(16)	0.864(16)	0.775(25)	0.865(15)	0.916(9)	0.923(8)	0.707(46)	0.545(44)	1.000(0)	0.976(3)	0.962(4)	0.152(56)	0.971(3)	0.967(4)	0.904(10)	0.981(3)	0.974(4)	0.954(6)	0.849(16)	0.988(1)
11	0.827(21)	0.807(22)	0.822(22)	0.733(31)	0.823(21)	0.867(16)	0.875(16)	0.716(44)	0.558(42)	0.976(3)	1.000(0)	0.992(1)	0.133(58)	0.934(9)	0.938(8)	0.859(16)	0.982(3)	0.966(6)	0.978(4)	0.807(22)	0.973(5)
12	0.814(20)	0.792(22)	0.806(23)	0.715(33)	0.808(22)	0.853(17)	0.860(17)	0.716(47)	0.566(38)	0.962(4)	0.992(1)	1.000(0)	0.139(57)	0.918(10)	0.922(9)	0.843(18)	0.964(6)	0.952(7)	0.983(3)	0.792(22)	0.955(7)
13	0.180(59)	0.208(40)	0.168(44)	0.184(41)	0.173(43)	0.155(45)	0.154(41)	0.093(39)	0.053(45)	0.152(56)	0.133(58)	0.139(57)	1.000(0)	0.168(45)	0.166(50)	0.200(42)	0.149(45)	0.175(47)	0.128(45)	0.208(40)	0.161(45)
14	0.907(12)	0.892(11)	0.924(8)	0.834(15)	0.919(8)	0.967(3)	0.972(2)	0.619(40)	0.516(47)	0.971(3)	0.934(9)	0.918(10)	0.168(45)	1.000(0)	0.987(1)	0.935(7)	0.943(6)	0.938(8)	0.903(11)	0.892(11)	0.954(5)
15	0.889(15)	0.874(13)	0.906(9)	0.811(17)	0.901(9)	0.944(5)	0.951(5)	0.608(41)	0.502(52)	0.967(4)	0.938(8)	0.922(9)	0.166(50)	0.987(1)	1.000(0)	0.919(9)	0.946(6)	0.941(7)	0.907(11)	0.874(13)	0.955(5)
16	0.909(10)	0.987(1)	0.923(9)	0.875(12)	0.920(8)	0.928(7)	0.926(8)	0.581(42)	0.501(46)	0.904(10)	0.859(16)	0.843(18)	0.200(42)	0.935(7)	0.919(9)	1.000(0)	0.897(11)	0.887(13)	0.840(18)	0.987(1)	0.915(9)
17	0.838(19)	0.850(16)	0.847(16)	0.770(21)	0.845(15)	0.882(12)	0.892(11)	0.619(38)	0.519(45)	0.981(3)	0.982(3)	0.964(6)	0.149(45)	0.943(6)	0.946(6)	0.897(11)	1.000(0)	0.979(3)	0.955(6)	0.850(16)	0.994(0)
18	0.830(20)	0.836(18)	0.837(18)	0.752(24)	0.836(16)	0.880(12)	0.890(11)	0.613(40)	0.510(44)	0.974(4)	0.966(6)	0.952(7)	0.175(47)	0.938(8)	0.941(7)	0.887(13)	0.979(3)	1.000(0)	0.939(8)	0.836(18)	0.979(4)
19	0.810(21)	0.795(21)	0.808(20)	0.725(25)	0.806(20)	0.834(15)	0.842(15)	0.649(36)	0.553(39)	0.954(6)	0.978(4)	0.983(3)	0.128(45)	0.903(11)	0.907(11)	0.840(18)	0.955(6)	0.939(8)	1.000(0)	0.795(21)	0.942(7)
20	0.889(12)	1.000(0)	0.903(10)	0.881(11)	0.901(10)	0.893(10)	0.888(11)	0.570(42)	0.489(45)	0.849(16)	0.807(22)	0.792(22)	0.208(40)	0.892(11)	0.874(13)	0.987(1)	0.850(16)	0.836(18)	0.795(21)	1.000(0)	0.867(14)
21	0.848(18)	0.867(14)	0.863(14)	0.782(21)	0.859(14)	0.898(10)	0.906(10)	0.613(40)	0.520(45)	0.988(1)	0.973(5)	0.955(7)	0.161(45)	0.954(5)	0.955(5)	0.915(9)	0.994(0)	0.979(4)	0.942(7)	0.867(14)	1.000(0)

1 = index nonSmear s = 0.4, 2 = index nonSmear s = 0, 3 = index HYP1 s = 0, 4 = SF HYP1 s = 0.75, 5 = SF HYP1 s = 0, 6 = SF HYP5 s = 0.5, 7 = SF HYP5 s = 0, 8 = spec.proj. nonSmear, 9 = fermionic (from disc. loops), 10 = GF flow time t_0 , 11 = GF flow time $2t_0$, 12 = GF flow time $3t_0$, 13 = field theor. nonSmear, 14 = field. theor. HYP10, 15 = field. theor. HYP40, 16 = field. theor. APE10, 17 = field. theor. APE30, 18 = field theor.cool. tol. 5%, 19 = field theor. cool.tol. 1%, 20 = field theor. cool.10 steps, 21 = field theor.cool. 30 steps

Plot of correlations

Results

Histograms Cool. vs.

APE/HYP

Pair comparisons

Correlations

Topo. susc.

Conclusions

method 2

Krzysztof Cichy

LATTICE 2014 – New York – 21 / 27

Correlation towards the continuum limit

0.18

0.2

Topological susceptibility

used only pion masses $m_{\pi} \leq 400 \text{ MeV}$

spectral projectors: $r_0 \Sigma^{1/3} = 0.646(59)$

Free-level
$$\chi$$
PT fit: $r_0^4 \chi = \frac{r_0^3 \Sigma \cdot r_0 \mu_R}{2}$

compare to direct determination

 $[\mathrm{K.C.,\ E.\ Garcı́a\ Ramos,\ K.\ Jansen,\ JHEP\ 10(2013)175}]$

$$r_0 \Sigma_{cont,N_f=2+1+1}^{1/3} = 0.680(29)$$

Krzysztof Cichy

fermionic: $r_0 \Sigma^{1/3} = 0.644(20)$

Topological susceptibility

spectral projectors: $r_0 \Sigma^{1/3} = 0.612(57)$

Tree-level
$$\chi$$
PT fit: $r_0^4 \chi = \frac{r_0^3 \Sigma \cdot r_0 \mu_R}{2}$

compare to direct determination

 $[\mathrm{K.C.,\ E.\ Garcı́a\ Ramos,\ K.\ Jansen,\ JHEP\ 10(2013)175}]$

$$r_0 \Sigma_{cont,N_f=2+1+1}^{1/3} = 0.680(29)$$

Krzysztof Cichy

fermionic: $r_0 \Sigma^{1/3} = 0.622(19)$

Presentation
outline

Introduction

Results

Conclusions

Cleanness

Conclusions

My subjective ranking of theoretical cleanness

From the cleanest to the problematic ones:

- index of the overlap Dirac operator spectral flow field theoretic with gradient flow spectral projectors
- 2. field theoretic with smearing
- 3. field theoretic with cooling
- 4. fermionic from disconnected loops

The theoretical progress of recent years (spectral projectors, gradient flow) makes the non-clean definitions rather unattractive – there is basically no need any more to use them for reasons of (relatively small) computational intensity.

Conclusions

Presentation outline

Introduction

Results

Conclusions

Cleanness

 $\operatorname{Conclusions}$

- There are many definitions of the topological charge on the lattice
- No clear answer which definition to use
- We observe high correlations between different definitions...
- ...and these correlations seem to increase towards the continuum limit
- Perhaps the best compromise between theoretical cleanness and computational cost: field theoretic with gradient flow

[M. Bruno, S. Schaefer, R. Sommer, arXiv:1406.5363 [hep-lat]]

Thank you for attention!

Krzysztof Cichy