

Recent results on the Equation of State of QCD

with: S. Borsanyi, S. Dürr, Z. Fodor, C. Hoelbling, S.D. Katz, C. Ratti, K.K. Szabo (Wuppertal-Budapest collaboration)

26.Jun.2014| Stefan Krieg

Overview

- 1. N_f=2+1 Equation of State (EoS)
- 2. Update on the $N_f=2+1+1$ EoS
 - 1. LCP
 - 2. Renormalization
 - 3. Preliminary results (w/o systematics)
- 3. Conclusion and outlook

N_f=2+1 EoS

N_f=2+1 EoS

 M_{π} = phys, large volumes, pressure scale from mass integration Systematics: histogram method

- vacuum fits, 7 different fit models (incl. direct subtr. w. interp.)
- continuum extrapolation
 - Vary node points (8 different sets)
 - Include or leave out leave N_t=6
 - With or without improvement factors
 - We use two different scale settings (f_k vs. w₀)
 - Fit includes a² or a² and a⁴ terms
- → This results in $7 \times 8 \times 2 \times 2 \times 2 = 896$ different fits
- Histogram method: weighting w/o AICc, checked against Q
- Agreement with HRG at low T

N_f=2+1+1 **EoS: perturbation theory**

Mitglied der Helmholtz-Gemeinschaft

N_f=2+1+1 **EoS: LCP**

High precision LCP

- 3 regions, depending on applicable algorithms
- Overlap between regions
- We use
 - Spectroscopy (a > 0.08 fm)
 - Flavor symmetric point (0.08 fm > a > 0.05 fm)
 - Step scaling procedure (a < 0.05 fm) (e.g. WB, PLB 730, 99)

N_f=2+1+1 EoS: LCP, region I

- LCP: tuned by spectral quantities, M_{π}/f_{π} , $(2M_{K}^{2}-M_{\pi}^{2})/f_{\pi}^{2}$ = phys
 - At fixed β , $(M_{\pi}/f_{\pi}, (2M_{\kappa}^2 M_{\pi}^2)/f_{\pi}^2)$ bracket at $\pm 2\%$

N_f=2+1+1 EoS: LCP, region I

- LCP: tuned by spectral quantities, M_{π}/f_{π} , $(2M_{K}-M_{\pi})/f_{\pi} = phys$
 - At fixed β , $(M_{\pi}/f_{\pi}, (2M_{K}-M_{\pi})/f_{\pi})$ bracket at $\pm 2\%$

N_f=2+1+1 EoS: LCP, region II

- Procedure based on f_{PS} for 0.08 > a > 0.05 fm
- $N_f=3+1$ in SU(3) flavor symmetrical point (\overline{m} , m_c)
- Use region I param's
- Measure f_{PS} and M_{PS}
- Extrapolate towards continuum
- At target β, simulate several m̄
- Interpolate such that M_{PS}/f_{PS} is reproduced

N_f=2+1+1 EoS: LCP, region II

- Procedure based on f_{PS} for 0.08 > a > 0.05 fm
- $N_f=3+1$ in SU(3) flavor symmetrical point (\overline{m} , m_s)
- Use region I param's
- Measure f_{PS} and M_{PS}
- Extrapolate towards continuum
- At target β, simulate several m̄
- Interpolate such that M_{PS}/f_{PS} is reproduced

der Helmholtz-Gemeinschaft

N_f=2+1+1 EoS: LCP, region III

- Step scaling procedure based on w_0 for small a < 0.05 fm
 - Choose a volume dependent observable

$$\mathcal{O} = \left. t \frac{d}{dt} \left[t^2 E(t) \right] \right|_{0.01L^2}$$

- Simulate at fixed V with existing LCP
 - $16^4 (a_0)$
 - 20⁴ (a₁)
 - 24⁴ (a₂)

PLB **730**, 99 1309.5258

- Extrapolate to $a_3 = 24/32 \cdot a_2$
- Tune β (L³T = 32⁴) to match result

N_f=2+1+1 EoS: renormalization

- Half-temperature subtraction (Wuppertal-Budapest, JHEP 1207 056; PoS CPOD07 027) $I_{sub}(T) = (I(T) - I(T/2))_{\beta(a_0)} + (I(T/2) - I('T=0'))_{\beta(2a_0)}$
- Make use of N_f=2+1 EoS where applicable
- Requires new simulations, however these are still in the high-temperature phase (Nt=8 \rightarrow Nt=16, ...)
- More than one intermediate step is possible
 - Require final step being below a threshold temperature T_t <250 MeV
 - Vary threshold temperature for final result

Update: N_f=2+1+1 **EoS**

HTL: JHEP 1108 053

Update: N_f=2+1+1 EoS

Conclusion & outlook

- N_f=2+1 EoS
- Charmed LCP
 - 3 regions optimizing precision
 - Spectroscopy (a > 0.08 fm)
 - Flavor symmetric point (0.08 fm > a > 0.05 fm)
 - Step scaling procedure (a < 0.05 fm)
- Renormalization
 - "half-subtraction" until $T_t < 250 \text{ MeV}$ (to be tuned)
 - At T_t < 250 MeV use full 2+1 result (PLB 730, 99)
- Preliminary data looks promising
- In the future: go to N_t=12

Thank You.

Backup

EoS: Scale setting

N_f=2+1 EoS: 214 MeV crosscheck

N_f=2+1 EoS: pressure et al.

N_f=2+1 EoS: Normalization

N_f=2+1 EoS: Normalization

N_f=2+1 EoS: pressure et al.

N_f=2+1 EoS: Comparison

