Topological susceptibility from the Dirac spectrum and the Witten-Veneziano formula

Elena García Ramos with K.Cichy, K.Jansen, C. Michael, K.Ottnad & C.Urbach

Lattice 2014

Columbia University, New York, 25 June 2014

Introduction

Spectral Projectors

Tests

Results

Conclusions

Columbia University, 25-06-14 Elena García Ramos χ_{∞} from the Dirac spectrum and the W-V formula

(不良) (不良)

∃ 990

Witten-Veneziano Formula

 $\star~$ Relation between $m_{\eta'}$ and χ_{∞}

$$\frac{f_{\pi}^2}{4N_f}\left(m_{\eta}^2+m_{\eta'}^2-2m_K^2\right)=\chi_{\infty}$$

* Formula obtained in the large N_c limit.

$$\star$$
 In the chiral limit $rac{t_\pi^2}{4N_r}m_{\eta'}^2=\chi_\infty$

(Veneziano, 1979) (Witten, 1979)

< 臣 → 臣

Setup

- * $N_{\rm f} = 2 + 1 + 1$ dynamical fermions
- * Wilson Twisted Mass Action at maximal twist
- ⋆ Iwasaki Gauge Action

(Baron et al., 2010, 2011) (Frezzotti & Rossi, 2003, 2004) (Iwasaki, 1985)

ensemble	β	L	$a\mu_l$	$a\mu_{\sigma}$	$a\mu_{\delta}$	r_0/a	<i>a</i> (fm)	L	κ_c
A30.32	1.90	32	0.003	0.015	0.190	5.231(38)	0.0863(4)	2.8	0.1632720
A40.24	1.90	32	0.004	0.015	0.190	5.231(38)	0.0863(4)	2.1	0.1632700
A40.32	1.90	32	0.004	0.015	0.190	5.231(38)	0.0863(4)	2.8	0.1632700
A60.24	1.90	24	0.006	0.015	0.190	5.231(38)	0.0863(4)	2.1	0.1632650
A80.24	1.90	24	0.008	0.015	0.190	5.231(38)	0.0863(4)	2.1	0.1632600
A80.24s	1.90	24	0.008	0.015	0.197	5.231(38)	0.0863(4)	2.1	0.1632040
A100.24	1.90	24	0.01	0.015	0.190	5.231(38)	0.0863(4)	2.1	0.1632550
A100.24s	1.90	24	0.01	0.015	0.197	5.231(38)	0.0863(4)	2.1	0.1631960
B25.32	1.95	32	0.0025	0.035	0.197	5.710(41)	0.0779(4)	2.5	0.1612400
B35.32	1.95	32	0.0035	0.035	0.197	5.710(41)	0.0779(4)	2.5	0.1612400
B55.32	1.95	32	0.0055	0.035	0.197	5.710(41)	0.0779(4)	2.5	0.1612360
B75.32	1.95	32	0.0075	0.035	0.197	5.710(41)	0.0779(4)	2.5	0.1612320
B85.24	1.95	24	0.0085	0.035	0.197	5.710(41)	0.0779(4)	1.9	0.1612312
D45.32	2.10	32	0.0045	0.120	0.1385	7.538(58)	0.0607(2)	1.9	0.156315
D30.48	2.10	48	0.0030	0.120	0.1385	7.538(58)	0.0607(2)	2.9	0.156355
D20.48	2.10	48	0.0020	0.120	0.1385	7.538(58)	0.0607(2)	2.9	0.156357
D15.48	2.10	48	0.0015	0.120	0.1385	7.538(58)	0.0607(2)	2.9	0.156361

★ 문 ► ★ 문 ► ...

Setup

- Quenched ensembles generated matching the physical situation of the dynamical ensembles.
- ★ Iwasaki Action

β	Volume	r_0/a	$a\mu_l^{valence_l}$	$r_0 \mu$	κ_c^{χ}
2.37	$20^{3} \times 40$	3.59(2)(3)	0.0087	0.0312	0.158738
2.48	$24^3 \times 48$	4.28(1)(5)	0.0073	0.0309	0.154928
2.67	$32^{3} \times 64$	5.69(2)(3)	0.0055	0.0314	0.150269
2.85	$40^3 \times 80$	7.29(7)(1)	0.0043	0.0313	0.147180

* $N_f = 2 + 1 + 1$ ensemble matched:

ensemble	β	volume	r_0/a	$a\mu_l$	κ_c	<i>a</i> (fm)	L
B55.32	1.95	32×64	5.710(41)	0.0055	0.1612360	0.0779(4)	2.5

문 ▶ ★ 문 ▶

Image: Image:

3

Topological Susceptibility I

(See Krzysztof Cichy's talk)

э.

 $\chi_{
m top}$ is related to distribution of topological charge

$$\chi_{\rm top} = \int d^4 x \langle q(x) q(0) \rangle$$

Topological Charge density ~> property of the gauge fields:

$$Q = \int d^4 x \ q(x); \qquad q(x) = \frac{1}{32\pi^2} \epsilon_{\mu\nu\lambda\sigma} \operatorname{tr} \{F_{\mu\nu}F_{\lambda\sigma}\}$$

- Direct computation ~> non-integrable short-distance singularities.
- Index Theorem:

$$Q_{top} = n_{-} - n_{+}; \qquad \chi_{top} = \frac{\langle Q_{top}^2 \rangle}{V}$$

→ Relates topological charge and number of zero modes of the Dirac operator.

. . . .

----- We have to simulate chiral fermions ----- too expensive for large volumes.

Topological Susceptibility II

Alternative definition using chiral fermions:

(Giusti, Rossi & Testa, 2004)

Topological susceptibility can be defined in a universal way: (Lüscher, 2004)

 $\chi_{top} = m_1 \dots m_s \times a^{ds-4} \sum_{x_1 \dots x_{s-1}} \langle P_{r1}(x_1) S_{12}(x_2) \dots S_{r-1r}(x_r) \times P_{sr+1}(x_{r+1}) S_{r+1r+2}(x_{r+2}) \dots S_{s-1s}(x_0) \rangle$

where $P_{ab}(x) = \overline{\psi}_a(x)\gamma_5\psi_b(x)$ and $S_{ab}(x) = \overline{\psi}_a(x)\psi_b(x)$

Topological susceptibility in the continuum:

$$\chi_{top} = m_1 \dots m_5 \int d^4 x_1 \dots d^4 x_4 \langle P_{31}(x_1) S_{12}(x_2) S_{23}(x_3) P_{54}(x_4) S_{45}(0) \rangle$$

this correlation function is free of short-distance singularities for number of densities ≥ 5

$$\chi_{top} = \frac{Z_S^2}{Z_p^2} \frac{\langle \operatorname{Tr} \{\gamma_5 \mathbb{P}_M\} \operatorname{Tr} \{\gamma_5 \mathbb{P}_M\} \rangle}{V}$$

Application to Twisted Mass Fermions

(K. Cichy, E.G.R, K.Jansen, 2014)

▲□▶ ▲冊▶ ▲三▶ ▲三▶ 三三 ろのの

Easy way to understand Spectral Projectors

• mode number $\nu \rightsquigarrow$ number of evils below threshold *M*.

(Giusti & Lüscher, 2008)

3

• Spectral Projector \mathbb{P}_M to compute $\nu(M, m)$

$$\nu(M, m) = \langle \operatorname{Tr} \{ \mathbb{P}_M \} \rangle$$

Approximation of ℙ_M:

 $\langle \mathrm{Tr} \{ \mathbb{P}_M \} \rangle$ "simply" counts eigenvalues of $D^{\dagger} D$

- \rightarrow h(x) is an approximation to the step function $\theta(-x)$ in the interval [-1, 1]
- In the case of the topological susceptibility:

$$\chi_{top} = \frac{Z_s^2}{Z_p^2} \frac{\langle \mathrm{Tr} \{\gamma_5 \mathbb{P}_M\} \mathrm{Tr} \{\gamma_5 \mathbb{P}_M\} \rangle}{V}$$
(1)

even under
$$\mathcal{R}_5^{1,2}: \begin{cases} \chi(x_0, \mathbf{x}) \to i\tau^{1,2}\gamma_5\chi(x_0, \mathbf{x}), \\ \overline{\chi}(x_0, \mathbf{x}) \to i\overline{\chi}(x_0, \mathbf{x})\gamma_5\tau^{1,2}, \end{cases}$$
 automatic $\mathcal{O}(a)$ improvement

All odd terms vanish!!

< E > < E > ...

3

* Analogous representation of the topological susceptibility

$$\begin{split} \chi_{top} &= \int d^{A}x_{1} \dots d^{A}x_{5} \left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4}) \right. S_{56}^{+}(x_{5})P_{65}^{-}(0) \right\rangle \\ & S_{ab}^{\pm} = \bar{\chi}_{a}\tau^{\pm}\chi_{b}, P_{ab}^{\pm} = \bar{\chi}_{a}\gamma_{5}\tau^{\pm}\chi_{b} \end{split}$$

★ Symanzik expansion at maximal twist:

$$\int d^{4}x_{1}d^{4}x_{2}d^{4}x_{3}d^{4}x_{4}d^{4}x_{5}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad S_{56}^{+}(x_{5})P_{65}^{-}(0)\right\rangle =$$

$$= \int d^{4}x_{1}d^{4}x_{2}d^{4}x_{3}d^{4}x_{5}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad S_{56}^{+}(x_{5})P_{65}^{-}(0)\right\rangle_{0} + \frac{\text{contact}}{\text{terms}} + \mathcal{O}(d^{2}x_{3})P_{34}^{-}(x_{4}) + \mathcal{O}(d^{2}x_{3})P_{65}^{-}(x_{5})P_{6}^{-}(x_{5})P_{6}^{-}(x_{5})P_{6}^{-}(x_{5})P_{6}^{-}(x_{5})P_{6}^{-}(x_{5})P_{6}^{-}(x_{5})P_{6}^{-}(x_{5})P_{6}^{-}(x_{5})P_{6}^{-}(x_{5})P_{6}^{-}(x_{5})P_{6}^{-}(x_{5})P_{6}^{-}(x_{5})P_{6}^{-}(x_{5})P_{6}^{-}(x_{5})P_{6}^{-}(x_{5})P_{6}^{-}(x_{5})P_{6}^{-}($$

★ Contacts terms \rightarrow OPE

Only terms which lead to $\mathcal{O}(a)$ contributions

$$P_{ab}^{+}(x)S_{ac}^{-}(0) \stackrel{x \to 0}{\sim} C_{1}(x)P_{ac}^{\uparrow}(0) \qquad P_{ac}^{\uparrow} = \overline{\psi}_{a}\gamma_{5}\frac{1}{2}(1+\tau^{3})\psi_{c}$$

$$P_{ab}^{+}(x)P_{bc}^{-}(0) \stackrel{x \to 0}{\sim} C_{2}(x)S_{ac}^{\uparrow}(0) \qquad S_{ac}^{\uparrow} = \overline{\psi}_{a}\frac{1}{2}(1+\tau^{3})\psi_{c}$$

even under
$$\mathcal{R}_5^{1,2}: \begin{cases} \chi(x_0, \mathbf{x}) \to i\tau^{1,2}\gamma_5\chi(x_0, \mathbf{x}), \\ \overline{\chi}(x_0, \mathbf{x}) \to i\overline{\chi}(x_0, \mathbf{x})\gamma_5\tau^{1,2}, \end{cases}$$
 automatic $\mathcal{O}(a)$ improvement

All odd terms vanish!!

< E > < E > ...

3

* Analogous representation of the topological susceptibility

$$\begin{split} \chi_{top} &= \int d^{4}x_{1} \dots d^{4}x_{5} \left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4}) \right. S_{56}^{+}(x_{5})P_{65}^{-}(0) \right\rangle \checkmark \\ S_{ab}^{\pm} &= \bar{\chi}_{a}\tau^{\pm}\chi_{b}, P_{ab}^{\pm} = \bar{\chi}_{a}\gamma_{5}\tau^{\pm}\chi_{b} \end{split}$$

Symanzik expansion at maximal twist:

$$\int d^{4}x_{1}d^{4}x_{2}d^{4}x_{3}d^{4}x_{4}d^{4}x_{5}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad S_{56}^{+}(x_{5})P_{65}^{-}(0)\right\rangle =$$

$$= \int d^{4}x_{1}d^{4}x_{2}d^{4}x_{3}d^{4}x_{5}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad S_{56}^{+}(x_{5})P_{65}^{-}(0)\right\rangle_{0} + \frac{\text{contact}}{\text{terms}} + \mathcal{O}(d^{2}x_{5})^{2} \left\langle S_{41}^{+}(x_{5})P_{42}^{-}(x_{5})P_{43}^{-}(x_{5})P_{65}^{-}(0)\right\rangle_{0} + \frac{\text{contact}}{\text{terms}} + \mathcal{O}(d^{2}x_{5})^{2} \left\langle S_{41}^{+}(x_{5})P_{42}^{-}(x_{5})P_{65}^{-}(0)\right\rangle_{0} + \frac{1}{100} \left\langle S_{56}^{+}(x_{5})P_{65}^{-}(0)\right\rangle_{0} + \frac{1}{100} \left\langle S_{56}^{+}(x_{5})P_{65}^{+}(x_{5})P_{65}^{-}(0)\right\rangle_{0} + \frac{1}{100} \left\langle S_{56}^{+}(x_{5})P_{6}^{-}(0)\right\rangle_{0} + \frac{1}{100} \left\langle S_{56}^{+}($$

 \star Contacts terms \rightarrow OPE

Only terms which lead to $\mathcal{O}(a)$ contributions

$$P_{ab}^{+}(x)S_{ac}^{-}(0) \stackrel{x \to 0}{\sim} C_{1}(x)P_{ac}^{\uparrow}(0) \qquad P_{ac}^{\uparrow} = \overline{\psi}_{a}\gamma_{5}\frac{1}{2}(1+\tau^{3})\psi_{c}$$

$$P_{ab}^{+}(x)P_{bc}^{-}(0) \stackrel{x \to 0}{\sim} C_{2}(x)S_{ac}^{\uparrow}(0) \qquad S_{ac}^{\uparrow} = \overline{\psi}_{a}\frac{1}{2}(1+\tau^{3})\psi_{c}$$

even under
$$\mathcal{R}_5^{1,2}: \begin{cases} \chi(x_0, \mathbf{x}) \to i\tau^{1,2}\gamma_5\chi(x_0, \mathbf{x}), \\ \overline{\chi}(x_0, \mathbf{x}) \to i\overline{\chi}(x_0, \mathbf{x})\gamma_5\tau^{1,2}, \end{cases}$$
 automatic $\mathcal{O}(a)$ improvement

All odd terms vanish!!

★ Analogous representation of the topological susceptibility

$$\begin{split} \chi_{\rm top} &= \int d^4 x_1 \dots d^4 x_5 \left\langle S^+_{41}(x_1) P^-_{12}(x_2) P^+_{23}(x_3) P^-_{34}(x_4) \right. S^+_{56}(x_5) P^-_{65}(0) \right\rangle \\ & S^\pm_{ab} = \bar{\chi}_a \tau^\pm \chi_b, P^\pm_{ab} = \bar{\chi}_a \gamma_5 \tau^\pm \chi_b \end{split}$$

Symanzik expansion at maximal twist:

$$\int \sigma^4 x_1 \sigma^4 x_2 \sigma^4 x_3 \sigma^4 x_4 \sigma^4 x_5 \left\langle S_{41}^+(x_1) P_{12}^-(x_2) P_{23}^+(x_3) P_{34}^-(x_4) \quad S_{56}^+(x_5) P_{65}^-(0) \right\rangle =$$

$$= \int \sigma^4 x_1 \sigma^4 x_2 \sigma^4 x_3 \sigma^4 x_4 \sigma^4 x_5 \left\langle S_{41}^+(x_1) P_{12}^-(x_2) P_{23}^+(x_3) P_{34}^-(x_4) \quad S_{56}^+(x_5) P_{65}^-(0) \right\rangle_0 + \frac{\text{contact}}{\text{terms}} + \mathcal{O}(\sigma^2)$$

★ Contacts terms \rightarrow OPE

Only terms which lead to $\mathcal{O}(a)$ contributions

 $\begin{aligned} P^{+}_{ab}(x)S^{-}_{ac}(0) &\stackrel{x\to0}{\sim} C_{1}(x)P^{+}_{ac}(0) & P^{+}_{ac}=\overline{\psi}_{a}\gamma_{5}\frac{1}{2}(1+\tau^{3})\psi_{c} \\ P^{+}_{ab}(x)P^{-}_{bc}(0) &\stackrel{x\to0}{\sim} C_{2}(x)S^{+}_{ac}(0) & S^{+}_{ac}=\overline{\psi}_{a}\frac{1}{2}(1+\tau^{3})\psi_{c} \end{aligned}$

even under
$$\mathcal{R}_5^{1,2}: \begin{cases} \chi(x_0, \mathbf{x}) \to i\tau^{1,2}\gamma_5\chi(x_0, \mathbf{x}), \\ \overline{\chi}(x_0, \mathbf{x}) \to i\overline{\chi}(x_0, \mathbf{x})\gamma_5\tau^{1,2}, \end{cases}$$
 automatic $\mathcal{O}(a)$ improvement

All odd terms vanish!!

∢ 臣 →

3

* Analogous representation of the topological susceptibility

$$\begin{split} \chi_{\rm top} &= \int d^4 x_1 \dots d^4 x_5 \left\langle S^+_{41}(x_1) P^-_{12}(x_2) P^+_{23}(x_3) P^-_{34}(x_4) \right. S^+_{56}(x_5) P^-_{65}(0) \right\rangle \\ & S^\pm_{ab} = \bar{\chi}_a \tau^\pm \chi_b, P^\pm_{ab} = \bar{\chi}_a \gamma_5 \tau^\pm \chi_b \end{split}$$

★ Symanzik expansion at maximal twist:

$$\int d^{4}x_{1}d^{4}x_{2}d^{4}x_{3}d^{4}x_{4}d^{4}x_{5} \left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad S_{56}^{+}(x_{5})P_{65}^{-}(0) \right\rangle =$$

$$= \int d^{4}x_{1}d^{4}x_{2}d^{4}x_{3}d^{4}x_{4}d^{4}x_{5} \left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad S_{56}^{+}(x_{5})P_{65}^{-}(0) \right\rangle_{0} + \frac{\text{contact}}{\text{terms}} + \mathcal{O}(d^{2})$$

* Contacts terms
$$\rightarrow OPE$$

Only terms which lead to $\mathcal{O}(a)$ contributions
 \downarrow
 $P_{ab}^{+}(x)S_{ac}^{-}(0) \xrightarrow{x \to 0} C_{1}(x)P_{ac}^{+}(0) \qquad P_{ac}^{\uparrow} = \overline{\psi}_{a}\gamma_{5}\frac{1}{2}(1+\tau^{3})\psi_{c}$
 $P_{ab}^{+}(x)P_{bc}^{-}(0) \xrightarrow{x \to 0} C_{2}(x)S_{ac}^{\uparrow}(0) \qquad S_{ac}^{\uparrow} = \overline{\psi}_{a}\frac{1}{2}(1+\tau^{3})\psi_{c}$

* Symanzik expansion at maximal twist (K.Cichy, E.G.R, K.Jansen, A.Shinlder, in preparation)

$$\begin{split} &\int d^{4}x_{1}\dots d^{4}x_{5}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad S_{56}^{+}(x_{5})P_{65}^{-}(0)\right\rangle_{i} \\ &= \int d^{4}x_{1}\dots d^{4}x_{5}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad S_{56}^{+}(x_{5})P_{65}^{-}(0)\right\rangle_{0} \\ &+ ac_{1}\int d^{4}x_{2}d^{4}x_{3}d^{4}x_{4}d^{4}x_{5}\left\langle P_{42}^{+}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad S_{56}^{+}(x_{5})P_{65}^{-}(0)\right\rangle_{0} \\ &- iac_{3}\int d^{4}x_{1}d^{4}x_{3}d^{4}x_{4}d^{4}x_{5}\left\langle S_{41}^{+}(x_{1})S_{13}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad S_{56}^{+}(x_{5})P_{65}^{-}(0)\right\rangle_{0} \\ &- iac_{4}\int d^{4}x_{1}d^{4}x_{2}d^{4}x_{4}d^{4}x_{5}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})S_{24}^{+}(x_{4}) \quad S_{56}^{+}(x_{5})P_{65}^{-}(0)\right\rangle_{0} \\ &+ ac_{2}\int d^{4}x_{1}d^{4}x_{2}d^{4}x_{3}d^{4}x_{5}\left\langle P_{31}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3}) \quad S_{56}^{+}(x_{5})P_{65}^{-}(0)\right\rangle_{0} \\ &+ ac_{5}\int d^{4}x_{1}d^{4}x_{2}d^{4}x_{3}d^{4}x_{4}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad P_{55}^{+}(0)\right\rangle_{0} \\ &+ ac_{5}\int d^{4}x_{1}d^{4}x_{2}d^{4}x_{3}d^{4}x_{4}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad P_{56}^{+}(0)\right\rangle_{0} + ac_{5}\int d^{4}x_{1}d^{4}x_{2}d^{4}x_{3}d^{4}x_{4}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad P_{56}^{+}(0)\right\rangle_{0} + \mathcal{O}(d^{2}) \end{split}$$

< E > < E > ...

< 17 ▶

* Symanzik expansion at maximal twist (K.Cichy, E.G.R, K.Jansen, A.Shinlder, in preparation)

$$\begin{split} &\int d^{4}x_{1}\dots d^{4}x_{5}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad S_{56}^{+}(x_{5})P_{65}^{-}(0)\right\rangle_{i} \\ &= \int d^{4}x_{1}\dots d^{4}x_{5}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad S_{56}^{+}(x_{5})P_{65}^{-}(0)\right\rangle_{0} \\ &+ ac_{1}\int d^{4}x_{2}d^{4}x_{3}d^{4}x_{4}d^{4}x_{5}\left\langle P_{42}^{+}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad S_{56}^{+}(x_{5})P_{65}^{-}(0)\right\rangle_{0} \\ &- iac_{3}\int d^{4}x_{1}d^{4}x_{3}d^{4}x_{4}d^{4}x_{5}\left\langle S_{41}^{+}(x_{1})S_{13}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad S_{56}^{+}(x_{5})P_{65}^{-}(0)\right\rangle_{0} \\ &- iac_{4}\int d^{4}x_{1}d^{4}x_{2}d^{4}x_{4}d^{4}x_{5}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})S_{24}^{+}(x_{4}) \quad S_{56}^{+}(x_{5})P_{65}^{-}(0)\right\rangle_{0} \\ &+ ac_{2}\int d^{4}x_{1}d^{4}x_{2}d^{4}x_{3}d^{4}x_{5}\left\langle P_{31}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3}) \quad S_{56}^{+}(x_{5})P_{65}^{-}(0)\right\rangle_{0} \\ &+ ac_{5}\int d^{4}x_{1}d^{4}x_{2}d^{4}x_{3}d^{4}x_{4}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad P_{55}^{+}(0)\right\rangle_{0} \\ &+ ac_{5}\int d^{4}x_{1}d^{4}x_{2}d^{4}x_{3}d^{4}x_{4}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad P_{55}^{+}(0)\right\rangle_{0} \\ &+ ac_{5}\int d^{4}x_{1}d^{4}x_{2}d^{4}x_{3}d^{4}x_{4}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad P_{55}^{+}(0)\right\rangle_{0} \\ &+ ac_{5}\int d^{4}x_{1}d^{4}x_{2}d^{4}x_{3}d^{4}x_{4}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad P_{56}^{+}(0)\right\rangle_{0} + \mathcal{O}(d^{2}) \end{split}$$

< E> < E> -

< 17 ▶

* Symanzik expansion at maximal twist (K.Cichy, E.G.R, K.Jansen, A.Shinlder, in preparation)

$$\begin{split} &\int d^{4}x_{1}\dots d^{4}x_{5}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad S_{56}^{+}(x_{5})P_{65}^{-}(0)\right\rangle_{i} \\ &= \int d^{4}x_{1}\dots d^{4}x_{5}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad S_{56}^{+}(x_{5})P_{65}^{-}(0)\right\rangle_{0} \\ &+ ac_{1}\int d^{4}x_{2}d^{4}x_{3}d^{4}x_{4}d^{4}x_{5}\left\langle P_{42}^{+}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad S_{56}^{+}(x_{5})P_{65}^{-}(0)\right\rangle_{0} \\ &- iac_{3}\int d^{4}x_{1}d^{4}x_{3}d^{4}x_{4}d^{4}x_{5}\left\langle S_{41}^{+}(x_{1})S_{13}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad S_{56}^{+}(x_{5})P_{65}^{-}(0)\right\rangle_{0} \\ &- iac_{4}\int d^{4}x_{1}d^{4}x_{2}d^{4}x_{4}d^{4}x_{5}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})S_{24}^{+}(x_{4}) \quad S_{56}^{+}(x_{5})P_{65}^{-}(0)\right\rangle_{0} \\ &+ ac_{2}\int d^{4}x_{1}d^{4}x_{2}d^{4}x_{3}d^{4}x_{5}\left\langle P_{31}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3}) \quad S_{56}^{+}(x_{5})P_{65}^{-}(0)\right\rangle_{0} \\ &+ ac_{5}\int d^{4}x_{1}d^{4}x_{2}d^{4}x_{3}d^{4}x_{4}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad P_{55}^{+}(0)\right\rangle_{0} \\ &+ ac_{5}\int d^{4}x_{1}d^{4}x_{2}d^{4}x_{3}d^{4}x_{4}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad P_{55}^{+}(0)\right\rangle_{0} \\ &+ ac_{5}\int d^{4}x_{1}d^{4}x_{2}d^{4}x_{3}d^{4}x_{4}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad P_{55}^{+}(0)\right\rangle_{0} \\ &+ ac_{5}\int d^{4}x_{1}d^{4}x_{2}d^{4}x_{3}d^{4}x_{4}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad P_{56}^{+}(0)\right\rangle_{0} + \mathcal{O}(d^{2}) \end{aligned}$$

< E> < E> -

< 17 ▶

* Symanzik expansion at maximal twist (K.Cichy, E.G.R, K.Jansen, A.Shinlder, in preparation)

$$\begin{split} &\int d^{4}x_{1}\dots d^{4}x_{5}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad S_{56}^{+}(x_{5})P_{65}^{-}(0)\right\rangle_{i} \\ &= \int d^{4}x_{1}\dots d^{4}x_{5}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad S_{56}^{+}(x_{5})P_{65}^{-}(0)\right\rangle_{0} \\ &+ ac_{1}\int d^{4}x_{2}d^{4}x_{3}d^{4}x_{4}d^{4}x_{5}\left\langle P_{42}^{+}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad S_{56}^{+}(x_{5})P_{65}^{-}(0)\right\rangle_{0} \\ &- iac_{3}\int d^{4}x_{1}d^{4}x_{3}d^{4}x_{4}d^{4}x_{5}\left\langle S_{41}^{+}(x_{1})S_{13}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad S_{56}^{+}(x_{5})P_{65}^{-}(0)\right\rangle_{0} \\ &- iac_{4}\int d^{4}x_{1}d^{4}x_{2}d^{4}x_{4}d^{4}x_{5}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})S_{24}^{+}(x_{4}) \quad S_{56}^{+}(x_{5})P_{65}^{-}(0)\right\rangle_{0} \\ &+ ac_{2}\int d^{4}x_{1}d^{4}x_{2}d^{4}x_{3}d^{4}x_{5}\left\langle P_{31}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3}) \quad S_{56}^{+}(x_{5})P_{65}^{-}(0)\right\rangle_{0} \\ &+ ac_{5}\int d^{4}x_{1}d^{4}x_{2}d^{4}x_{3}d^{4}x_{4}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad P_{55}^{+}(0)\right\rangle_{0} \\ &+ ac_{5}\int d^{4}x_{1}d^{4}x_{2}d^{4}x_{3}d^{4}x_{4}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad P_{56}^{+}(0)\right\rangle_{0} \\ &+ ac_{5}\int d^{4}x_{1}d^{4}x_{2}d^{4}x_{3}d^{4}x_{4}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad P_{56}^{+}(0)\right\rangle_{0} \\ &+ ac_{5}\int d^{4}x_{1}d^{4}x_{2}d^{4}x_{3}d^{4}x_{4}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad P_{66}^{+}(0)\right\rangle_{0} + \mathcal{O}(d^{2}) \end{split}$$

< E> < E> -

< 17 ▶

* Symanzik expansion at maximal twist (K.Cichy, E.G.R, K.Jansen, A.Shinlder, in preparation)

$$\begin{split} &\int d^{4}x_{1}\dots d^{4}x_{5}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad S_{56}^{+}(x_{5})P_{65}^{-}(0)\right\rangle_{l} \\ &= \int d^{4}x_{1}\dots d^{4}x_{5}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad S_{56}^{+}(x_{5})P_{65}^{-}(0)\right\rangle_{0} \\ &+ ac_{1}\int d^{4}x_{2}d^{4}x_{3}d^{4}x_{4}d^{4}x_{5}\left\langle P_{42}^{+}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad S_{56}^{+}(x_{5})P_{65}^{-}(0)\right\rangle_{0} \\ &- iac_{3}\int d^{4}x_{1}d^{4}x_{3}d^{4}x_{4}d^{4}x_{5}\left\langle S_{41}^{+}(x_{1})S_{13}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad S_{56}^{+}(x_{5})P_{65}^{-}(0)\right\rangle_{0} \\ &- iac_{4}\int d^{4}x_{1}d^{4}x_{2}d^{4}x_{4}d^{4}x_{5}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})S_{24}^{+}(x_{4}) \quad S_{56}^{+}(x_{5})P_{65}^{-}(0)\right\rangle_{0} \\ &+ ac_{2}\int d^{4}x_{1}d^{4}x_{2}d^{4}x_{3}d^{4}x_{5}\left\langle P_{31}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad P_{55}^{+}(0)\right\rangle_{0} \\ &+ ac_{5}\int d^{4}x_{1}d^{4}x_{2}d^{4}x_{3}d^{4}x_{4}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad P_{55}^{+}(0)\right\rangle_{0} \\ &+ ac_{5}\int d^{4}x_{1}d^{4}x_{2}d^{4}x_{3}d^{4}x_{4}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad P_{55}^{+}(0)\right\rangle_{0} \\ &+ ac_{5}\int d^{4}x_{1}d^{4}x_{2}d^{4}x_{3}d^{4}x_{4}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad P_{65}^{+}(0)\right\rangle_{0} \\ &+ ac_{5}\int d^{4}x_{1}d^{4}x_{2}d^{4}x_{3}d^{4}x_{4}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad P_{65}^{+}(0)\right\rangle_{0} \\ &+ ac_{5}\int d^{4}x_{1}d^{4}x_{2}d^{4}x_{3}d^{4}x_{4}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4}) \quad P_{60}^{+}(0)\right\rangle_{0} + \mathcal{O}(d^{2}) \\ \end{aligned}$$

< E> < E> -

< 17 ▶

(K.Cichy, E.G.R, K.Jansen, A.Shinlder, in preparation)

< ∃→

3

* All $\mathcal{O}(a)$ terms are \mathcal{R}_5^1 odd in pairs \rightsquigarrow We recover $\mathcal{O}(a)$ improvement.

$$\begin{split} &\int d^{4}x_{1}\dots d^{4}x_{5}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4})S_{56}^{+}(x_{5})P_{65}^{-}(0)\right\rangle_{i} \\ &=\int d^{4}x_{1}\dots d^{4}x_{5}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4})S_{56}^{+}(x_{5})P_{65}^{-}(0)\right\rangle_{0} \\ &+ac_{1}\int d^{4}x_{2}d^{4}x_{3}d^{4}x_{4}d^{4}x_{5}\left\langle P_{42}^{+}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4})S_{56}^{+}(x_{5})P_{65}^{-}(0)\right\rangle_{0} \\ &-iac_{3}\int d^{4}x_{1}d^{4}x_{3}d^{4}x_{4}d^{4}x_{5}\left\langle S_{41}^{+}(x_{1})S_{13}^{+}(x_{3})P_{34}^{-}(x_{4})S_{56}^{+}(x_{5})P_{65}^{-}(0)\right\rangle_{0} \\ &-iac_{4}\int d^{4}x_{1}d^{4}x_{2}d^{4}x_{4}d^{4}x_{5}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})S_{24}^{+}(x_{4})S_{56}^{+}(x_{5})P_{65}^{-}(0)\right\rangle_{0} \\ &+ac_{2}\int d^{4}x_{1}d^{4}x_{2}d^{4}x_{3}d^{4}x_{5}\left\langle P_{31}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{56}^{-}(x_{5})P_{65}^{-}(0)\right\rangle_{0} \\ &+ac_{5}\int d^{4}x_{1}d^{4}x_{2}d^{4}x_{3}d^{4}x_{4}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4})P_{56}^{+}(0)\right\rangle_{0} \\ &+ac_{5}\int d^{4}x_{1}d^{4}x_{2}d^{4}x_{3}d^{4}x_{4}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4})P_{66}^{+}(0)\right\rangle_{0} \\ &+ac_{5}\int d^{4}x_{1}d^{4}x_{2}d^{4}x_{3}d^{4}x_{4}\left\langle S_{41}^{+}(x_{1})P_{12}^{-}(x_{2})P_{23}^{+}(x_{3})P_{34}^{-}(x_{4})P_{66}^{+}(0)\right\rangle_{0} \\ &+\mathcal{O}(\sigma^{2}) \end{split}$$

Finite-Volume Effects

Study of the finite-size effects for the Topological Susceptibility

Choosing value of M_R for χ_{top}

					0.03 -					
					0.05	$\beta = 3.9,$	L = 24			
β	volume	M_{\star}^2	ν]	0.025					1
2.37	$20^{3} \times 40$	0.000102	79.4(2)]	0.02			т		
2.48	$24^{3} \times 48$	0.000068	78.7(2)	do					т	
2.67	$32^3 \times 64$	0.000036	78.5(3)	$r_0^4 \chi_1$	0.015		I	-		1
2.85	$40^{3} \times 80$	0.000025	78.1(4)		0.01	T	-		†	
					0.00*	ł		1		
	a_1	$(\nu_1 n_2)$			0.005	1				1
	$\frac{1}{\alpha} =$	$\left(\frac{1}{1}\right)$,			0 L					
	u_2	$\langle \nu_2 n_1 \rangle$				60	80	100	120	140
							Λ	I_R [MeV	1	

For small volume choose M such that ν >> Q_{top}.

< ∃→

э

• From the introduction we know:

$$\chi_{top} = \frac{Z_s^2}{Z_p^2} \frac{\langle \operatorname{Tr} \{\gamma 5 \mathbb{P}_M\} \operatorname{Tr} \{\gamma 5 \mathbb{P}_M\} \rangle}{V}$$

- * We can compute the topological susceptibility
 - \rightarrow quenched case Z_P/Z_S not known a priori
- * We can also compute the ratio Z_P/Z

(Giusti & Lüscher 2008)

3

$$\frac{Z_{S}^{2}}{Z_{P}^{2}} = \frac{\langle \operatorname{Tr} \{\mathbb{P}_{M}\}\rangle}{\langle \operatorname{Tr} \{\gamma_{5} \mathbb{P}_{M} \gamma_{5} \mathbb{P}_{M}\}\rangle}$$

• From the introduction we know:

$$\chi_{top} = \frac{Z_s^2}{Z_p^2} \frac{\langle \operatorname{Tr} \{\gamma 5 \mathbb{P}_M\} \operatorname{Tr} \{\gamma 5 \mathbb{P}_M\} \rangle}{V}$$

- * We can compute the topological susceptibility
 - \rightarrow quenched case Z_P/Z_S not known a priori
- * We can also compute the ratio Z_P/Z_S

(Giusti & Lüscher 2008)

▲■ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● のへで

$$\frac{Z_{S}^{2}}{Z_{P}^{2}} = \frac{\langle \operatorname{Tr} \{\mathbb{P}_{M}\}\rangle}{\langle \operatorname{Tr} \{\gamma_{5} \mathbb{P}_{M} \gamma_{5} \mathbb{P}_{M}\}\rangle}$$

★ Our results for quenched:

β	$L^3 \times T$	r_0/a	Z_P/Z_S
2.37	$20^{3} \times 40$	3.60	0.680(1)(27)
2.48	$24^{3} \times 48$	4.23	0.707(1)(19)
2.67	$32^{3} \times 64$	5.69	0.752(1)(7)
2.85	$40^{3} \times 80$	7.28	0.787(1)(3)

★ For N_f = 2 compatible results with RI-MOM (K.Cichy, E.G.R, K.Jansen, 2014)

 Z_P/Z_S con lim χ_{∞} con lim χ_{∞}

$\eta ~ {\rm and} ~ \eta' ~ {\rm masses}$ (C. Michael, K. Ottnad, & C. Urbach, 2013)

Continuum Limit of χ_{∞}

I.h.s.: PDG						
m_{η} [MeV]	$m_{\eta'}$ [MeV]	m_{κ} [MeV]	f_{π} [MeV]	X		
547.85(2)	957.78(6)	497.61(2)	130(5)	$\lambda \infty$		
$\frac{f_{\pi}^2}{4N_f}$ (r	$(185(6) \text{ MeV})^4$					

Compatible results with (Del Debbio, Giusti & Pica, 2005)

$r_0 m_\eta$	$r_0 m_{\eta'}$	r ₀ m _K	$r_0 f_{\pi}$	4.		
1.256(22)	1.256(22) 2.29(0.21) 1.13476(5) 0.312(11)					
$r_0^4 \frac{f_{\pi}^2}{4N_t} \left(m_{\eta}^2 + m_{\eta'}^2 - 2m_K^2 \right) = 0.043(4) \qquad 0.049(6)$						
(C. Michael, K. Ottnad, & C. Urbach, 2013)						

Conclusions and Outlook

- Use of density chains leads to definition of χ_{top} free of divergences.
- In practice we use the spectral projector method.
- Proof of $\mathcal{O}(a)$ improvement for twisted mass fermions.
- Test on the Witten-Veneziano formula which confirms the relation between $m_{n'}$ and χ_{∞} .
 - ★ Continuum limit of χ_{∞} .
 - * Computation of Z_P/Z_S using spectral projectors.
- Our plans include a dedicated analysis of the left-hand side which will presented in future discussions.

▲ Ξ ► 4 Ξ ► 9 < 0</p>

Thank you for your attention!

ヘロト 人間 とくほ とくほとう

∃ 990

Autocorrelation

Columbia University, 25-06-14

Elena García Ramos

 χ_∞ from the Dirac spectrum and the W-V formula

(K. Cichy, E.G.R., K. Jansen, in preparation)

ß	Z_P/Z_S	Z_P/Z_S
ρ	spectral proj.	RI-MOM/X-space
3.9	0.635(1)(23)	0.639(3)
4.05	0.679(2)(12)	0.682(2)
4.2	0.717(2)(5)	0.713(3)
4.35	0.749(2)(2)	0.740(3)