TEK twisted gradient flow running coupling

Liam Keegan

CERN - 24th June 2014

Margarita García Peréz, Antonio González-Arroyo, Masanori Okawa

Lattice Field Theory Eguchi-Kawai Reduction Twisted Reduction

Lattice Field Theory

Formulate field theory on a discrete set of space-time points:

- \hat{L}^4 points, lattice spacing a
- Physical volume $L^4 = (\hat{L}a)^4$

Lattice provides regularisation:

- UV cut-off: 1/a
- IR cut-off: 1/L

Lattice Field Theory Eguchi-Kawai Reduction Twisted Reduction

Lattice Field Theory

The simplest lattice discretisation of the Yang-Mills action is

$$S_{YM} = N_c b \sum_{x} \sum_{\mu < \nu} Tr\left(U_{\mu}(x)U_{\nu}(x+\mu)U_{\mu}^{\dagger}(x+\nu)U_{\nu}^{\dagger}(x) + h.c.\right)$$

where $b = \frac{1}{\lambda} = \frac{1}{g^2 N_c}$ is the inverse bare 't Hooft coupling, held fixed as $N_c \to \infty$.

Lattice Field Theory Eguchi-Kawai Reduction Twisted Reduction

Large–N Volume Independence

Eguchi-Kawai '82

In the limit $N_c \rightarrow \infty$, the properties of U(N_c) Yang–Mills theory on a periodic lattice are independent of the lattice size.

$$S_{YM} \equiv S_{EK} = N_c b \sum_{\mu < \nu} Tr \left(U_{\mu} U_{\nu} U_{\mu}^{\dagger} U_{\nu}^{\dagger} + h.c. \right)$$

where $b = \frac{1}{\lambda} = \frac{1}{g^2 N_c}$ is the inverse bare 't Hooft coupling, held fixed as $N_c \to \infty$.

Lattice Field Theory Eguchi-Kawai Reduction Twisted Reduction

Conditions

...but it turns out only

- for single-trace observables defined on the original lattice of side *L*, that are invariant under translations through multiples of the reduced lattice size *L*'
- and if the U(1)^d center symmetry is not spontaneously broken,
 i.e. on the lattice the trace of the Polyakov loop vanishes.

Lattice Field Theory Eguchi-Kawai Reduction Twisted Reduction

Twisted Reduction

Gonzalez-Arroyo Okawa '83

Impose twisted boundary conditions, such that the classical minimum of the action preserves a Z_N^2 subgroup of the center symmetry.

$$S_{TEK} = N_c b \sum_{\mu < \nu} Tr \left(z_{\mu\nu} U_{\mu} U_{\nu} U_{\mu}^{\dagger} U_{\nu}^{\dagger} + h.c. \right)$$
$$z_{\mu\nu} = exp\{2\pi i n_{\mu\nu}/N\} = z_{\nu\mu}^*$$

Gonzalez-Arroyo Okawa [arXiv:1005.1981]

< ロ > < 同 > < 回 > < 回 > .

Lattice Field Theory Eguchi-Kawai Reduction Twisted Reduction

Twisted Reduction

Choice of flux k

$$n_{\mu
u} = k\sqrt{N}, \quad kar{k} = 1 \mod \sqrt{N}, \quad ilde{ heta} = 2\piar{k}/\sqrt{N}$$

Original TEK: k = 1, center-symmetry breaks for $N \gtrsim 100$ To take $1/N \rightarrow 0$ limit, choose k such that

•
$$k/\sqrt{N} > 1/9$$

• $\tilde{\theta} = \text{constant}$

Garcia-Perez Gonzalez-Arroyo Okawa [arXiv:1307.5254]

< ロ > < 同 > < 回 > < 回 >

Lattice Field Theory Eguchi-Kawai Reduction Twisted Reduction

Twisted Reduction

- Single site lattice, lattice spacing a
- Physical volume $L^4 = (\sqrt{N}a)^4$

Lattice provides regularisation:

- UV cut-off: 1/a
- IR cut–off: $1/\sqrt{Na}$

A (1) < (1) < (1) </p>

Reduction Wilson Flow Running of the coupling

Polyakov Loop vs 1/N

э

Wilson Flow

The Wilson flow evolves the gauge field according to

Flow Equation

$$\frac{\partial B_{\mu}}{\partial t} = D_{\nu}G_{\nu\mu}, \quad B_{\mu}|_{t=0} = A_{\mu}$$

where A_{μ} is the gauge field, and t is the flow time. This integrates out UV fluctuations above a scale $\mu = 1/\sqrt{8t}$ (i.e. smears observables over a radius $\sqrt{8t}$)

Lüscher [arXiv:0907.5491]

Reduction Wilson Flow Running of the coupling

Wilson Flow of $\frac{1}{N}t^2\langle E \rangle$

The action density $E = G_{\mu\nu}G_{\mu\nu}$ as a function of flow time can be used to define a scale t_0

Definition of scale
$$t_0$$

 $rac{1}{N}t_0^2\langle E(t_0)
angle=0.1$

Perturbative expansion of E at small flow time t

$$\frac{1}{N}t^{2}E(t) = \frac{3\lambda}{128\pi^{2}} \left[1 + \frac{\lambda}{16\pi^{2}} (11\gamma_{E}/3 + 52/9 - 3\ln 3) \right]$$

Lüscher [arXiv:1006.4518]

▲□ ► < □ ► </p>

Reduction Wilson Flow Running of the coupling

Setting the scale with t_0

Liam Keegan TEK twisted gradient flow running coupling

Liam Keegan TEK twisted gradient flow running coupling

Reduction Wilson Flow Running of the coupling

Comparison to SU(3) Perturbation Theory

▲ 同 ▶ → 三 ▶

ъ

Reduction Wilson Flow Running of the coupling

Running of the coupling: Step Scaling

• Step scaling - change in coupling from *L* to *sL*

•
$$u = \overline{g}^2(b, a/L, L)$$

•
$$\Sigma(u,s,a/L) = \overline{g}^2(b,a/L,sL)$$

•
$$\sigma(u,s) = \lim_{a/L \to 0} \Sigma(u,s,a/L)$$

 Now tune bare parameters until g²(b, a/L, L) = σ(u, s)

Repeat

Reduction Wilson Flow Running of the coupling

Running of the coupling: Step Scaling

• Step scaling - change in coupling from *L* to *sL*

•
$$u = \overline{g}^2(b, a/L, L)$$

•
$$\Sigma(u,s,a/L) = \overline{g}^2(b,a/L,sL)$$

- $\sigma(u, s) = \lim_{a/L \to 0} \Sigma(u, s, a/L)$
- Now tune bare parameters until g²(b, a/L, L) = σ(u, s)

Repeat

Reduction Wilson Flow Running of the coupling

Running of the coupling: Step Scaling

• Step scaling - change in coupling from *L* to *sL*

•
$$u = \overline{g}^2(b, a/L, L)$$

•
$$\Sigma(u,s,a/L) = \overline{g}^2(b,a/L,sL)$$

•
$$\sigma(u, s) = \lim_{a/L \to 0} \Sigma(u, s, a/L)$$

 Now tune bare parameters until g²(b, a/L, L) = σ(u, s)

| 4 同 🕨 🖌 4 目 🖌 4 目 🖌

Repeat

Reduction Wilson Flow Running of the coupling

Running of the coupling: Step Scaling

(人間) ト く ヨ ト く ヨ ト

Running of the coupling

Twisted Gradient Flow Scheme

Define a renormalised coupling in terms of E at positive flow time:

Definition of renormalised coupling λ_{TGF}

$$\lambda_{TGF}(L) = \mathcal{N}_{T}^{-1}(c)t^{2}\langle E \rangle \big|_{t=c^{2}N/8} = \lambda_{\overline{\mathrm{MS}}} + \mathcal{O}(\lambda_{\overline{\mathrm{MS}}}^{2})$$

- Smearing radius is a fraction c of the lattice size $\sqrt{8t} = cL = c\sqrt{N}a$
- Renormalisation scale is the inverse of the box size $\mu = 1/L.$
- c is a free parameter, defines renormalisation scheme.

Ramos [arXiv:1308.4558]

イロト イポト イラト イラト

Reduction Wilson Flow Running of the coupling

Lattice Discretisation Effects

Need to choose a discretisation for E:

Also have a choice for $\mathcal{N}_{\mathcal{T}}$:

- Tree level continuum definition
- Tree level lattice definition

All equivalent up to $\mathcal{O}(a/L)^2$ lattice artefacts.

Reduction Wilson Flow Running of the coupling

Lattice Artefacts, u = 1, c = 0.30

▲ 同 ▶ → ● 三

э

Reduction Wilson Flow Running of the coupling

Twisted Gradient Flow Coupling for c = 0.30

Liam Keegan TEK twisted gradient flow running coupling

Reduction Wilson Flow Running of the coupling

Lattice Discrete Beta Function [preliminary]

Liam Keegan TEK twisted gradient flow running coupling

Reduction Wilson Flow Running of the coupling

Continuum Extrapolation [preliminary]

Reduction Wilson Flow Running of the coupling

Continuum Extrapolation [preliminary]

Large N twisted volume reduction Step Scaling Results Conclusion Reduction Wilson Flow Running of the coupling

Continuum Discrete Beta Function [preliminary]

Conclusion and Future Work

- Promising initial results.
 - Twisted volume reduction seems to work
 - Good agreement with perturbation theory

Future Work:

- Better understanding of systematic errors
- $n_f = 2$ running coupling study

Theta dependence - N=121,b=1.00

N=121, c=0.24, t^2E vs k

Liam Keegan TEK twisted gradient flow running coupling

< 🗇 > < 🖃 >

- ∢ ≣ →

Theta dependence - N=121,b=0.360

N=121, c=0.24, t^2E vs k

∃ → < ∃</p>