Introduction	Free-form Smearing	Free-form Comparision	Bottomonium Spectrum	Conclusion

Free-form Smeared Bottomonium Correlation Functions

Mark Wurtz[†], Randy Lewis[†], Richard Woloshyn*

[†]York University, *TRIUMF

June 26, 2014

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

1/13

York University

Mark Wurtz

2/13

York University

Conventional Smearing Methods for NRQCD

Gauge-invariant Gaussian smearing:

Enhances ground state signal, suppresses excited states

$$\tilde{\psi}(x) = \left[1 + \frac{\alpha}{n}\Delta\right]^n \psi(y)$$

(Coulomb) Gauge-fixed wave function smearing:

Can enhance or suppress ground state and excited states

$$\tilde{\psi}(x) = \sum_{y} f(x-y) \psi(y)$$

Mark Wurtz

イロト イポト イヨト イヨト 三臣

3/13

York University

Free-form Source Smearing

G. M. von Hippel, B. Jäger, T. D. Rae and H. Wittig, JHEP **1309**, 014 (2013).

 Apply iterative gauge-invariant Gaussian smearing to a point source, so that gauge links reach all spatial points

$$\tilde{\psi}(x; y) = \left[1 + \frac{\alpha}{n}\Delta\right]^n \psi(y)$$

Reweight smeared source using an arbitrary function

$$ilde{\psi}(x;y) = rac{ ilde{\psi}(x;y)}{\Big\langle \left\| ilde{\psi}(x;y) \right\| \Big
angle} f(x-y)$$

Free-form smearing the sink is not computationally feasible

Mark Wurtz

イロン スピン スピン スピン 一部

4/13

York University

Smearing Shapes for Bottomonium

Hydrogen-like wave functions are used to shape the source

S-wave:
$$f(x) = \begin{cases} e^{-\frac{r}{a}} \\ (r-b) e^{-\frac{r}{a}} \\ (r-c)(r-b) e^{-\frac{r}{a}} \end{cases}$$
P-wave:
$$f_i(x) = \begin{cases} \tilde{x}_i e^{-\frac{r}{a}} \\ \tilde{x}_i (r-b) e^{-\frac{r}{a}} \end{cases}$$
D-wave:
$$f_{ij}(x) = \begin{cases} \tilde{x}_i \tilde{x}_j e^{-\frac{r}{a}} \\ \tilde{x}_i \tilde{x}_j (r-b) e^{-\frac{r}{a}} \end{cases}$$

$$\tilde{x}_i = \sin\left(\frac{2\pi x_i}{L}\right)$$

Mark Wurtz

5/13

Free-form Wall Source

Each point y_i in the wall must be free-form smeared separately

$$ilde{\psi}_{w}(x) = \sum_{i}^{N} e^{i\theta_{w}(y_{i})} \, ilde{\psi}(x; y_{i})$$

• A "sparse" $(N = 4^3)$ wall source is sufficient to reduce statistical errors

Reduction of Statistical Errors vs. Wall Size

Mark Wurtz

6/13

York University

Gauge-Field Ensemble and NRQCD Action

Chosen to be the same as in

R. Lewis and R. M. Woloshyn, Phys. Rev. D 85, 114509 (2012)

PACS-CS gauge fields:	NRQCD action:
Iwasaki gauge action	Kept $\mathcal{O}(v^4)$ terms
clover-Wilson fermion action	tree level coefficients
198 configurations	$c_i=1,\ i\leq 6$
$32^3 \times 64$	$c_i=$ 0, $i\geq$ 7
a = 0.0907(13) fm	$M_b = 1.95$
$n_f = 2 + 1$	tadpole improvement mean link
$m = 156(7) M_0 V$	in Landau gauge $u_L = 0.8463$
$m_{\pi} = 150(1)$ MeV	stability parameter $n = 4$
$m_{K}=554(8)~MeV$	

Mark Wurtz

Bottomonium Notation

Spectroscopic	Quark	Orbital	Total	Lattice	
Notation	Spin	Angular	Angular	Irreducible	
		Momentum	Momentum	Representation	
$^{2S+1}L_{J}$	S	L	J	Λ^{PC}	
${}^{1}S_{0}$	0	0	0	A_1^{-+}	
${}^{3}S_{1}$	1	0	1	$T_{1}^{}$	
${}^{1}P_{1}$	0	1	1	T_{1}^{+-}	
³ P ₀	1	1	0	A_{1}^{++}	
${}^{3}P_{1}$	1	1	1	T_{1}^{++}	
${}^{3}P_{2}$	1	1	2	E^{++}, T_2^{++}	
${}^{1}D_{2}$	0	2	2	E^{-+}, T_2^{-+}	
${}^{3}D_{1}$	1	2	1	$T_{1}^{}$	
³ D ₂	1	2	2	$E^{}, T_{2}^{}$	
³ D ₃	1	2	3	$A_{2}^{}, T_{1}^{}, T_{2}^{}$	7/12
			· • • • • • • • • • • • • • • • • • • •		1/10

Mark Wurtz

York University

Free-form vs. Gauge-invariant Gaussian Smearing

- Both are tuned to optimize ground state signals for S-, Pand D-wave bottomonium
- Smearing is applied to the source but not the sink

York University

Free-form vs. Gauge-Fixed Wave Function Smearing

- Both are tuned to optimize ground state signals for S-, Pand D-wave bottomonium
- Free-form error bars are smaller

 $\begin{array}{c} 0.7 \\ \bullet \\ 0.7 \\ \bullet \\ 0.6 \\ \bullet \\ 0.7 \\ 0.7 \\ \bullet \\ 0.7$

Mark Wurtz

York University

Free-form vs. Gauge-Fixed Wave Function Smearing

- Both are tuned to optimize first excited state signals for P- and D-wave bottomonium
- Free-form errors bars are smaller

Introduction

11/13

York University

Free-form vs. Gauge-Fixed Wave Function Smearing

- Free-form errors bars are smaller

	ground	first-excited		ground	first-excited
	state	state		state	state
${}^{1}S_{0}$	1.1	1.4	${}^{1}D_{2} E$	1.7	1.4
${}^{3}S_{1}$	1.2	1.3	${}^{1}D_{2} T_{2}$	1.7	1.8
${}^{1}P_{1}$	1.7	2.6	³ D ₂ E	1.3	1.2
³ P ₀	1.3	2.1	${}^{3}D_{2} T_{2}$	1.7	1.3
${}^{3}P_{1}$	1.4	2.1	${}^{3}D_{3} A_{2}$	2.7	2.4
³ P ₂ E	1.8	2.0	$^{3}D_{3}T_{2}$	2.3	1.7
${}^{3}P_{2} T_{2}$	1.6	2.2			
					≣⊳ ≣ ଏ ର୍ ଜ 1 1

Mark Wurtz

Introduction

York University

Bottomonium Spectrum from Free-form Smearing

Spectrum extracted from multi-correlator multi-exponential fits:

$$C^{i}(t) = \sum_{n} A^{i}_{n} e^{-E_{n}t}$$

Mark Wurtz

Free-form Smearing	Free-form Comparision	Conclusion
	Conclusion	

Conclusion

- Free-form smearing is an excellent method to extract the spectrum of bottomonium, including the first excited D-wave
- Free-form smearing gives smaller errors than the conventional gauge-fixed wave function smearing method

Future Work

Further work is required for free-form smearing to be applied within a correlation matrix

◆□ > ◆□ > ◆目 > ◆目 > ● 目 ● のへで

13/13

York University