Tensor renormalization group study of the classical $O(3)$ model

Judah Unmuth-Yockey,
Haiyuan Zou, Yannick Meurice, James Osborn

The Model

- We consider the Hamiltonian: $H=-\sum_{\langle i j\rangle} \vec{S}_{i} \cdot \vec{S}_{j}$.
- Here \vec{S} is a three-component vector, and $\langle i j\rangle$ is a sum over nearest-neighbor pairs in two dimensions.
- The partition function is $Z(\beta)=\sum_{\{\vec{S}\}} e^{-\beta H}$.
- The sum is over spin configurations on a two-dimensional lattice.

Important aspects of the study

- non-Abelian model to test tensor renormalization
- $\langle\vec{S}\rangle=0$ for all β
- This model is known to be asymptotically free for large β.
- For Monte Carlo calculations, this model has no sign problem.
- In this tensor formulation, some tensor elements are negative
- Blocking methods like Tensor Renormalization appear insensitive to this attribute.
- Other expansion methods avoid this sign problem.

Denbleyker et al. Phys. Rev. D 89, 016008
Wolff, Nuc. Phys. B 824, 254

Tensor renormalization

- Proposed by Levin \& Nave in '07
- Techniques used here similar to Xie et al. '12
- the Higher Order SVD Tensor Renormalization Group
- Built out of tensor building blocks

Levin \& Nave Phys. Rev. Lett. 99, 120601
Xie et al. Phys. Rev. B 86, 045139

Coarse-graining and Blocking

1. Form initial tensor
2. Decide what to keep
3. Can't keep all the information \Longrightarrow project what matters

Tensor Formulation for $O(3)$

- A simple approach is through Harmonic analysis.
- $O(3)$ has two quantum numbers, however the expansion coefficients only depend on one, l.

$$
\exp \left[\beta \cos \gamma_{i j}\right] \rightarrow \sum_{l} A_{l}(\beta) P_{l}\left(\cos \gamma_{i j}\right)
$$

- Now

$$
P_{l}\left(\cos \gamma_{i j}\right)=\frac{4 \pi}{2 l+1} \sum_{m} Y_{l m}\left(\theta_{i}, \phi_{i}\right) Y_{l m}^{*}\left(\theta_{j}, \phi_{j}\right)
$$

- With the angular dependence decoupled, angular integration can now take place.

Tensor Formulation Cont.

The relative size of the coefficients for various l values.

The $O(3)$ Tensor

- The Spherical Harmonics are associated with pairs of sites, or links.
- Since there are four impinging links per site on the lattice, the angular integration site-wise is

$$
\int d \Omega Y_{l m}^{*} Y_{l^{\prime} m^{\prime}}^{*} Y_{l^{\prime \prime} m^{\prime \prime}} Y_{l^{\prime \prime \prime} m^{\prime \prime \prime}}
$$

- The constraint from this is

$$
\approx \sum_{L=\left|l-l^{\prime}\right|}^{l+l^{\prime}} \sum_{M=-L}^{L} C_{l m l^{\prime} m^{\prime}}^{L M} C_{l 0 l^{\prime} 0}^{L 0} C_{l^{\prime \prime} m^{\prime \prime} l^{\prime \prime \prime} m^{\prime \prime \prime}}^{L M} C_{l^{\prime \prime} 0 l^{\prime \prime \prime} 0}^{L 0}
$$

The $O(3)$ Tensor Cont.

- This constraint enforces the triangle in-equalities. The intermediate sum over L and M picks out irreducible representations of the angular momenta.

- Contrast with the Abelian case

Tensor view of the lattice

- The tensor formulation allows one to decouple the lattice at the location of the local constraint.
- The lattice is rebuilt by piecing these tensors together geometrically.

n-point Correlations

- n-point correlations can be realized on the lattice by inserting spin vectors at particular sites.
- These lead to a modified constraint at each site of insertion.
- For $O(3)$, we find an angular integral of the form

$$
\int d \Omega Y_{l_{1} m_{1}} Y_{l_{2} m_{2}} Y_{l_{3} m_{3}}^{*} Y_{l_{4} m_{4}}^{*} Y_{1 m}
$$

- This leads to a tensor whose elements are shifted, or an "impure" tensor.

n-point Correlations Cont.

- Average values are computed by contracting impure tensors with pure.
- Same algorithmics

Results

- Monte Carlo comparison
- Infinite volume thermodynamics
- 2-point correlation data/comparison

Results Cont.

Monte Carlo comparison: average energy on 32×32 lattice

Results Cont.

Infinite volume thermodynamics: energy on $2^{20} \times 2^{20}$ lattice

Results Cont.

Infinite volume thermodynamics: entropy on $2^{20} \times 2^{20}$ lattice

Results Cont.

2-point correlation data \& comparison on 128×128 lattice

Wolff, Nuc. Phys. B 334, p. 581

Results Cont.

2-point correlation data convergence on 128×128 lattice

Tensor Renormalization cost/benefit

Benefits:

- Appears insensitive to sign problems
- Infinite volume is as easy as finite volume
- Good qualitative \& quantitative results on PCs
- Graphical interface
- Can be formulated for many popular models

Liu et al. Phys. Rev. D 88, 056005
Cost:

- Memory scales like $D^{2 d}$
- Computation time scales like $D^{4 d-1}$!
- D is the number of states, and d is the spacetime dimension

Conclusion and Future Work

- Tensor renormalization is a powerful method in 2D.
- Uncover more efficient serial algorithms for tensor renormalization
- Understand phase structures and models through SVD and eigenvalue patterns
- Parallelization of tensor contractions could help the D^{7} scaling.
- Higher dimensions, if the above can be realized

Thank you!

