Canonical approach to the finite density QCD with winding number expansion

Yusuke Taniguchi (University of Tsukuba) for Zn Collaboration

• Six members to study canonical approach R.Fukuda (The University of Tokyo) A.Nakamura (Hiroshima University) S.Oka (Rikkyo University) S.Sakai (Kyoto University) A.Suzuki (University of Tsukuba) Y.Taniguchi (University of Tsukuba)

• Six members to study canonical approach **R.Fukuda** (The University of Tokyo) A.Nakamura (Hiroshima University) S.Oka (Rikkyo University) S.Sakai (Kyoto University) A.Suzuki (University of Tsukuba) Y.Taniguchi (University of Tsukuba)

• Six members to study canonical approach **R.Fukuda** (The University of Tokyo) A.Nakamura (Hiroshima University) S.Oka (Rikkyo University) S.Sakai (Kyoto University) A.Suzuki (University of Tsukuba) Y.Taniguchi (University of Tsukuba)

• Six members to study canonical approach **R.Fukuda** (The University of Tokyo) A.Nakamura (Hiroshima Univ S.Oka (Rikkyo University) S.Sakai (Kyoto University) A.Suzuki (University of Tsukul Y.Taniguchi (University of Tsu)

Grand canonical ensemble

 $Z_G(T,\mu,V) = \operatorname{Tr}\left[\exp\left(-\frac{1}{T}\left(\hat{H}-\mu\hat{N}\right)\right)\right]$

Grand canonical ensemble

$$Z_G(T,\mu,V) = \operatorname{Tr}\left[\exp\left(-\frac{1}{T}\left(\hat{H}-\mu\hat{N}\right)\right)\right]$$

for every energy and number of particles

Grand canonical ensemble

$$Z_G(T,\mu,V) = \operatorname{Tr}\left[\exp\left(-\frac{1}{T}\left(\hat{H}-\mu\hat{N}\right)\right)\right]$$

for every energy and number of particles For QCD $\left[\hat{H}, \hat{N}\right] = 0$

Grand canonical ensemble

 $Z_G(T, \mu, V) = \operatorname{Tr}\left[\exp\left(-\frac{1}{T}\left(\hat{H} - \mu\hat{N}\right)\right)\right]$ $= \sum_n \sum_E \left\langle E, n \left|\exp\left(-\frac{\hat{H}}{T} + \frac{\mu}{T}n\right)\right| E, n \right\rangle$

Grand canonical ensemble

 $Z_G(T,\mu,V) = \operatorname{Tr}\left[\exp\left(-\frac{1}{T}\left(\hat{H}-\mu\hat{N}\right)\right)\right]$ $= \sum_n \sum_E \left\langle E, n \left| \exp\left(-\frac{\hat{H}}{T}+\frac{\mu}{T}n\right) \right| E, n \right\rangle$ $= \sum_n Z_C(T,n,V)\xi^n \quad \text{Fugacity} \quad \xi = e^{\frac{\mu}{T}}$

Grand canonical ensemble

 $Z_G(T, \mu, V) = \operatorname{Tr}\left[\exp\left(-\frac{1}{T}\left(\hat{H} - \mu\hat{N}\right)\right)\right]$ $= \sum_n \sum_E \left\langle E, n \left| \exp\left(-\frac{\hat{H}}{T} + \frac{\mu}{T}n\right) \right| E, n \right\rangle$ $= \sum_n Z_C(T, n, V)\xi^n \quad \text{Fugacity} \quad \xi = e^{\frac{\mu}{T}}$

Canonical partition function

$$Z_C(T, n, V) = \sum_E \left\langle E, n \left| \exp\left(-\frac{\hat{H}}{T}\right) \right| E, n \right\rangle$$

Grand canonical ensemble

 $Z_{G}(T, \mu, V) = \operatorname{Tr} \left[\exp \left(-\frac{1}{T} \left(\hat{H} - \mu \hat{N} \right) \right) \right]$ = $\sum_{n} \sum_{E} \left\langle E, n \left| \exp \left(-\frac{\hat{H}}{T} + \frac{\mu}{T} n \right) \right| E, n \right\rangle$ Fugacity expansion = $\sum_{n} Z_{C}(T, n, V) \xi^{n}$ Fugacity $\xi = e^{\frac{\mu}{T}}$

Canon cal partition function

$$Z_C(T, n, V) = \sum_E \left\langle E, n \left| \exp\left(-\frac{\hat{H}}{T}\right) \right| E, n \right\rangle$$

Cauchy's integral theorem

$$Z_C(T,n,V) = \oint \frac{d\xi}{2\pi i} \xi^{-n-1} Z_G(T,\xi,V)$$

Cauchy's integral theorem

$$Z_C(T, n, V) = \oint \frac{d\xi}{2\pi i} \xi^{-n-1} Z_G(T, \xi, V)$$

Cauchy's integral theorem

$$Z_C(T,n,V) = \oint \frac{d\xi}{2\pi i} \xi^{-n-1} Z_G(T,\xi,V)$$

È

Cauchy's integral theorem

 \mathbf{O}

$$Z_C(T, n, V) = \oint \frac{d\xi}{2\pi i} \xi^{-n-1} Z_G(T, \xi, V)$$

Change the contour $\xi = e^{i\theta}$

È

Cauchy's integral theorem

$$Z_C(T, n, V) = \oint \frac{d\xi}{2\pi i} \xi^{-n-1} Z_G(T, \xi, V)$$

ξ

Change the contour $\xi = e^{i\theta}$

Fourier tr. imaginary chemical potential!

$$Z_C(T, n, V) = \int_0^{2\pi} \frac{d\theta}{2\pi} e^{-in\theta} Z_G(T, e^{i\theta}, V)$$

Introduction How to extract $Z_{C}(n)$ from $Z_{G}(\mu)$? $Z_G(T,\mu,V) = \sum Z_C(T,n,V)\xi^n$ $n = -\infty$ Cauchy's integral theorem $Z_{C}(T, n, V) = \oint \frac{d\xi}{2\pi i} \xi^{-n-1} Z_{G}(T, \xi, V)$ ξ Change the contour $\xi = e^{i\theta}$ Fourier tr. imaginary chemical potential! $Z_C(T, n, V) = \int_0^{2\pi} \frac{d\theta}{2\pi} e^{-in\theta} Z_G(T, e^{i\theta}, V)$

Do you notice the implicit assumption?

ξ

Making use of the singularity at $\xi=0$

ξ

Is this plausible?

Singularities only at $\xi=0$ and ∞

Yes! at least for lattice QCD in finite volume

ξ

Singularities only at $\xi=0$ and ∞

Yes! at least for lattice QCD in finite volume I cannot imagine $DetD_W(\mu)$ to diverge except at $\mu = \pm \infty$

ξ

 $\xi = e^{\frac{\mu}{T}} = 0, \ \infty$

Is this plausible?

Singularities only at $\xi=0$ and ∞

Yes! at least for lattice QCD in finite volume I cannot imagine $DetD_W(\mu)$ to diverge except at $\mu = \pm \infty$

ξ

Is this plausible?

Yes! at least for lattice QCD in finite volume

How about the phase transition?

Singularities only at $\xi=0$ and ∞

ξ

Is this plausible?

Yes! at least for lattice QCD in finite volume

How about the phase transition?

Singularities only at $\xi=0$ and ∞

Phase transition is related to zeros of $Z_G(\xi)$

ξ

Is this plausible?

Yes! at least for lattice QCD in finite volume

How about the phase transition?

Singularities only at $\xi=0$ and ∞

Phase transition is related to zeros of ZG(ξ)Lee-Yang zeros!

Analytic continuation is perfectly safe for $Z_G(\xi)$!

Is this plausible?

Yes! at least for lattice QCD in finite volume

How about the phase transition?

Singularities only at $\xi=0$ and ∞

Phase transition is related to zeros of ZG(E) Lee-Yang zeros!

ξ

Plan of the talk

I. Introduction

- 2. Winding number expansion
- 3. Numerical setup
- 4. Numerical results
- 5. Hadronic observables
- 6. Conclusion

Hopping parameter expansion Everyone need to evaluated Det D(μ) to get Z_G(μ) Direct evaluation is still expensive... Hopping parameter expansionEveryone need to evaluated Det D(μ) to get ZG(μ)Direct evaluation is still expensive...We want a cheaper method!

Hopping parameter expansion Everyone need to evaluated Det D(μ) to get Z_G(μ) Chemical potential appears in temporal hopping $D_W(\mu) = 1 - \kappa Q_s + \kappa e^{\mu a} Q_4^+ + \kappa e^{-\mu a} Q_4^-$ Hopping parameter expansion Everyone need to evaluated Det D(μ) to get Z_G(μ) Chemical potential appears in temporal hopping $D_W(\mu) = 1 - \kappa Q_s + \kappa e^{\mu a} Q_4^+ + \kappa e^{-\mu a} Q_4^-$

expansion in κ
Hopping parameter expansion Everyone need to evaluated Det D(μ) to get Z_G(μ) Chemical potential appears in temporal hopping $D_W(\mu) = 1 - \kappa Q_s + \kappa e^{\mu a} Q_4^+ + \kappa e^{-\mu a} Q_4^-$

expansion in κ

expansion in $e^{\pm \mu a}$

Hopping parameter expansion Everyone need to evaluated Det D(μ) to get Z_G(μ) Chemical potential appears in temporal hopping $D_W(\mu) = 1 - \kappa Q_s + \kappa e^{\mu a} Q_4^+ + \kappa e^{-\mu a} Q_4^-$

expansion in κ

compatible expansion in $e^{\pm \mu a}$

Hopping parameter expansion Everyone need to evaluated Det $D(\mu)$ to get $Z_G(\mu)$ Chemical potential appears in temporal hopping $D_W(\mu) = 1 - \kappa Q_s + \kappa e^{\mu a} Q_4^+ + \kappa e^{-\mu a} Q_4^-$

expansion in κ

compatible expansion in $e^{\pm \mu a}$

We adopt hopping parameter expansion.

Hopping parameter expansion Everyone need to evaluated Det $D(\mu)$ to get $Z_G(\mu)$ Chemical potential appears in temporal hopping $D_W(\mu) = 1 - \kappa Q_s + \kappa e^{\mu a} Q_4^+ + \kappa e^{-\mu a} Q_4^-$

expansion in κ

compatible expansion in $e^{\pm \mu a}$

We adopt hopping parameter expansion. What to expand?

Hopping parameter expansion Everyone need to evaluated Det $D(\mu)$ to get $Z_G(\mu)$ Chemical potential appears in temporal hopping $D_W(\mu) = 1 - \kappa Q_s + \kappa e^{\mu a} Q_4^+ + \kappa e^{-\mu a} Q_4^-$

expansion in κ *compatible* expansion in $e^{\pm \mu a}$

We adopt hopping parameter expansion. What to expand?

 $\mathrm{TrLog}D_W(\mu)$ is a good choice !

Hopping parameter expansion Everyone need to evaluated Det D(μ) to get Z_G(μ) Chemical potential appears in temporal hopping $D_W(\mu) = 1 - \kappa Q_s + \kappa e^{\mu a} Q_4^+ + \kappa e^{-\mu a} Q_4^$ expansion in κ *compatible* expansion in $e^{\pm \mu a}$ We adopt hopping parameter expansion. What to expand? $\mathrm{TrLog}D_W(\mu)$ is a good choice ! $Log(I - \kappa Q) = -\sum \frac{\kappa^n Q^n}{n}$ easy to expand

Hopping parameter expansion Everyone need to evaluated Det D(μ) to get Z_G(μ) Chemical potential appears in temporal hopping $D_W(\mu) = 1 - \kappa Q_s + \kappa e^{\mu a} Q_4^+ + \kappa e^{-\mu a} Q_4^$ expansion in κ *compatible* expansion in $e^{\pm \mu a}$ We adopt hopping parameter expansion. What to expand? $\mathrm{TrLog}D_W(\mu)$ is a good choice ! $Log(I - \kappa Q) = -\sum \frac{\kappa^n Q^n}{n}$ easy to expand numerically stable Meng et al. (Kentucky)

Winding number expansion $TrLog D_W(\mu)$

quark hopping need to make a loop for $\operatorname{Tr}Q^n$

quark hopping need to make a loop for $\operatorname{Tr}Q^n$

Non-zero winding in T direction

quark hopping need to make a loop for $\operatorname{Tr}Q^n$

Non-zero winding in T direction

quark hopping need to make a loop for $\operatorname{Tr}Q^n$

Non-zero winding in T direction

quark hopping need to make a loop for $\operatorname{Tr}Q^n$

Non-zero winding in T direction

 $(e^{\mu a})^{N_t} = e^{\mu a N_t} = e^{\mu/T} = \xi$

quark hopping need to make a loop for $\operatorname{Tr}Q^n$

Non-zero winding in T direction

quark hopping need to make a loop for $\operatorname{Tr}Q^n$

Non-zero winding in T direction

quark hopping need to make a loop for $\operatorname{Tr}Q^n$

Non-zero winding in T direction

 \rightarrow non-trivial μ dependence $^{//}$

Winding number expansion $(\operatorname{Tr}_{\operatorname{Log}} D_W(\mu))$

quark hopping need to make a loop for $\operatorname{Tr}Q^n$

Non-zero winding in T direction

non-trivial µ dependence

$$\operatorname{TrLog}\left(I - \kappa Q\right) = -\sum_{n=1}^{\infty} \frac{\kappa^n}{n} \operatorname{Tr}Q^n$$

Winding number expansion $(TrLog D_W(\mu))$

quark hopping need to make a loop for $\operatorname{Tr}Q^n$

Non-zero winding in T direction

non-trivial µ dependence

$$\operatorname{TrLog}\left(I - \kappa Q\right) = -\sum_{n=1}^{\infty} \frac{\kappa^{n}}{n} \operatorname{Tr}Q^{n}$$
resummation.

Winding number expansion $(TrLog D_W(\mu))$

quark hopping need to make a loop for $\operatorname{Tr}Q^n$

Non-zero winding in T direction

non-trivial µ dependence

TrLog
$$(I - \kappa Q) = -\sum_{n=1}^{\infty} \frac{\kappa^n}{n} \operatorname{Tr} Q^n$$

resummation. $= \sum_{N=-\infty}^{\infty} W_N \xi^N$
Kentucky '08

Evaluation of $Z_{G}(n)$ Kentucky '08 Grand partition function $Z_{G}(\mu)$ \leftarrow re-weighting technique

Evaluation of Zc(n) Kentucky '08 Grand partition function ZG(μ) \leftarrow re-weighting technique $Z_G(\mu) = \int DU \frac{\text{Det}D_W(\mu)}{\text{Det}D_W(\mu_0)} \text{Det}D_W(\mu_0) e^{-S_G}$

Evaluation of Zc(n) Kentucky '08 Grand partition function $Z_G(\mu)$ — re-weighting technique $Z_G(\mu) = \int DU \frac{\text{Det}D_W(\mu)}{\text{Det}D_W(\mu_0)} \text{Det}D_W(\mu_0) e^{-S_G}$ set to 0 or imaginary

Evaluation of Zc(n) Kentucky '08 Grand partition function ZG(μ) \leftarrow re-weighting technique $Z_G(\mu) = \int DU \frac{\text{Det}D_W(\mu)}{\text{Det}D_W(\mu_0)} \text{Det}D_W(\mu_0) e^{-S_G}$ $= \left\langle \frac{\text{Det}D_W(\mu)}{\text{Det}D_W(\mu_0)} \right\rangle_0 Z_G(\mu_0)$

Evaluation of Zc(n) Kentucky '08 Grand partition function $Z_G(\mu)$ — re-weighting technique $Z_G(\mu) = \int DU \frac{\text{Det}D_W(\mu)}{\text{Det}D_W(\mu_0)} \text{Det}D_W(\mu_0) e^{-S_G}$ $= \left\langle \frac{\text{Det}D_W(\mu)}{\text{Det}D_W(\mu_0)} \right\rangle_0 Z_G(\mu_0)$ set to 0 or imaginary $Z_G(\mu_0)$ winding number exp. $= \left\langle \frac{\exp\left(\sum_{k=-\infty}^{\infty} W_k \xi^k\right)}{\operatorname{Det} D_W(\mu_0)} \right\rangle_0 Z_G(\mu_0)$

$$\begin{aligned} & \text{Evaluation of } Z_{G}(n) & \text{Kentucky 'o8} \\ \text{Grand partition function } Z_{G}(\mu) & \longleftarrow \text{re-weighting technique} \\ & Z_{G}(\mu) = \int DU \frac{\text{Det} D_{W}(\mu)}{\text{Det} D_{W}(\mu_{0})} \text{Det} D_{W}(\mu_{0}) e^{-S_{G}} \\ \text{fugacity exp.} & = \left\langle \frac{\text{Det} D_{W}(\mu)}{\text{Det} D_{W}(\mu_{0})} \right\rangle_{0} Z_{G}(\mu_{0}) \\ & \text{winding number exp.} \\ & \sum_{n=-\infty}^{\infty} Z_{C}(n) \xi^{n} = \left\langle \frac{\exp\left(\sum_{k=-\infty}^{\infty} W_{k} \xi^{k}\right)}{\text{Det} D_{W}(\mu_{0})} \right\rangle_{0} Z_{G}(\mu_{0}) \end{aligned}$$

$$\begin{aligned} & \text{Evaluation of } Z_{G}(n) & \text{Kentucky 'o8} \\ & \text{Grand partition function } Z_{G}(\mu) \longleftarrow \text{re-weighting technique} \\ & Z_{G}(\mu) = \int DU \frac{\text{Det} D_{W}(\mu)}{\text{Det} D_{W}(\mu_{0})} \text{Det} D_{W}(\mu_{0}) e^{-S_{G}} \\ & \text{fugacity exp.} & = \left\langle \frac{\text{Det} D_{W}(\mu)}{\text{Det} D_{W}(\mu_{0})} \right\rangle_{0} Z_{G}(\mu_{0}) \\ & \text{winding number exp.} \\ & \sum_{n=-\infty}^{\infty} Z_{C}(n) \xi^{n} = \left\langle \frac{\exp\left(\sum_{k=-\infty}^{\infty} W_{k} \xi^{k}\right)}{\text{Det} D_{W}(\mu_{0})} \right\rangle_{0} Z_{G}(\mu_{0}) \end{aligned}$$

$$\begin{aligned} & \text{Evaluation of Zc(n)} & \text{Kentucky 'o8} \\ & \text{Grand partition function Zc}(\mu) \longleftarrow \text{re-weighting technique} \\ & Z_G(\mu) = \int DU \frac{\text{Det} D_W(\mu)}{\text{Det} D_W(\mu_0)} \text{Det} D_W(\mu_0) e^{-S_G} \\ & \text{fugacity}(\exp) = \left\langle \frac{\text{Det} D_W(\mu)}{\text{Det} D_W(\mu_0)} \right\rangle_0 Z_G(\mu_0) \\ & \text{winding number exp.} \\ & \sum_{n=-\infty}^{\infty} Z_C(n) \xi^n = \left\langle \frac{\exp\left(\sum_{k=-\infty}^{\infty} W_k \xi^k\right)}{\text{Det} D_W(\mu_0)} \right\rangle_0 Z_G(\mu_0) \\ & \text{Cauchy's integral theorem} \\ & Z_C(n) = \oint \frac{d\xi}{2\pi i} \xi^{-n-1} \left\langle \frac{\exp\left(\sum_{k=-\infty}^{\infty} W_k \xi^k\right)}{\text{Det} D_W(\mu_0)} \right\rangle_0 \end{aligned}$$

$$\begin{aligned} & \text{Evaluation of Zc(n)} & \text{Kenncky 'o8} \\ & \text{Grand partition function ZG}(\mu) \longleftarrow \text{re-weighting technique} \\ & Z_G(\mu) = \int DU \frac{\text{Det} D_W(\mu)}{\text{Det} D_W(\mu_0)} \text{Det} D_W(\mu_0) e^{-S_G} \\ & \text{fugacity}(\exp) = \left\langle \frac{\text{Det} D_W(\mu)}{\text{Det} D_W(\mu_0)} \right\rangle_0 Z_G(\mu_0) \\ & \text{winding number exp.} \\ & \sum_{n=-\infty}^{\infty} Z_C(n) \xi^n = \left\langle \frac{\exp\left(\sum_{k=-\infty}^{\infty} W_k \xi^k\right)}{\text{Det} D_W(\mu_0)} \right\rangle_0 Z_G(\mu_0) \\ & \text{Fourier transformation} \\ & Z_C(n) = \int_0^{2\pi} \frac{d\theta}{2\pi} e^{-in\theta} \left\langle \frac{\exp\left(\sum_{k=-\infty}^{\infty} W_k e^{ik\theta}\right)}{\text{Det} D_W(\mu_0)} \right\rangle_0 \end{aligned}$$

Plan of the talk

- I. Introduction
- Winding number expansion
 - 3. Numerical setup
 - 4. Numerical results
 - 5. Hadronic observables
 - 6. Conclusion

Numerical setup

★ Iwasaki gauge action
★ Clover fermion Nf=2

• APE stout smeared gauge link $c_{SW} = 1.1$ \bigstar Box sizes $8^3 \times 4$ $12^3 \times 4$ $16^3 \times 4$

Numerical setup

★ Iwasaki gauge action
★ Clover fermion Nf=2

• APE stout smeared gauge link $c_{SW} = 1.1$ \star Box sizes $8^3 \times 4$ $12^3 \times 4$ $16^3 \times 4$

β	K	PCAC mass
0.9	0.137	0.17(13)
1.1	0.133	0.18(19)
1.3	0.133	0.088(53)
1.5	0.131	0.116(39)
1.7	0.129	0.168(21)
1.9	0.125	0.1076(68)
2.1	0.122	0.1259(11)

Plan of the talk

I. Introduction

- Winding number expansion
- 3. Numerical setup
 - 4. Numerical results
 - 5. Hadronic observables
 - 6. Conclusion

Numerical results (Polyakov loop)

Numerical results (Polyakov loop)

Numerical results (Polyakov loop)

Numerical results (Polyakov loop)

Numerical results (Polyakov loop)

Numerical results (Polyakov loop) $\langle O^2 \rangle - \langle O \rangle^2$ Phase(Polyakov) Re(Polyakov) 1.6 0 0.0004 0 • 1.4 0.00035 0 Φ 1.2 0.0003 Φ 1 0.00025 0.8 1 0.0002 0.6 0.00015 • 0.4 0.0001 0 0.2 0 5e-05 ()0 1.2 1.4 1.6 0.8 1 1.8 2 2.2 1.21.41.61.8 2 2.2 0.8 β β

Before the main dish...

Test of the hopping parameter expansion

Before the main dish...

Test of the hopping parameter expansion

• Where to truncate the expansion?

Numerical results Zc(n) Test of the hopping parameter expansion

• Where to truncate the expansion?

We have a good benchmark! Fugacity expansion by reduction formula

We have a good benchmark! Fugacity expansion by reduction formula P. Gibbs A. Hasenfratz and D. Toussaint

We have a good benchmark! Fugacity expansion by reduction formula P. Gibbs A. Hasenfratz and D. Toussaint K. Nagata and A. Nakamura A. Alexandru and U. Wenger

We have a good benchmark! Fugacity expansion by reduction formula

 $\mathrm{Det}D_W(\mu)$

We have a good benchmark! Fugacity expansion by reduction formula $Det D_W(\mu) = C_0 \xi^{-N_R/2} Det (\xi + Q)$

We have a good benchmark! Fugacity expansion by reduction formula $\operatorname{Det} D_W(\mu) = C_0 \xi^{-N_R/2} \operatorname{Det} (\xi + Q) = \sum_{n=-\infty}^{\infty} c_n (U_\mu) \xi^n$

We have a good benchmark! Fugacity expansion by reduction formula $Det D_W(\mu) = C_0 \xi^{-N_R/2} Det (\xi + Q) = \sum_{n=-\infty}^{\infty} c_n (U_\mu) \xi^n$ Exact!

We have a good benchmark! Fugacity expansion by reduction formula $Det D_W(\mu) = C_0 \xi^{-N_R/2} Det (\xi + Q) = \sum_{n=-\infty}^{\infty} c_n (U_\mu) \xi^n$ Exact! Computational cost is heavy...

Canonical partition function measured on a single conf.

$8^3 \times 4$ $\beta = 1.9$ $\kappa = 0.1250$ $am_{PCAC} = 0.1076(68)$ $\mu = 0$

Canonical partition function measured on a single conf.

 $8^3 \times 4 \quad \beta = 1.9 \quad \kappa = 0.1250 \quad am_{PCAC} = 0.1076(68) \quad \mu = 0$

 $\log |Z_C(n)|$

Plan of the talk

I. Introduction

- Winding number expansion
- 3. Numerical setup
- 4. Numerical results
 - 5. Hadronic observables
 - 6. Conclusion

$$\begin{aligned} & Figacity expansion of EV of GC observables \\ & \langle \hat{O} \rangle_G(\beta,\mu,V) = \frac{\text{Tr} \left[\hat{O} \exp \left(-\beta \left(\hat{H} - \mu \hat{N} \right) \right) \right]}{\text{Tr} \left[\exp \left(-\beta \left(\hat{H} - \mu \hat{N} \right) \right) \right]} \\ & \text{Numerator} = \sum_{n=-\infty}^{\infty} \sum_{E} \left\langle E, n \left| \hat{O} e^{-\beta \hat{H}} \right| E, n \right\rangle \xi^n \\ & \equiv \sum_{n=-\infty}^{\infty} O_n \xi^n \end{aligned}$$

Fugacity expansion of EV of GC observables
$$\langle \hat{O} \rangle_G(\beta, \mu, V) = \frac{\operatorname{Tr} \left[\hat{O} \exp \left(-\beta \left(\hat{H} - \mu \hat{N} \right) \right) \right]}{\operatorname{Tr} \left[\exp \left(-\beta \left(\hat{H} - \mu \hat{N} \right) \right) \right]}$$
Numerator = $\sum_{n=-\infty}^{\infty} \sum_{E} \left\langle E, n \left| \hat{O}e^{-\beta \hat{H}} \right| E, n \right\rangle \xi^n \equiv \sum_{n=-\infty}^{\infty} O_n \xi^n$

path integral formalism

Fugacity expansion of EV of GC observables
$$\langle \hat{O} \rangle_G(\beta, \mu, V) = \frac{\operatorname{Tr} \left[\hat{O} \exp \left(-\beta \left(\hat{H} - \mu \hat{N} \right) \right) \right]}{\operatorname{Tr} \left[\exp \left(-\beta \left(\hat{H} - \mu \hat{N} \right) \right) \right]}$$
Numerator = $\sum_{n=-\infty}^{\infty} \sum_{E} \left\langle E, n \left| \hat{O} e^{-\beta \hat{H}} \right| E, n \right\rangle \xi^n \equiv \sum_{n=-\infty}^{\infty} O_n \xi^n$ path integral formalism

Fugacity expansion of EV of GC observables
$$\langle \hat{O} \rangle_G(\beta, \mu, V) = \frac{\operatorname{Tr} \left[\hat{O} \exp \left(-\beta \left(\hat{H} - \mu \hat{N} \right) \right) \right]}{\operatorname{Tr} \left[\exp \left(-\beta \left(\hat{H} - \mu \hat{N} \right) \right) \right]}$$
Numerator = $\sum_{n=-\infty}^{\infty} \sum_{E} \left\langle E, n \left| \hat{O} e^{-\beta \hat{H}} \right| E, n \right\rangle \xi^n \equiv \sum_{n=-\infty}^{\infty} O_n \xi^n$ path integral formalism

Fugacity expansion of EV of GC observables

$$\langle \hat{O} \rangle_{G}(\beta,\mu,V) = \frac{\operatorname{Tr} \left[\hat{O} \exp \left(-\beta \left(\hat{H} - \mu \hat{N} \right) \right) \right]}{\operatorname{Tr} \left[\exp \left(-\beta \left(\hat{H} - \mu \hat{N} \right) \right) \right]}$$

$$\operatorname{umerator} = \sum_{n=-\infty}^{\infty} \sum_{E} \left\langle E, n \left| \hat{O} e^{-\beta \hat{H}} \right| E, n \right\rangle \xi^{n} \equiv \sum_{n=-\infty}^{\infty} O_{n} \xi^{n}$$

$$\operatorname{path integral formalism} \qquad \operatorname{re-weighting technique}$$

$$\left\langle O(D_{W}(\mu)) \frac{\operatorname{Det} D_{W}(\mu)}{\operatorname{Det} D_{W}(\mu_{0})} \right\rangle_{0} Z_{G}(\mu_{0})$$

N

Fugacity expansion of EV of GC observables

$$O_n = \oint \frac{d\xi}{2\pi i} \xi^{-n-1} \left\langle O(D_W(\xi)) \frac{\text{Det} D_W(\xi)}{\text{Det} D_W(\mu_0)} \right\rangle_0 Z_G(\mu_0)$$

Numerator =
$$\sum_{n=-\infty}^{\infty} \sum_{E} \left\langle E, n \left| \hat{O}e^{-\beta \hat{H}} \right| E, n \right\rangle \xi^{n} \equiv \sum_{n=-\infty}^{\infty} O_{n} \xi^{n}$$

path integral formalism re-weighting technique

 $\left\langle O(D_W(\mu)) \frac{\text{Det}D_W(\mu)}{\text{Det}D_W(\mu_0)} \right\rangle_0 Z_G(\mu_0)$

Fugacity expansion of EV of GC observables

 $O_n = \oint \frac{d\xi}{2\pi i} \xi^{-n-1} \left\langle O(D_W(\xi)) \frac{\text{Det} D_W(\xi)}{\text{Det} D_W(\mu_0)} \right\rangle_0 Z_G(\mu_0)$

Fugacity expansion of EV of GC observables

 $O_n = \oint \frac{d\xi}{2\pi i} \xi^{-n-1} \left\langle O(D_W(\xi)) \frac{\text{Det} D_W(\xi)}{\text{Det} D_W(\mu_0)} \right\rangle_0 Z_G(\mu_0)$

To see explicit functional form in ξ

Fugacity expansion of EV of GC observables

$$O_n = \oint \frac{d\xi}{2\pi i} \xi^{-n-1} \left\langle O(D_W(\xi)) \frac{\text{Det}D_W(\xi)}{\text{Det}D_W(\mu_0)} \right\rangle_0 Z_G(\mu_0)$$

To see explicit functional form in ξ Use HPE

Fugacity expansion of EV of GC observables

$$O_n = \oint \frac{d\xi}{2\pi i} \xi^{-n-1} \left\langle O(D_W(\xi)) \frac{\text{Det}D_W(\xi)}{\text{Det}D_W(\mu_0)} \right\rangle_0 Z_G(\mu_0)$$

To see explicit functional form in ξ Use HPE

$$\bar{\psi}\psi = -\mathrm{tr}\left(\frac{1}{D_W}\right) = -\mathrm{tr}\left(\frac{1}{1-\kappa Q}\right) = \sum_{m=0}^{\infty} \kappa^m \mathrm{tr}Q^m$$

Fugacity expansion of EV of GC observables

$$O_n = \oint \frac{d\xi}{2\pi i} \xi^{-n-1} \left\langle O(D_W(\xi)) \frac{\text{Det}D_W(\xi)}{\text{Det}D_W(\mu_0)} \right\rangle_0 Z_G(\mu_0)$$

To see explicit functional form in ξ Use HPE

$$\bar{\psi}\psi = -\operatorname{tr}\left(\frac{1}{D_W}\right) = -\operatorname{tr}\left(\frac{1}{1-\kappa Q}\right) = \sum_{m=0}^{\infty} \kappa^m \operatorname{tr}Q^m$$

resummation

Fugacity expansion of EV of GC observables

$$O_n = \oint \frac{d\xi}{2\pi i} \xi^{-n-1} \left\langle O(D_W(\xi)) \frac{\text{Det}D_W(\xi)}{\text{Det}D_W(\mu_0)} \right\rangle_0 Z_G(\mu_0)$$

To see explicit functional form in ξ Use HPE

$$\bar{\psi}\psi = -\operatorname{tr}\left(\frac{1}{D_W}\right) = -\operatorname{tr}\left(\frac{1}{1-\kappa Q}\right) = \sum_{m=0}^{\infty} \kappa^m \operatorname{tr}Q^m$$
resummation.
$$\sum_{n=-\infty}^{\infty} S_n(U)\xi^n$$

Fugacity expansion of EV of GC observables

$$O_n = \oint \frac{d\xi}{2\pi i} \xi^{-n-1} \left\langle O(D_W(\xi)) \frac{\text{Det}D_W(\xi)}{\text{Det}D_W(\mu_0)} \right\rangle_0 Z_G(\mu_0)$$

To see explicit functional form in ξ Use HPE

$$\bar{\psi}\psi = -\mathrm{tr}\left(\frac{1}{D_W}\right) = -\mathrm{tr}\left(\frac{1}{1-\kappa Q}\right) = \sum_{m=0}^{\infty} \kappa^m \mathrm{tr}Q^m$$
resummation

$$\sum_{n=-\infty}^{\infty} S_n(U)\xi^n$$

 $\mathrm{Det}D_W$

Fugacity expansion of EV of GC observables

$$O_n = \oint \frac{d\xi}{2\pi i} \xi^{-n-1} \left\langle O(D_W(\xi)) \frac{\text{Det}D_W(\xi)}{\text{Det}D_W(\mu_0)} \right\rangle_0 Z_G(\mu_0)$$

To see explicit functional form in ξ Use HPE

$$\bar{\psi}\psi = -\mathrm{tr}\left(\frac{1}{D_W}\right) = -\mathrm{tr}\left(\frac{1}{1-\kappa Q}\right) = \sum_{m=0}^{\infty} \kappa^m \mathrm{tr}Q^m$$
resummation.

$$\sum_{n=-\infty}^{\infty} S_n(U)\xi^n$$
Det D_W *resummation.*

Fugacity expansion of EV of GC observables

$$O_n = \oint \frac{d\xi}{2\pi i} \xi^{-n-1} \left\langle O(D_W(\xi)) \frac{\text{Det}D_W(\xi)}{\text{Det}D_W(\mu_0)} \right\rangle_0 Z_G(\mu_0)$$

To see explicit functional form in ξ Use HPE

$$\bar{\psi}\psi = -\mathrm{tr}\left(\frac{1}{D_W}\right) = -\mathrm{tr}\left(\frac{1}{1-\kappa Q}\right) = \sum_{m=0}^{\infty} \kappa^m \mathrm{tr}Q^m$$
resummation.

$$\sum_{n=-\infty}^{\infty} S_n(U)\xi^n$$
Det D_W *resummation.*

$$\exp\left(\sum_{n=-\infty}^{\infty} W_n(U)\xi^n\right)$$

Hadronic observables $O_{n} = \sum_{E} \left\langle E, n \left| \hat{O}e^{-\beta \hat{H}} \right| E, n \right\rangle$ $Z_{n} = \sum_{E} \left\langle E, n \left| e^{-\beta \hat{H}} \right| E, n \right\rangle$

Hadronic observables $O_n = \sum \left\langle E, n \left| \hat{O} e^{-\beta \hat{H}} \right| E, n \right\rangle$ $Z_n = \sum_{n=1}^{L} \left\langle E, n \left| e^{-\beta \hat{H}} \right| E, n \right\rangle$ EV of canonical ensemble

Hadronic observables $O_n = \sum \left\langle E, n \left| \hat{O} e^{-\beta \hat{H}} \right| E, n \right\rangle$ $Z_n = \sum \left\langle E, n \left| e^{-\beta \hat{H}} \right| E, n \right\rangle$ EV of canonical ensemble $\langle \hat{O} \rangle_C(\beta, n, V) = \frac{O_n}{Z_m}$

Hadronic observables $O_n = \sum \left\langle E, n \left| \hat{O} e^{-\beta \hat{H}} \right| E, n \right\rangle$ $Z_n = \sum_{n=1}^{L} \left\langle E, n \left| e^{-\beta \hat{H}} \right| E, n \right\rangle$ EV of canonical ensemble $\langle \hat{O} \rangle_C(\beta, n, V) = \frac{O_n}{Z_m}$ Fly into REAL µ!

Chiral condensate in canonical ensemble

mass dependence

Chiral condensate in grand canonical ensemble

μ

Preliminary! Τ 12 11.9 11.8 11.7 11.6 11.5 11.4 11.3 11.2 -4 4 -2 0 2

Chiral condensate in grand canonical ensemble

Chiral condensate in grand canonical ensemble

Preliminary!

mass dependence

Chiral condensate in grand canonical ensemble

Lee-Yang zeros

Canonical approach is a good choice for finite density QCD.

Conclusion

- Canonical approach is a good choice for finite density QCD.
- Hopping parameter expansion works more than we expected.

Conclusion

- Canonical approach is a good choice for finite density QCD.
- Hopping parameter expansion works more than we expected.
 We have three interesting results.

 $\sum \langle \psi \psi \rangle_C(\beta, n)$

 $\sum \langle \psi \psi \rangle_G(\beta,\mu)$

If you can read this I am on the wrong page.

Convergence radius

Convergence radius

 $\sum Z_n \xi^n = Z_0 + Z_1 \xi + Z_2 \xi^2 + \cdots$ $+Z_{-1}\xi^{-1}+Z_{-2}\xi^{-2}+\cdots$ $n = -\infty$

Convergence radius

 ∞ $\sum_{n=1}^{\infty} Z_n \xi^n = Z_0 + Z_1 \xi + Z_2 \xi^2 + \cdots$ $+Z_{-1}\xi^{-1}+Z_{-2}\xi^{-2}+\cdots$ $n = -\infty$

Convergence radius

 $\sum_{n=1}^{\infty} Z_n \xi^n = Z_0 + Z_1 \xi + Z_2 \xi^2 + \cdots$ $n = -\infty$ $+Z_{-1}\xi^{-1}+Z_{-2}\xi^{-2}+\cdots$

Convergence radius

 $\sum Z_n \xi^n = Z_0 + Z_1 \xi + Z_2 \xi^2 + \cdots$ $n = -\infty$ $+Z_{-1}\xi^{-1}+Z_{-2}\xi^{-2}+\cdots$

Convergence radius

 $\sum_{n=-\infty} Z_n \xi^n = Z_0 + Z_1 \xi + Z_2 \xi^2 + \cdots + Z_{-1} \xi^{-1} + Z_{-2} \xi^{-2} + \cdots$

Numerical results Phase(Zc(n))

Canonical partition function $Z_C(T, n, V) = |Z_C(\beta, n)|e^{i\theta(\beta, n)}$

Numerical results Phase(Zc(n))

Canonical partition function $Z_C(T, n, V) = |Z_C(\beta, n)|e^{i\theta(\beta, n)}$

Canonical partition function $Z_C(T, n, V) = |Z_C(\beta, n)|e^{i\theta(\beta, n)}$

slope $\sim 2 \times \text{phase}(W_1)$

$$slope \sim 2 \times phase(W_1)$$
$$TrLog D_W(\mu) = \sum_{N=-\infty}^{\infty} W_N \xi^N$$

Canonical partition function $Z_C(T, n, V) = |Z_C(\beta, n)|e^{i\theta(\beta, n)}$

slope~ 2 ×phase(W1)

$$\operatorname{TrLog} U_W(\mu) = \sum_{N=-\infty}^{\infty} W_N \xi^N$$

phase of $\text{Det}D_W(\mu)$

Canonical partition function $Z_C(T, n, V) = |Z_C(\beta, n)|e^{i\theta(\beta, n)}$

slope~ 2 ×phase(W1)
TrLog
$$L_W(\mu) = \sum_{N=-\infty}^{\infty} W_N \xi^A$$

Pion condensate

phase of $\text{Det}D_W(\mu)$

Ipsen and Splittorff (2012)

Hadronic observables

Hadronic observables

Chiral condensate in canonical ensemble

 $rac{\sum \langle ar{\psi}\psi
angle_C(eta,n)}{V}$

Hadronic observables

Chiral condensate in canonical ensemble

 $rac{\sum \langle ar{\psi}\psi
angle_G(eta,\mu)}{V}$

 μ dependence

 $\beta = 1.5$

 $\beta = 1.7$

 $\beta = 1.9$