Neutral B－meson mixing in and beyond the SM with 2＋1 flavor lattice QCD

Chris Bouchard（OSU）and Elizabeth Freeland（Art Institute of Chicago）
Fermilab Lattice and MILC Collaborations

presented by
Aida X．El－Khadra （UIUC）

Lattice 2014，New York City 23－28 June 2014

Outline

© Motivation and Introduction

- Lattice set-up

Q Correlators

- Chiral-continuum extrapolation

Q Complete but preliminary systematic error budget
© Conclusions

Motivation and Introduction

uncertainty on ξ dominates $\Delta M_{s} / \Delta M_{d}$ band

Motivation and Introduction

Standard Model

$\left.\mathrm{SM}: \quad \Delta M_{q}=(\mathrm{known}) \times\left|V_{t q}^{*} V_{t b}\right|^{2}\right) \times\left\langle\overline{B_{q}^{0}}\right| \mathcal{O}_{1}\left|B_{q}^{0}\right\rangle$ also:

$$
\begin{aligned}
& \frac{\Delta M_{s}}{\Delta M_{d}}=\frac{m_{B_{s}}}{m_{B d}} \times\left|\frac{V_{t s}}{V_{t d}}\right|^{2} \times \xi^{2} \quad \text { with } \quad \xi \equiv \frac{f_{B_{s}} \sqrt{B_{B_{s}}}}{f_{B_{d}} \sqrt{B_{B_{d}}}} \\
& \Delta \Gamma_{q}=\left[G_{1}\left\langle\bar{B}_{q}^{0}\right| \mathcal{O}_{1}\left|B_{q}^{0}\right\rangle+G_{3}\left\langle\bar{B}_{q}^{0}\right| \mathcal{O}_{3}\left|B_{q}^{0}\right\rangle\right] \cos \phi_{q}+O\left(1 / m_{b}\right)
\end{aligned}
$$

HFAG, PDG 2014 averages:

$$
\begin{array}{lll}
\Delta M_{d}=(0.510 \pm 0.003) \mathrm{ps}^{-1} & (0.6 \%) & \Delta \Gamma_{d} / \Gamma_{d}=0.001 \pm 0.010 \\
\Delta M_{s}=(17.761 \pm 0.022) \mathrm{ps}^{-1} & (0.1 \%) & \Delta \Gamma_{s} / \Gamma_{s}=0.138 \pm 0.012
\end{array}
$$

Motivation and Introduction

Standard Model

In general :
$\mathcal{H}_{\text {eff }}=\sum_{i=1}^{5} c_{i}(\mu) \mathcal{O}_{i}(\mu)$
SM:

$$
\begin{aligned}
& \mathcal{O}_{1}=\left(\bar{b}^{\alpha} \gamma_{\mu} L q^{\alpha}\right)\left(\bar{b}^{\beta} \gamma_{\mu} L q^{\beta}\right) \\
& \mathcal{O}_{2}=\left(\bar{b}^{\alpha} L q^{\alpha}\right)\left(\bar{b}^{\beta} L q^{\beta}\right) \\
& \mathcal{O}_{3}=\left(\bar{b}^{\alpha} L q^{\beta}\right)\left(\bar{b}^{\beta} L q^{\alpha}\right)
\end{aligned}
$$

$$
\left\langle\mathcal{O}_{i}\right\rangle \equiv\left\langle\overline{B_{q}^{0}}\right| \mathcal{O}_{i}\left|B_{q}^{0}\right\rangle(\mu)=e_{i} m_{B_{q}}^{2} f_{B_{q}}^{2} B_{B_{q}}^{(i)}(\mu)
$$

We calculate all five matrix elements.

Lattice set-up

- 14 MILC asqtad ensembles 4 lattice spacings
~ 4 sea quark masses per lattice spacing
~600-2000 configurations
$\times 4$ time-sources per ensemble
- asqtad light valence quarks
~ 7 light valence masses per ensemble
- Fermilab b quarks
- $O(a)$ improved four-quark operators

Lattice set-up

Lattice set-up

Correlators

$C_{2}(t)=\sum_{\mathbf{x}}\left\langle\chi_{B}(t, \mathbf{x}) \chi_{B}^{\dagger}(0,0)\right\rangle \quad$ with IS smearing of source/sink
$C_{3, i}\left(t_{1}, t_{2}\right)=\sum_{\mathbf{x}, \mathbf{y}}\left\langle\chi_{B}\left(t_{2}, \mathbf{y}\right) \mathcal{O}_{i}(0,0) \chi_{B}^{\dagger}\left(t_{1}, \mathbf{x}\right)\right\rangle$

Correlators

Fit to:

$$
\begin{aligned}
& C_{2}(t)=\sum_{m=0}^{N_{\text {states }}-1}\left|Z_{m}\right|^{2}(-1)^{(t+1) m}\left(e^{-E_{m} t}+e^{-E_{m}(T-t)}\right) \\
& C_{3, i}\left(t_{1}, t_{2}\right)=\sum_{m, n=0}^{N_{\text {states }}-1} Z_{m} Z_{n}\langle\mathcal{O}\rangle_{m n}(-1)^{\left(t_{1}+1\right) m+\left(t_{2}+1\right) n} e^{-E_{m} t_{1}} e^{-E_{n} t_{2}}
\end{aligned}
$$

- simultaneous fits using Bayesian constraints for excited states
- $N_{\text {states }}=2+2$
- $t_{\text {min }}, t_{\text {max }}$ constant in physical units
- 3pt max $t_{1,2}<T / 2$

Renormalization and matching

Operator renormalization at one-loop in perturbation theory
$\left\langle\mathcal{O}_{i}\right\rangle^{\mathrm{cont}}(\mu)=\left(1+\alpha_{s} \zeta_{i i}\right)\left\langle\mathcal{O}_{i}\right\rangle^{\text {lat }}(\mu)+\alpha_{s} \zeta_{i j}\left\langle\mathcal{O}_{j}\right\rangle^{\text {lat }}(\mu)+O\left(\alpha_{s}^{2}\right)$

- $\zeta_{i j}=\zeta_{i j}\left(\mu, m_{b}, a m_{b}\right)=Z_{i j}^{\text {cont }}-Z_{i j}^{\text {lat }}$
- calculated in mean-field improved lattice perturbation theory
- $\overline{\mathrm{MS}}$-NDR scheme
- $\alpha_{s}=\alpha_{V}(2 / a)$
- $\mu=m_{b}$

Heavy-quark discretization errors

- analyze cut-off effects with (continuum) HQET
- discretization errors arise due to mismatch of coefficients of the EFT descriptions of lattice and continuum matrix elements
- discretization errors take the form $\sim a^{d-4} f_{k}\left(a m_{0}\right)\left\langle\mathcal{O}_{k}\right\rangle \sim f_{k}\left(a m_{0}\right)(a \Lambda)^{d-4}$
- with tree-level tadpole $O(a)$ improvement we have errors $O\left(\alpha_{s} a \Lambda\right)$ and $O(a \Lambda)^{2}$

Chiral-continuum extrapolation

$\mathrm{SU}(3)$ heavy-meson partially-quenched rooted staggered $\chi \mathrm{PT}$
Q NLO chiral logs + taste-splittings + "wrong-spin" corrections

- + analytic terms (up to $\mathrm{N}^{3} \mathrm{LO}$)
- $+B$-meson hyperfine and flavor splittings
© + HQ discretization terms
Schematically

$$
\begin{aligned}
&\left\langle O_{1}^{q}\right\rangle=\beta_{1}\left(1+\begin{array}{c}
\text { NLO chiral logs } \\
+ \text { taste-splittings }
\end{array}\right. \\
&\left.+\begin{array}{c}
\text { wrong spin } \\
\text { terms }
\end{array}\right)+\left(2 \beta_{2}+2 \beta_{3}\right) \text { w.s. }+\left(2 \beta_{2}^{\prime}+2 \beta_{3}^{\prime}\right) \text { w.s. } \\
&+ \text { analytic terms } \\
& \text { LECs for }\left\langle\mathcal{O}_{1}\right\rangle,\left\langle\mathcal{O}_{2}\right\rangle,\left\langle\mathcal{O}_{3}\right\rangle{ }^{\text {w. Bernard (Phys.Rev. D87 (2013) }} \begin{array}{l}
\text { 114503, arXiv: 1303.0435) }
\end{array}
\end{aligned}
$$

- no new LECs with simultaneous fits to the operators that mix at NLO

$$
\left[\left\langle\mathcal{O}_{1}\right\rangle,\left\langle\mathcal{O}_{2}\right\rangle,\left\langle\mathcal{O}_{3}\right\rangle\right] \text { and }\left[\left\langle\mathcal{O}_{4}\right\rangle,\left\langle\mathcal{O}_{5}\right\rangle\right]
$$

Chiral-continuum extrapolation

Preliminary systematic error budget

- test stability of chiral-continuum extrapolation under changes of fit function, data included, or inputs:

Preliminary systematic error budget

	ξ		$f_{B_{q}}^{2} B_{B_{q}}^{(1)}$		$f_{B_{q}}^{2} B_{B_{q}}^{(i)}$	
source	2012	2014	2011	2014	2011	2014
comb. stat. χ PT- cont.	$\begin{gathered} 3.7 \\ \text { w.s. } 3.2 \end{gathered}$	1.5	$\begin{aligned} & 7 \\ & 15 \end{aligned}$	$\begin{aligned} & 5 \\ & 8 \end{aligned}$	$\begin{gathered} 3-11 \\ 4.3-16 \end{gathered}$	$\begin{gathered} 5-7 \\ 7-14 \end{gathered}$
HQ disc.	0.3	0.3	4	included	4	included
inputs	0.7	included	5.1	included	5.1	included
PT	0.5	0.5	8	6.4	8	6.4
FV	0.5	0.5	1	I	1	I
total	5	1.7	$\begin{aligned} & 12 \\ & 18 \end{aligned}$	$\begin{gathered} 8 \\ 10 \end{gathered}$	$\begin{aligned} & 10-15 \\ & 11-19 \end{aligned}$	$\begin{gathered} 8-10 \\ 10-15 \end{gathered}$

Conclusions

(6) We present results for B mixing parameters on a large set of MILC asquad ensembles

Q systematic error analysis is still preliminary
Q simultaneous chiral-continuum fits of $\left[\left\langle\mathcal{O}_{1}\right\rangle,\left\langle\mathcal{O}_{2}\right\rangle,\left\langle\mathcal{O}_{3}\right\rangle\right]$ and $\left[\left\langle\mathcal{O}_{4}\right\rangle,\left\langle\mathcal{O}_{5}\right\rangle\right]$ to account for the wrong spin terms
(9. combine this analysis with $f_{B}, f_{B S}$ to extract bag parameters (see E. Neil talk, parallel session 6G)

