A filtering technique for the temporally reduced matrix of the Wilson fermion determinant

Keitaro Nagata(a)

Collaborators:

Y. Futamura(b), S. Hashimoto(a), A. Imakura(b), T. Sakurai(b)

(a) KEK, (b) Department of computer science, Tsukuba University

Motivation

- \(\det \Delta(\mu) \) is a key quantity in finite density lattice QCD.

- **Reduction formula**
 - calculate t-part of \(\det \Delta \) analytically
 \[
 \det \Delta = \xi^{-N_{\text{red}}/2} C_0 \det(\xi + Q)
 \]
 \[
 \xi = e^{-\mu/T}
 \]
 \[
 N_{\text{red}} = 4N_cN_s^3
 \]
 - reduction of the rank of determinant
 - analytic function of \(\mu \)

- The formula requires the eigenvalue calculation of \(Q \).
 - this prohibits the application of the formula to large volume.

- **Purpose**: We would like to develop a way to calculate eigenvalues of the reduced matrix with milder volume dependence.
Reduced matrix

\[Q = (\alpha_1^{-1}\beta_1) \cdots (\alpha_{Nt}^{-1}\beta_{Nt}) \]

Reduced matrix = temporal quark line
\sim generalization of Polyakov loop

Block matrices

\[\alpha_i = B_ir_- - 2\kappa r_+ \]
\[\beta_i = (B_ir_+ - 2\kappa r_-)U_A \]

- Spatial hop at t=i
- Temporal link variables
Spectrum of reduced matrix

- Example of eigenvalue distribution

Are there some important eigenvalues, which dominate observables?
Which are physical eigenvalues?

- **Evs near the unit circle** are related to the pion mass at large Nt [Gibbs(’86), Fodor, Szabo, Toth(’07)]
 - reduced matrix \(\sim \) temporal quark line

- **Evs** are related to quasi energy state of quarks
 - reduced matrix \(\sim \) Polyakov loop
 - Nt scaling property [Nagata, et.al. PTEP’13]
 \[
 \lambda_n = e^{-\epsilon_n/T + i\theta_n}
 \]
 - low energy modes are located close to \(|\lambda| \sim 1\) (unit circle)

- **Quark number operator and reduced matrix** [Nagata, 2012]
 - similar to Fermi distribution
 - low energy modes have large contributions

\[
\hat{n} \propto \sum_n \left(\frac{1}{1 + e^{(\epsilon_n - \mu)/T - i\theta_n}} + \frac{1}{1 + e^{(\epsilon_n + \mu)/T + i\theta_n}} \right)
\]
Which are physical eigenvalues?

- Eigenvalues near the unit circle are physically important.

How do we obtain middle eigenvalues efficiently?
Methods

- Physical eigenvalues of the reduced matrix are in the middle of its eigenspectrum

- Sakurai-Sugiura (SS) method
 - An algorithm to obtain eigenvalues that lie in a given domain on the complex plane using contour integrals
 - single version [Sakurai, Sugiura 2003]
 - blocked version [Sakurai, Futamura, Tadano 2013]
Algorithm of SS method

- A generalized eigenvalue problem for matrices A and B
 \[Ax = \lambda Bx, \quad (A, B \in \mathbb{C}^{n \times n}) \]

- Define a function of \(z \)
 \[f(z) = u^\dagger (zB - A)^{-1}v, \quad (z \in \mathbb{C}, u, v \in \mathbb{C}^n) \]

 - using a Weirstrass’s canonical form
 \[P(zB - A)Q = \begin{pmatrix} zI_d - J_d & O \\ O & zN_{n-d} - I_{n-d} \end{pmatrix} \]

- single version: one vector \(v \)
- blocked version: multiple vector for \(v \)
 - Numerical stability is improved with multiple vectors.
Algorithm of SS method (blocked ver.)

- Numerical stability is improved with multiple vectors.
 - useful for the case where the target domain contains many eigenvalues.

\[S_k = \frac{1}{2\pi i} \int_{\Gamma} z^k (zB - A)^{-1} BV \, dz, \quad k = 1, 2, \ldots, m \]

\[V = \{ v_1, v_2, \ldots v_L \} \in \mathbb{R}^{n \times L} \]

- Sk gives a rectangular matrix.
- Perform a singular value decomposition for \(S = (S_1, S_2, \ldots S_m) \)

\[S = U\Sigma W^\dagger \quad S \in \mathbb{C}^{n \times mL} \]

- \(m \) and \(L \) have to be chosen appropriately
Algorithm of SS method (blocked ver.)

- Determine l large singular values

\[S = U\Sigma W^\dagger \]

\[\Sigma = (\sigma_1, \sigma_2, \cdots, \sigma_l, \cdots) \]

\[U = (u_1, u_2, \cdots, u_l, \cdots) \]

- Projection to a small eigen problem

\[A_l = U_l^\dagger AU_l, \quad B_l = U_l^\dagger BU_l \]

\[A_l r_j = \omega_j B_l r_j, \]

\[\lambda_j = \omega_j, \quad \text{Eigen pairs of the original problem} \]

\[x_j = U_m r_j \]
Note 1: Ring region

- bSS method is extended to a domain surrounded by two boundaries by taking a subtraction:

\[S_k = \frac{1}{2\pi i} \left(\int_{\Gamma_1} - \int_{\Gamma_2} \right) z^k (z - Q)^{-1} V \, dz \]
Note2 : Cost

• Numerical cost is mostly for S_k

$$S_k = \frac{1}{2\pi i} \int_\Gamma z^k (zB - A)^{-1} BV dz,$$

$$V = \{v_1, v_2, \cdots v_L\} \in \mathbb{R}^{n \times L}$$

of inversion = (Integral points) x (L-vectors)

• If shifted CG algorithm works, it would be one of efficient way to obtain S_k.

• But, it turned out that CG converges quite slowly for the reduced matrix.

• We employ the direct method for the inversion.
Result

– Size : 4^4, Nr=768 (ZGEES : LAPACK, Shur dec.)

$(4^4, L=10, m=24, \varepsilon_{SVD}=1.d-25)$

green points are integral points : 100 for each circle (Probably, it can be reduced to 50 pt.)

• bSS method works well, and are stable for sparse regions.
Result: dense region

- Size: 4^4, $N_r=768$ (ZGEES: LAPACK, Shur dec.)

- ZGEES and bSS fails for some eigenvalues in dense regions.
Division of rings further

\[(4^4, L=10, m=24, \varepsilon_{\text{SVD}}=1.d-25)\]
other prescriptions for dense region

- Include more vectors in U, by decreasing ε_{SVD}

$$U = (u_1, u_2, \cdots, u_I, \cdots)$$

- increase $m = \max(k)$
- increase the number of vectors L
- increase integral points

$$S_k = \frac{1}{2\pi i} \left(\int_{\Gamma_1} - \int_{\Gamma_2} \right) z^k (z - Q)^{-1} V \, dz$$
Dependence on # of vectors in U (m)

- $(4^4, L=10, m=24, \varepsilon_{\text{SVD}}=1.d-25)$
- Case 1: $(77, 10, 24, -25)$
- Case 2: $(95, 10, 24, -35)$
- decrease more singular values

- $(\text{# of obtained ev, } L, \text{ max}(k), \text{eps (SVD)})$ (97 eigenvalues inside)
Dependence on # of vectors L

(4, $L=10$, $m=24$, $\epsilon_{SVD}=1.d-25$)

• (# of obtained ev, L, max(k), eps (SVD)) (97 eigenvalues inside)
• case 1 : (77, 10, 24, -25)
• case 3 : (99, 20, 24, -25)
• include more vectors
Summary and future work

- blocked SS method successfully reproduces eigenvalues near the unit circle.
- It also works for dense region with some prescriptions.
- The inversion was done using the direct method due to ill-conditioned problem of the reduced matrix.
- We need to find an iterative method to calculate the inversion for the reduced matrix.
Algorithm of SS method (single ver.)

• Calculate moments for a given contour

\[
\mu_k = \frac{1}{2\pi i} \int_{\Gamma} (z - \gamma)^k f(z) \, dz
\]

\[
= \sum_{i=1}^{m} a_i (\lambda_i - \gamma)^k
\]

• An eigen problem for the following matrices reproduces the eigenvalues of the original eigen problem

\[
H_1 = \begin{pmatrix}
\mu_0 & \mu_1 & \cdots & \mu_{m-1} \\
\mu_1 & \mu_2 & \cdots & \mu_m \\
\vdots & \vdots & \ddots & \vdots \\
\mu_{m-1} & \mu_m & \cdots & \mu_{2m-2}
\end{pmatrix}
\]

\[
H_2 = \begin{pmatrix}
\mu_1 & \mu_2 & \cdots & \mu_m \\
\mu_2 & \mu_3 & \cdots & \mu_{m+1} \\
\vdots & \vdots & \ddots & \vdots \\
\mu_m & \mu_{m+1} & \cdots & \mu_{2m-1}
\end{pmatrix}
\]

\[
H_2 = \eta H_1 \quad \eta = \lambda - \gamma
\]
Dependence on integral points

- $N_{\text{int}} = 50$ and 100
• singular values
Result (singular values dependence)

(4x4x4x4, L=10, m=40)

<table>
<thead>
<tr>
<th>$[r_1, r_2]$</th>
<th>N_{ev}</th>
<th>$N_{ev}(\epsilon = 10^{-25})$</th>
<th>$N_{ev}(\epsilon = 10^{-35})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0.03, 0.02]</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>[0.02, 0.01]</td>
<td>48</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>[0.01, 0.008]</td>
<td>29</td>
<td>29</td>
<td>31</td>
</tr>
<tr>
<td>[0.008, 0.006]</td>
<td>55</td>
<td>50</td>
<td>51</td>
</tr>
<tr>
<td>[0.006, 0.008]</td>
<td>97</td>
<td>77</td>
<td>95</td>
</tr>
</tbody>
</table>
Result (L-dependence)

- Results

(4x4x4x4, L=10, m=40)

![Graph showing the dependence of L on the results]
Result-Nt-dependence

- Nt

bSS(L=10, m=24)

Re[λ]

Im[λ]

LAPACK

bSS

25
Algorithm (chart)

1. preparation
 1. set the integral domain (annulus with r1, r2)
 2. prepare L vectors, which has 1 or -1 for each element at random
 3. determine moments m

2. integral and obtain moments
 1. the inversion $(A-zB)^{-1}$ for each point on the contours
 2. (this work, we employ direct method)

3. filtering for a subspace
 1. m is determined according to a criterion, which determines the number of relevant singular value.

4. solve the small eigen problem
Reduction formula for fermion determinant

- Fermion determinant: $\det \Delta$
 - It includes chemical potential, and causes the sign problem.
 - It appears in a reweighting factor in avoiding the sign problem.

- Reduction formula/propagator matrix method
 - Perform the temporal part of $\det \Delta$ **analytically**

\[
\Delta = B - e^{\mu a} V - e^{-\mu a} V^\dagger
\]

\[
\Delta = \begin{pmatrix}
\square & \triangle & \triangle \\
\triangle & \square & \triangle \\
\triangle & \cdot & \cdot \\
\cdot & \cdot & \triangle \\
\triangle & \triangle & \square
\end{pmatrix}
\]
Which are physical eigenvalues?

- Eigenvalues near the unit circle are physical modes.