Non-perturbative Renormalization of Four-Fermion Operators Relevant to B_K with Staggered Quarks

Jangho Kim Hwancheol Jeong, Jongjeong Kim, Weonjong Lee, Jeonghwan Pak, Sungwoo Park

SWME Collaboration

Lattice 2014

(日) (同) (日) (日)

Introduction

- We present matching factors for the four-fermion operators obtained using the non-perturbative renormalization (NPR) method in RI-MOM scheme for improved staggered fermions on the MILC asqtad lattices ($N_f = 2 + 1$).
- Using $20^3 \times 64$ lattice ($a \approx 0.12 fm, am_\ell/am_s = 0.01/0.05$), we obtain the matching factor of B_K operator.
- We compare NPR results with those of one-loop perturbative matching.

イロト イポト イヨト イヨト

Four-Fermion Operator Renormalization

• \tilde{p} is the momentum in reduced Brillouin zone.

$$p \in (-rac{\pi}{a},rac{\pi}{a}]^4, \qquad \widetilde{p} \in (-rac{\pi}{2a},rac{\pi}{2a}]^4, \qquad p = \widetilde{p} + \pi_B$$

where $\pi_B (\equiv \frac{\pi}{a}B)$ is cut-off momentum in hypercube.

- a : lattice spacing.
- B : vector in hypercube. Each element is 0 or 1 ex) B = (0,0,1,1)

イロト イポト イヨト イヨト

The one-color trace four-fermion operator

$$O_{\mathbf{I}}(x) = \left[\overline{\chi}_{\mathbf{c}_{\mathbf{I}}}(x_{A})\overline{(\gamma_{S_{1}}\otimes\xi_{F_{1}})}_{AB}\chi_{\mathbf{c}_{\mathbf{2}}}(x_{B})\right]\left[\overline{\chi}_{\mathbf{c}_{3}}(x_{C})\overline{(\gamma_{S_{2}}\otimes\xi_{F_{2}})}_{CD}\chi_{\mathbf{c}_{4}}(x_{D})\right] \\ \times U_{AD;\mathbf{c}_{1}\mathbf{c}_{4}}(x)U_{BC;\mathbf{c}_{2}\mathbf{c}_{3}}(x) \quad (1)$$

The two-color trace four-fermion operator

$$O_{II}(x) = \left[\overline{\chi}_{c_1}(x_A)\overline{(\gamma_{S_1} \otimes \xi_{F_1})}_{AB}\chi_{c_2}(x_B)\right] \left[\overline{\chi}_{c_3}(x_C)\overline{(\gamma_{S_2} \otimes \xi_{F_2})}_{CD}\chi_{c_4}(x_D)\right] \\ \times U_{AB;c_1c_2}(x)U_{CD;c_3c_4}(x)$$
(2)

- U : link variable.
- A, B, C, D: hypercube index
- *c*₁, *c*₂, *c*₃, *c*₄ : color index

イロト 不得下 イヨト イヨト

Figure: One-color trace and two-color trace four-fermion operators

<ロ> (日) (日) (日) (日) (日)

Red Circle : 1PI Diagram.

<ロ> (日) (日) (日) (日) (日)

(c) Amputated Green's Function : Λ^{α} (d)

イロト イヨト イヨト イヨト

α, β : the indices to represent different operators.
 ex) α = (V ⊗ P)(V ⊗ P)_I, β = (A ⊗ P)(A ⊗ P)_{II}

• momentum conservation in reduced Brillouin zone. $\widetilde{k} = \widetilde{p}_1 - \widetilde{p}_2 + \widetilde{p}_3 - \widetilde{p}_4$

The one-color trace projection operator is

$$\hat{P}^{\beta} = \overline{\overline{(\gamma_{S'}^{\dagger} \otimes \xi_{F'}^{\dagger})}}_{BA} \overline{\overline{(\gamma_{S''}^{\dagger} \otimes \xi_{F''}^{\dagger})}}_{DC} \delta_{c_4 c_1} \delta_{c_3 c_2}$$

The two-color trace projection operator is

$$\hat{P}^{\beta} = \overline{\overline{(\gamma_{S'}^{\dagger} \otimes \xi_{F'}^{\dagger})}}_{BA} \overline{\overline{(\gamma_{S''}^{\dagger} \otimes \xi_{F''}^{\dagger})}}_{DC} \delta_{\mathbf{c_2c_1}} \delta_{\mathbf{c_4c_3}}$$

- A, B, C, D: hypercube index
- *c*₁, *c*₂, *c*₃, *c*₄ : color index

・ロト ・回ト ・ヨト ・ヨト

For simplicity, we define the following notations.

$$O_{V1} \equiv O_{[V \otimes P][V \otimes P],I}$$

$$O_{V2} \equiv O_{[V \otimes P][V \otimes P],II}$$

$$O_{A1} \equiv O_{[A \otimes P][A \otimes P],I}$$

$$O_{A2} \equiv O_{[A \otimes P][A \otimes P],II}$$
(3)

The tree level B_K operator is

$$\mathcal{O}_{B_{\mathcal{K}}}^{\text{tree}} = \mathcal{O}_{V1}^{\text{tree}} + \mathcal{O}_{V2}^{\text{tree}} + \mathcal{O}_{A1}^{\text{tree}} + \mathcal{O}_{A2}^{\text{tree}}$$
(4)

The matching formula of B_K operator is

$$O_{B_{K}}^{R} = z_{1}O_{V1}^{B} + z_{2}O_{V2}^{B} + z_{3}O_{A1}^{B} + z_{4}O_{A2}^{B} + \sum_{\alpha \in (D)} z_{\alpha}O_{\alpha}^{B}$$
(5)

- The superscription R(B) denotes renormalized(bare) quantity.
- z_1 , z_2 , z_3 , z_4 and z_{α} are the renormalization factors.
- We classify operators as follows.
 - (C): {V1, V2, A1, A2} (diagonal operators)
 - (D): remaining operators (off-diagonal operators)

The renormalization of quark field is

$$\chi_R = Z_q^{1/2} \chi_B \tag{6}$$

where z_q is wave function renormalization factor for quark field. The renormalized amputated Green's function of B_K operator is

$$\Lambda_{B_{\kappa}}^{R} = \frac{z_{1}}{z_{q}^{2}}\Lambda_{V1}^{B} + \frac{z_{2}}{z_{q}^{2}}\Lambda_{V2}^{B} + \frac{z_{3}}{z_{q}^{2}}\Lambda_{A1}^{B} + \frac{z_{4}}{z_{q}^{2}}\Lambda_{A2}^{B} + \sum_{\alpha \in (D)} \frac{z_{\alpha}}{z_{q}^{2}}\Lambda_{\alpha}^{B},$$
(7)

For simplicity, the projection operators are defined as follows.

$$\hat{P}_{V1} = \overline{\overline{(V_{\mu} \otimes P)}}_{BA}^{\dagger} \overline{\overline{(V_{\mu} \otimes P)}}_{DC}^{\dagger} \delta_{c_{4}c_{1}} \delta_{c_{3}c_{2}}$$

$$\hat{P}_{V2} = \overline{\overline{(V_{\mu} \otimes P)}}_{BA}^{\dagger} \overline{\overline{(V_{\mu} \otimes P)}}_{DC}^{\dagger} \delta_{c_{2}c_{1}} \delta_{c_{4}c_{3}}$$

$$\hat{P}_{A1} = \overline{\overline{(A_{\mu} \otimes P)}}_{BA}^{\dagger} \overline{\overline{(A_{\mu} \otimes P)}}_{DC}^{\dagger} \delta_{c_{4}c_{1}} \delta_{c_{3}c_{2}}$$

$$\hat{P}_{A2} = \overline{\overline{(A_{\mu} \otimes P)}}_{BA}^{\dagger} \overline{\overline{(A_{\mu} \otimes P)}}_{DC}^{\dagger} \delta_{c_{2}c_{1}} \delta_{c_{4}c_{3}}$$
(8)

イロト イヨト イヨト イヨト

We apply the projection operator to tree level amputated Green's function.

$$\begin{aligned} tr[\Lambda_{B_{\kappa}}^{\text{tree}}\hat{P}_{V1}] &= tr[\Lambda_{V1}^{\text{tree}}\hat{P}_{V1}] + tr[\Lambda_{V2}^{\text{tree}}\hat{P}_{V1}] + tr[\Lambda_{A1}^{\text{tree}}\hat{P}_{V1}] + tr[\Lambda_{A2}^{\text{tree}}\hat{P}_{V1}] \\ &= (16 \times 16 \times 3 \times 3) + (16 \times 16 \times 3) = 3072 \equiv N \end{aligned} \tag{9} \\ tr[\Lambda_{B_{\kappa}}^{\text{tree}}\hat{P}_{V2}] &= tr[\Lambda_{V1}^{\text{tree}}\hat{P}_{V2}] + tr[\Lambda_{V2}^{\text{tree}}\hat{P}_{V2}] + tr[\Lambda_{A1}^{\text{tree}}\hat{P}_{V2}] + tr[\Lambda_{A2}^{\text{tree}}\hat{P}_{V2}] \\ &= (16 \times 16 \times 3) + (16 \times 16 \times 3 \times 3) = 3072 \equiv N \end{aligned} \tag{10} \\ tr[\Lambda_{B_{\kappa}}^{\text{tree}}\hat{P}_{A1}] &= tr[\Lambda_{V1}^{\text{tree}}\hat{P}_{A1}] + tr[\Lambda_{V2}^{\text{tree}}\hat{P}_{A1}] + tr[\Lambda_{A1}^{\text{tree}}\hat{P}_{A1}] + tr[\Lambda_{A2}^{\text{tree}}\hat{P}_{A1}] \\ &= (16 \times 16 \times 3 \times 3) + (16 \times 16 \times 3) = 3072 \equiv N \end{aligned} \tag{11} \\ tr[\Lambda_{B_{\kappa}}^{\text{tree}}\hat{P}_{A2}] &= tr[\Lambda_{V1}^{\text{tree}}\hat{P}_{A2}] + tr[\Lambda_{V2}^{\text{tree}}\hat{P}_{A2}] + tr[\Lambda_{A1}^{\text{tree}}\hat{P}_{A2}] + tr[\Lambda_{A2}^{\text{tree}}\hat{P}_{A2}] \\ &= (16 \times 16 \times 3) + (16 \times 16 \times 3 \times 3) = 3072 \equiv N \end{aligned} \tag{12} \\ tr[\Lambda_{B_{\kappa}}^{\text{tree}}\hat{P}_{(D)}] = 0 \end{aligned} \tag{13} \\ tr[\Lambda_{D_{\kappa}}^{\text{tree}}\hat{P}_{(C)}] = 0, \end{aligned}$$

Here, (C): {V1, V2, A1, A2} (diagonal operators) (D): remaining operators (off-diagonal operators)

イロト イヨト イヨト イヨト

The RI-MOM scheme prescription is

$$tr[\Lambda^{R}(\widetilde{\rho},\widetilde{\rho},\widetilde{\rho},\widetilde{\rho},\widetilde{\rho})\hat{P}] = tr[\Lambda^{tree}(\widetilde{\rho},\widetilde{\rho},\widetilde{\rho},\widetilde{\rho},\widetilde{\rho})\hat{P}]$$
(15)

Therefore,

$$N = tr[\Lambda^R_{B_K} \hat{P}_{V1}] \tag{16}$$

$$N = tr[\Lambda^R_{B_K} \hat{P}_{V2}] \tag{17}$$

$$N = tr[\Lambda^R_{B_K} \hat{P}_{A1}] \tag{18}$$

$$N = tr[\Lambda^R_{B_K} \hat{P}_{A2}] \tag{19}$$

$$0 = tr[\Lambda^R_{B_K} \hat{P}_{(D)}] \tag{20}$$

$$D = tr[\Lambda^R_{(D)}\hat{P}_{(C)}]$$
(21)

(日) (同) (日) (日)

(22)

Here, (C): {V1, V2, A1, A2} (diagonal operators) (D): remaining operators (off-diagonal operators) We define the projected amputated Green's function as follows.

$$\Gamma^{B}_{\alpha\beta} \equiv \frac{1}{Nz_{q}^{2}} tr[\Lambda^{B}_{\alpha}\hat{P}_{\beta}]$$
⁽²³⁾

where α, β are operator such as V1, V2, A1, A2, ... and z_q is obtained from conserved vector current channel.

$$1 = (z_1 \Gamma^B_{V1V1} + z_2 \Gamma^B_{V2V1} + z_3 \Gamma^B_{A1V1} + z_4 \Gamma^B_{A2V1} + \sum_{\alpha \in (D)} z_\alpha \Gamma^B_{\alpha V1})$$
(24)

$$1 = (z_1 \Gamma^B_{V1V2} + z_2 \Gamma^B_{V2V2} + z_3 \Gamma^B_{A1V2} + z_4 \Gamma^B_{A2V2} + \sum_{\alpha \in (D)} z_\alpha \Gamma^B_{\alpha V2})$$
(25)

$$1 = (z_1 \Gamma^B_{V1A1} + z_2 \Gamma^B_{V2A1} + z_3 \Gamma^B_{A1A1} + z_4 \Gamma^B_{A2A1} + \sum_{\alpha \in (D)} z_\alpha \Gamma^B_{\alpha A1})$$
(26)

$$1 = (z_1 \Gamma^B_{V1A2} + z_2 \Gamma^B_{V2A2} + z_3 \Gamma^B_{A1A2} + z_4 \Gamma^B_{A2A2} + \sum_{\alpha \in (D)} z_\alpha \Gamma^B_{\alpha A2})$$
(27)

$$0 = (z_1 \Gamma^B_{V1\beta} + z_2 \Gamma^B_{V2\beta} + z_3 \Gamma^B_{A1\beta} + z_4 \Gamma^B_{A2\beta} + \sum_{\alpha \in (D)} z_\alpha \Gamma^B_{\alpha\beta}), \quad \beta \in (D)$$
(28)

イロト イヨト イヨト イヨト

We can express these equations as a matrix equation.

$$\vec{z}_{\text{tree}} = \vec{z} \, \Gamma^B \,,$$
 (29)

where

$$\vec{z}_{\text{tree}} = (1, 1, 1, 1, 0, \cdots, 0)$$
(30)
$$\vec{z} = (z_1, z_2, z_3, z_4, z_\alpha, z_\beta, \cdots)$$
(31)

Then, we can obtain the \vec{z} from the following equation.

$$\vec{z} = \vec{z}_{\text{tree}} (\Gamma^B)^{-1} \tag{32}$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

We can make the matrix Γ^B as a block matrix.

$$\Gamma^{B} = \begin{pmatrix} X_{4 \times 4} & Y_{4 \times M} \\ Z_{M \times 4} & W_{M \times M} \end{pmatrix}$$
(33)

Here, X is 4×4 matrix.

$$X = \begin{pmatrix} \Gamma^{B}_{V1V1} & \Gamma^{B}_{V1V2} & \Gamma^{B}_{V1A1} & \Gamma^{B}_{V1A2} \\ \Gamma^{B}_{V2V1} & \Gamma^{B}_{V2V2} & \Gamma^{B}_{V2A1} & \Gamma^{B}_{V2A2} \\ \Gamma^{B}_{A1V1} & \Gamma^{B}_{A1V2} & \Gamma^{B}_{A1A1} & \Gamma^{B}_{A1A2} \\ \Gamma^{B}_{A2V1} & \Gamma^{B}_{A2V2} & \Gamma^{B}_{A2A1} & \Gamma^{B}_{A2A2} \end{pmatrix}$$

The matrix Y is $4 \times M$.

$$Y = \begin{pmatrix} \Gamma^B_{V1\alpha} & \Gamma^B_{V1\beta} & \cdots \\ \Gamma^B_{V2\alpha} & \Gamma^B_{V2\beta} & \cdots \\ \Gamma^B_{A1\alpha} & \Gamma^B_{A1\beta} & \cdots \\ \Gamma^B_{A2\alpha} & \Gamma^B_{A2\beta} & \cdots \end{pmatrix}$$
(35)

(日) (同) (日) (日)

- { α , β , \cdots } = { $(S \otimes V)(S \otimes V)_I, (S \otimes V)(S \otimes V)_{II}, (S \otimes A)(S \otimes A)_I, \cdots$ }.
- We calculate the complete set of off-diagonal mixing matrix Y.
- We assume that $Z_{ij} \simeq Y_{ji}$. It is an approximation within factor of 2.
- $W \simeq 1$.

Jangho Kim (SWME Collaboration)

(34)

$$\Gamma^{B} = \begin{pmatrix} X_{4 \times 4} & Y_{4 \times M} \\ Z_{M \times 4} & W_{M \times M} \end{pmatrix}$$
(36)

The inverse of block matrix is

$$(\Gamma^{B})^{-1} = \begin{pmatrix} (X - YW^{-1}Z)^{-1} & -X^{-1}Y(W - ZX^{-1}Y)^{-1} \\ -W^{-1}Z(X - YW^{-1}Z)^{-1} & (W - ZX^{-1}Y)^{-1} \end{pmatrix}$$
(37)

$$\simeq \begin{pmatrix} X^{-1} + X^{-1}YW^{-1}ZX^{-1} & -X^{-1}Y(W^{-1} + W^{-1}ZX^{-1}YW^{-1}) \\ -W^{-1}Z(X^{-1} + X^{-1}YW^{-1}ZX^{-1}) & W^{-1} + W^{-1}ZX^{-1}YW^{-1} \end{pmatrix}$$
(38)

with
$$Z_{ij} \simeq Y_{ji}$$
 and $W \simeq 1$

$$\simeq \begin{pmatrix} X^{-1} + X^{-1}YY^{T}X^{-1} & -X^{-1}Y(1 + Y^{T}X^{-1}Y) \\ -Y^{T}(X^{-1} + X^{-1}YY^{T}X^{-1}) & 1 + Y^{T}X^{-1}Y \end{pmatrix}$$
(39)

・ロト ・回ト ・ヨト ・ヨト

Simulation Detail

- $20^3 \times 64$ MILC as tad lattice ($a \approx 0.12 fm$, $am_\ell/am_s = 0.01/0.05$).
- HYP smeared staggered fermions as valence quarks.
- The number of configurations is 30.
- 5 valence quark masses (0.01, 0.02, 0.03, 0.04, 0.05)
- 9 external momenta in the units of $(\frac{2\pi}{L_s}, \frac{2\pi}{L_s}, \frac{2\pi}{L_s}, \frac{2\pi}{L_t})$.
- We use the jackknife resampling method to estimate statistical errors.

n(x, y, z, t)	a \widetilde{p}	GeV
(2, 2, 2, 7)	1.2871	2.1332
(2, 2, 2, 8)	1.3421	2.2243
(2, 2, 2, 9)	1.4018	2.3233
(2, 3, 2, 7)	1.4663	2.4302
(2, 3, 2, 8)	1.5148	2.5106
(2, 3, 2, 9)	1.5680	2.5987
(3, 2, 3, 8)	1.6698	2.7674
(3, 3, 3, 7)	1.7712	2.9355
(3, 3, 3, 9)	1.8562	3.0764

Matrix X analysis

$$\Gamma^{B} = \begin{pmatrix} X_{4 \times 4} & Y_{4 \times M} \\ Z_{M \times 4} & W_{M \times M} \end{pmatrix}$$
(40)

As an example, we consider the data analysis of Γ^B_{V1V1} .

$$X = \begin{pmatrix} \Gamma^{B}_{V1V1} & \Gamma^{B}_{V1V2} & \Gamma^{B}_{V1A1} & \Gamma^{B}_{V1A2} \\ \Gamma^{B}_{V2V1} & \Gamma^{B}_{V2V2} & \Gamma^{B}_{V2A1} & \Gamma^{B}_{V2A2} \\ \Gamma^{B}_{A1V1} & \Gamma^{B}_{A1V2} & \Gamma^{B}_{A1A1} & \Gamma^{B}_{A1A2} \\ \Gamma^{B}_{A2V1} & \Gamma^{B}_{A2V2} & \Gamma^{B}_{A2A1} & \Gamma^{B}_{A2A2} \end{pmatrix}$$

(41)

イロト イヨト イヨト イヨト

Γ^B_{V1V1} analysis

We convert the scale of raw data in the RI-MOM scheme from $\mu(=|\tilde{p}|)$ to $\mu_0(=2 \,\mathrm{GeV})$ or $3 \,\mathrm{GeV})$ using two-loop RG evolution factor $U_{B_{\kappa}}^{\text{RI-MOM}}(\mu_0, \mu)$.

$$\vec{z}^{\text{RI-MOM}}(\mu_0) = U_{B_K}^{\text{RI-MOM}}(\mu_0, \mu) \ \vec{z}^{\text{RI-MOM}}(\mu)$$
(42)

$$\vec{z}^{\text{RI-MOM}} = \vec{z}_{\text{tree}} (\Gamma^B)^{-1}$$
(43)

$$\Gamma^{B}_{V1V1}(\mu_{0}) = 1/U^{\text{RI-MOM}}_{B_{K}}(\mu_{0},\mu)\Gamma^{B}_{V1V1}(\mu)$$
(44)

m-fit (fitting with respect to quark mass)

We fit the data with respect to quark mass for a fixed momentum to the following function f_{V1V1} . [RBC, PRD66, 2002]

$$f_{V1V1}(m,a,\widetilde{p})=a_1+a_2\cdot am+a_3\cdot rac{1}{(am)}+a_4\cdot rac{1}{(am)^2},$$

where a_i is a function of \tilde{p} . We call this m-fit. After m-fit, we take the chiral limit values which corresponds to $a_1(a, \tilde{p})$. Because of the sea quark determinant contributions $(a_3, a_4 \propto m_\ell^2 m_s)$, a_3 and a_4 term contribution vanishes in the chiral limit.

μ_0	a_1	a 2	a 3	a4	$\chi^2/{ m dof}$
2GeV	0.17457(19)	-0.0946(15)	0.0006907(83)	-0.000000766(35)	0.00194(40)
3GeV	0.17991(20)	-0.0975(15)	0.0007118(85)	-0.000000790(36)	0.00194(40)

イロト イポト イヨト イヨト

m-fit plot

イロト イヨト イヨト イヨ

p-fit (fitting with respect to reduced momentum)

We fit $a_1(a, \tilde{p})$ to the following fitting function.

$$f_{V1V1}(am = 0, a\tilde{p}) = b_1 + b_2(a\tilde{p})^2 + b_3((a\tilde{p})^2)^2 + b_4(a\tilde{p})^4 + b_5((a\tilde{p})^2)^3$$

To avoid non-perturbative effects at small $(a\tilde{p})^2$, we choose the momentum window as $(a\tilde{p})^2 > 1$. Because we assume that those terms of $\mathcal{O}((a\tilde{\rho})^2)$ and higher order are pure lattice artifacts, we take the b_1 as X_{11} value at $\mu = 2 \text{ GeV}$ and $\mu = 3 \text{ GeV}$ in the RI-MOM scheme.

μ_0	b_1	<i>b</i> ₂	<i>b</i> ₃	<i>b</i> 4	b_5	$\chi^2/{\sf dof}$
2GeV	1.056(15)	-0.500(18)	0.0925(72)	0.0019(63)	-0.00643(88)	0.08(17)
3GeV	1.088(16)	-0.515(18)	0.0953(74)	0.0020(65)	-0.00663(91)	0.08(17)

イロト イポト イヨト イヨト

p-fit plot

・ロト ・回ト ・ヨト

$\Gamma^{-1}(2 \text{GeV})$ matrix result

$$(\Gamma^{B})^{-1} = \begin{pmatrix} X^{-1} + X^{-1}YY^{T}X^{-1} & -X^{-1}Y(1+Y^{T}X^{-1}Y) \\ -Y^{T}(X^{-1} + X^{-1}YY^{T}X^{-1}) & 1+Y^{T}X^{-1}Y \end{pmatrix}$$

$$X^{-1} = \begin{pmatrix} 1.374(33) & -0.818(47) & 0.347(21) & 0.007(32) \\ -0.748(45) & 1.999(43) & -0.009(31) & -0.049(34) \\ 0.352(31) & 0.033(47) & 1.260(33) & -0.623(39) \\ 0.019(46) & -0.086(54) & -0.656(40) & 1.590(37) \end{pmatrix}$$

$$X^{-1}YY^{T}X^{-1} = \begin{pmatrix} 0.0127(15) & -0.0079(11) & 0.0020(17) & -0.0001(10) \\ -0.00713(92) & 0.0064(11) & -0.0010(11) & -0.00045(73) \\ 0.0020(18) & 0.0000(15) & 0.0200(90) & -0.0103(48) \\ 0.0001(12) & -0.0012(11) & -0.0109(52) & 0.0059(28) \end{pmatrix}$$

$$(45)$$

$$-X^{-1}Y \approx 1\% \rightarrow 0.07\% \text{ by wrong taste suppression} \qquad (46)$$

 $-X^{-1}Y \approx 1\% \rightarrow 0.07\%$ by wrong taste suppression

<ロ> <四> <ヨ> <ヨ>

Result of renormalization factors of diagonal operators

We obtain \vec{z} in RI-MOM scheme at 2GeV and 3GeV.

$$\vec{z} = \vec{z}_{\text{tree}} (\Gamma^B)^{-1} \,, \tag{47}$$

イロト イポト イヨト イヨ

where

$$\vec{z}_{\text{tree}} = (1, 1, 1, 1, 0, \cdots, 0) \tag{48}$$

$$\vec{z} = (z_1, z_2, z_3, z_4, z_\alpha, z_\beta, \cdots)$$
 (49)

We convert the scheme from RI-MOM $\rightarrow \overline{\mathrm{MS}}$ using two-loop matching factor.

	RI-MOM(2GeV)	$\overline{\mathrm{MS}}(2GeV)$	RI-MOM(3GeV)	$\overline{\mathrm{MS}}(3GeV)$
<i>z</i> ₁	0.9962(80)	1.0139(82)	0.9666(78)	0.9812(79)
<i>z</i> ₂	1.128(31)	1.148(32)	1.095(30)	1.111(31)
<i>Z</i> 3	0.9418(75)	0.9586(77)	0.9139(73)	0.9277(74)
<i>z</i> 4	0.926(29)	0.942(30)	0.898(28)	0.912(29)

Systematic Error

We estimate two different systematic errors.

• The size of $X^{-1}YY^TX^{-1}$.

$$(\Gamma^{B})^{-1} = \begin{pmatrix} X^{-1} + X^{-1} Y Y^{T} X^{-1} & -X^{-1} Y (1 + Y^{T} X^{-1} Y) \\ -Y^{T} (X^{-1} + X^{-1} Y Y^{T} X^{-1}) & 1 + Y^{T} X^{-1} Y \end{pmatrix}$$
(50)

• The uncertainty comes from truncated higher order of the two-loop matching factor (RI-MOM $\rightarrow \overline{MS}$): $O(\alpha_s^3)$

(sys. err. of
$$z_i$$
) = $z_i \cdot \alpha_s^3$ (51)

イロト イヨト イヨト イヨト

We add these systematic errors in quadrature.

	$\overline{\mathrm{MS}}(2GeV)$	$\overline{\mathrm{MS}}(3\mathrm{GeV})$
<i>z</i> ₁	1.0139(82)(274)	0.9812(79)(163)
<i>z</i> ₂	1.148(32)(30)	1.111(31)(17)
<i>Z</i> 3	0.9586(77)(269)	0.9277(74)(171)
Z4	0.942(30)(25)	0.912(29)(14)

Off-diagonal renormalization factors

$$(\Gamma^{B})^{-1} = \begin{pmatrix} X^{-1} + X^{-1}YY^{T}X^{-1} & -X^{-1}Y(1+Y^{T}X^{-1}Y) \\ -Y^{T}(X^{-1} + X^{-1}YY^{T}X^{-1}) & 1+Y^{T}X^{-1}Y \end{pmatrix}$$
(52)

$$-X^{-1}Y(2\,\text{GeV}) = \begin{pmatrix} -0.013(12) & 0.0075(64) & 0.013(12) & \cdots \\ 0.0155(38) & 0.0068(32) & -0.0008(31) & \cdots \\ 0.083(35) & 0.078(22) & -0.0162(45) & \cdots \\ -0.048(19) & -0.046(12) & 0.0104(13) & \cdots \end{pmatrix}$$
(53)

(ロ) (回) (三) (三)

Off-diagonal renormalization factors

$$O_{B_{K}}^{R} = z_{1}O_{V1}^{B} + z_{2}O_{V2}^{B} + z_{3}O_{A1}^{B} + z_{4}O_{A2}^{B} + \sum_{\alpha \in (D)} z_{\alpha}O_{\alpha}^{B}$$
(54)

Zα	RI-MOM(2GeV)	$\overline{\mathrm{MS}}(2GeV)$	RI-MOM(3GeV)	$\overline{\mathrm{MS}}(3 \mathrm{GeV})$
$Z_{(S\otimes V)(S\otimes V)I}$	0.037(28)	0.038(28)	0.037(28)	0.038(28)
$Z(S \otimes V)(S \otimes V)II$	0.047(16)	0.047(17)	0.047(16)	0.047(17)
$Z(V \otimes S)(V \otimes S)I$	-0.00252(71)	-0.00257(73)	-0.00252(71)	-0.00256(72)
$Z(V \otimes S)(V \otimes S)II$	0.00038(10)	0.00039(11)	0.00038(10)	0.00039(10)
$Z_{(T\otimes V)(T\otimes V)I}$	-0.0029(13)	-0.0030(14)	-0.0029(13)	-0.0029(14)
$Z_{(T\otimes V)(T\otimes V)II}$	0.0094(42)	0.0096(42)	0.0094(42)	0.0096(42)
$Z_{(A\otimes S)(A\otimes S)I}$	-0.0007(43)	-0.0007(44)	-0.0007(43)	-0.0007(44)
$Z(A\otimes S)(A\otimes S)II$	0.0027(13)	0.0027(14)	0.0027(13)	0.0027(14)
$Z_{(P\otimes V)(P\otimes V)I}$	-0.0673(17)	-0.0685(17)	-0.0673(17)	-0.0683(17)
$Z_{(P\otimes V)(P\otimes V)II}$	-0.0311(22)	-0.0317(23)	-0.0311(22)	-0.0316(23)
:	:	:	:	:
			.	

(ロ) (回) (三) (三)

The effect of off-diagonal operators

The matrix element of the wrong taste operator with external K meson $(P \otimes P)$ is suppressed. Ref.[Thesis, Weonjong Lee]

The wrong taste channel with same normalization with B_K is.

$$\frac{\langle \overline{K}_{0} | O_{(P \otimes V)(P \otimes V)_{l}} | K_{0} \rangle}{\frac{8}{3} \langle \overline{K}_{0} | A_{\mu} | 0 \rangle \langle 0 | A_{\mu} | K_{0} \rangle} \le 1\%$$
(55)

The size of wrong taste channel is smaller than 1% of B_K operator. For example, the effect of $(P \otimes V)(P \otimes V)_I$ channel to B_K is

$$z_{(P\otimes V)(P\otimes V)I} \times 1\% \le 0.069\%$$
(56)

Hence, this effect of wrong taste channel is neglected.

イロト イヨト イヨト イヨト

Compare with one-loop matching factor

We compare the NPR result($\overline{\rm MS}$ [NDR]) with those of one-loop perturbative matching.

	NPR(2GeV)	one-loop(2GeV)	NPR(3GeV)	one-loop(3GeV)
<i>z</i> ₁	1.0139(82)(274)	1.080(95)	0.9812(79)(163)	1.035(62)
<i>z</i> ₂	1.148(32)(30)	1.168(102)	1.111(31)(17)	1.120(67)
<i>z</i> 3	0.9586(77)(269)	1.088(95)	0.9277(74)(171)	1.043(63)
<i>z</i> 4	0.942(30)(25)	0.994(87)	0.912(29)(14)	0.953(57)

We estimate the systematic error of one-loop result as two-loop uncertainty(α_s^2).

(sys. err. of
$$z_i$$
) = $z_i \cdot \alpha_s^2$ (57)

イロト 不得下 イヨト イヨト

Conclusion

- We have done the first round data analysis for the B_K operator.
- We plan to analyse the BSM operators in near future.

イロト イヨト イヨト イヨト