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Conformal invariance. . .

� Conformal invariance is typically connected with an infrared (IR) fixed
point.

� There the coupling constant stops running and thus becomes scale
invariant.

� A general feature is that all correlation functions are given by power
laws.

� Perturbatively, if you add enough fermions to SU(N) Yang-Mills theory,
it becomes conformal.
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. . . on the lattice.

� A finite lattice is not well suited to study a conformal theory.

� There are two intrinsic scales which you can never truly get rid of, the
lattice spacing a and the lattice extent L.

� Nevertheless, lattice calculations are the method of choice for
nonperturbative investigation of QFT’s.

� It is important to control the deformations of the conformal theory
induced by a lattice and by external masses.
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A first example: zero momentum Green’s functions

� Let some field have an anomalous scaling dimension ∆. The Green’s
functions in coordinate and Fourier space are related:

(x2)−(d−2)/2−∆ ⇔ (p2)−1+∆

� Now let us add a mass deformation to this, G̃(p) = (p2 + m2)−1+∆.
A short calculation suggests that for large separations the zero spatial
momentum temporal correlator is given by:

G(t , ~p = 0) ∝
(

t
m

)1
2−∆

K1
2−∆

(mt)
mt�1∝ e−mt

t∆

� Turned into analysis method of lattice correlators (Iwasaki et al.) but
does not apply on the lattice!
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Can lattice simulations be used to study a
conformal theory?

� Three important questions to answer:
1. How do the two intrinsic scales, a,L, modify the conformal behavior?

2. Can we observe power law decay or power law corrected exponential
decay on the lattice?

3. Can a mass deformation be used to obtain anomalous dimensions?

� Answers from exactly solvable models in 2d :

1. The critical Ising model (1 and 2).

2. The Sommerfield model (3).
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1. Critical 2d Ising model

� In an infinite volume the spin-spin correlation is given by:

〈σ(0,0)σ(x , t)〉 ∝
(

x2 + t2
)−∆

∆ = 1
8 is the scaling dimension of the spin field.

� On a torus with size Ls × Lt ≡ L× (τL), τ = Nt
Ns

we have:

〈σ(0,0)σ(x , t)〉 ∝ |ϑ1(z,q)|−
1
4

4∑

ν=1

∣∣ϑν(z
2 ,q)

∣∣

ϑν(z,q) is the ν’th Jacobi theta function with q = exp(−πτ) and
z = π

L (x + it).
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We sum over x to obtain the zero spatial momentum correlator:

C(t ,q,L) ∝ cosh
(
π
4L

(
t − τL

2

))
+
∞∑

n=1

(
cnq2n cosh

(
π(4n+

1
4 )

L

(
t − τL

2

)))

+ q
1
4

∞∑

n=1

(
cq

n qn cosh
(
π(2n−1

4 )

L

(
t − τL

2

)))
+O(q2), q = e−πτ

The coefficients cn and cq
n depends on n and L and can be exactly

calculated.

� q = 0 = e−πτ corresponds to a cylindrical geometry:

C(t ,0,L) ∝ e−
π
4

t
L

(
1 +

∞∑

n=1

cne−4nπ t
L

)
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Numerical results
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Numerical results

� Perfect matching of correlators after re-scaling the dimensions
⇔ Conformal behavior.

� Effective mass plateau says nothing about conformal behavior
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From exponentials to a power law

� The Euclidean time correlator is related to the spectral density:

C(t) ∝
∫ ∞

0
dω ρ(ω)e−ωt .

� Each exponential decay, ωn = n δL in C(t) corresponds to a delta
function in ρ(ω).

� Taking L→∞, i.e. the level spacing to zero, leads to an integral over
the delta functions and ρ(ω) = c

(
ωL
δ

)
where c(x) is the continuous

version of the coefficients cn, (cf. M. Stephanov arXiv:0705.3049).
� Since L→∞ we will probe the large n asymptotic of cn:

cn ∝ n−α ⇒ ρ(ω) ∝ ω−α
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An explicit calculation

� For the Ising model in a cylinder we find cn =
Γ
(1

8 +n
)2

(n!)2Γ
(1

8

)2 for L→∞.

�

10−8

10−5

10−2

100 101 102 103

c n

n

slope −7/4

� This implies ρ(ω) ∝ ω−
7
4 which is what we expect:

(x2 + t2)−
1
8 ⇒ (p2 + ω2)−1+

1
8 = {p = 0} = ω−

7
4 ∝ ρ(ω)
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Consequences

� We find that there is a mass π
4L even though the theory should be

massless.

�

There is no power law correction to the exponential decay. In-
stead, as L → ∞, a continuum of excitations emerge to give a
massless correlator.

� A finite temporal extent introduces new corrections, ∼ e−
πτ
4 e−δEt ,

which are exponentially suppressed by the aspect ratio.
� These new states may conceal the true ground state mass π

4L , even at
L→∞. Large τ essential.
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2. The 2d Sommerfield model
C. M. Sommerfield, Ann. Phys. 26 (1964) 1, H. Georgi and Y. Kats, JHEP 1002 (2010) 065

The Sommerfield Lagrangian is given by:

L = ψ̄(i /∂ − e /A)ψ − 1
4

FµνFµν +
m2

0
2

AµAµ

� It is the Schwinger model with a mass term for the vector boson, i.e.
there is no gauge symmetry.

� In the infrared it becomes scale-invariant (cf. Thirring model) and has
anomalous dimensions.
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� Solved by introducing: Aµ = ∂µV + εµν∂
νA and Ψ = eie(V+Aγ5)ψ.

� Fermion becomes free:

L = iΨ̄/∂Ψ+
m2

0
2
∂µV∂µV+

1
2
A(∂µ∂

µ)2A−m2

2
∂µA∂µA m2 = m2

0+e2

π

� The fermionic 2-point function is given by a product of a free fermionic
Green’s function and a bosonic correction:

〈0|Tψα(x)ψ∗β(0)|0〉 =〈0|TΨα(x)Ψ∗β(0)|0〉
× 〈0|Te−ie(V(x)+A(x)γ5)e−ie(V(0)+A(0)γ5)|0〉

� The bosonic correction can be calculated in a closed form and is
given by an exponential of massless and massive bosonic Green’s
functions.
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� Define the composite operator O ≡ ψ̄ 1
2(1 + γ5)ψ = ψ∗2ψ1

(cf. meson/pion). This operator will have an anomalous dimension at
low energies.

� Using the Operator Product Expansion of a product of two ψ’s one
can show (Georgi & Kats) that:

〈0|TO(x)O(0)|0〉 = C(x)4 |S0(x)|2 ,

where S0(x) is a free fermion propagator and C(x) is due to the
bosons.

� Using the asymptotic behaviors of C(x) and S0(x) one finds

〈0|TO(x)O(0)|0〉 ∝
{

(x2)−1, xm� 1
(x2)−1−γO , xm� 1

where γO ≡ − e2

πm2 = − 1

1+
m2

0π

e2

is the anomalous dimension of O.
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On the lattice

� In principle straightforward to calculate the propagator on the lattice.

� We can also add a bare mass, mq, to the fermion to measure the
anomalous mass dimension.

� Nf = 4 (naive lattice fermions) is similar to Nf = 1, except when
m0 → 0 (Schwinger model).

� Note: if Lmq is small, fermionic spatial boundary conditions start to
play a role:

� Periodic boundary conditions⇒ ~px = ~0 fermion, power law corrections in
1/L.

� Anti-periodic boundary conditions⇒
∣∣~px
∣∣ ≥ π

L .
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Results

� We consider both periodic and anti-periodic boundary conditions.

� With zero quark mass we obtain (for apbc) the composite mass

mO =
2π
L

(1 + γO), γO = − e2

πm2 ( anomalous dimension of O)

Note how this is analogous to the Ising case.

� We then calculate mO as a function of the mass deformation mq.

� Lattice of size Ns × (16Ns) with 8 ≤ Ns ≤ 96. Also three different
values of Lm ∈ {3,5,10} and γO ∈ {−5

6 ,−1
2 ,−1

6}.
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Numerical exact results C(t) ∼ e−mO
t
L−

m2
τ

( t
L

)2
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Anti-periodic boundary conditions with mass deformation mq
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Single anomalous dimension ym, exact result: ym = 1
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Effective ym(Ns)
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Discretization errors with ym = 1 fixed to exact value
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Corrections to scaling (cf. Cheng et al. arXiv:1401.0195)
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Comparison apbc and pbc

This work
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Conclusions and lessons learned:
Points to keep in mind when studying conformality on the lattice

� Direct test of scale invariance: compare correlators C(t) in lattice
L3 × Lt with C(λt) in lattice (λL)3 × λLt .

� Anti-periodic boundary conditions allows zero external mass but there
is still a mass plateau. Also, small external masses may be
over-shadowed by the constant term.

� Periodic boundary conditions allows zero meson mass but may come
with high computational costs.

� It is mandatory to use a large aspect ratio Nt/Ns because of excited
states.

� It is necessary to consider corrections to scaling and discretization
errors to obtain correct anomalous dimensions.
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Thank you for your attention!
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Ising model⇔ Free fermions

� The 2d Ising model can be reformulated in terms of free staggered
fermions with pbc and apbc in space and time (4 combinations).

� At criticality all bc’s are equally important and are averaged over (cf.
the four Jacobi theta functions).

� The apbc contributions are related to the 1/L mass.
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The coefficients cn and cq
n

Recall the Ising propagator on a torus of size L× (τL):

C(t , x ,L, τ) ≡ 〈σ(0,0)σ(x , t)〉 ∝ |ϑ1(z,q)|−
1
4

4∑

ν=1

∣∣ϑν(z
2 ,q)

∣∣

Defining u = e−
πt
L , to lowest order in q, the magnitude of the theta

functions are given by:
∣∣∣∣ϑ1

(
x + it
πL

,q
)∣∣∣∣ = q

1
4 u−1

(
1 + u4 − 2u2 cos

(2πx
L x
))1

2

∣∣∣∣ϑ2

(
x + it
πL

,q
)∣∣∣∣ = q

1
4 u−1

(
1 + u4 + 2u2 cos

(2πx
L

))1
2

∣∣∣∣ϑ3

(
x + it
πL

,q
)∣∣∣∣ =

∣∣∣∣ϑ4

(
x + it
πL

,q
)∣∣∣∣ = 1
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Inserting this yields

C(t , x ,L,q) = q−1/16u
1
4
(

1 + u4 − 2u2 cos
(2πx

L

))−1
8

×
(

2 + q
1
4 u−

1
2

(((
1 + u2 − 2u1 cos

(
πx
L

))1
2

+

(
1 + u2 + 2u1 cos

(
πx
L

))1
2

)))

We discard the overall q−
1
8 u

1
4 and expand the expressions containing

the cosines in order to sum over x . Note that u
1
4 = e−

π
4L t is the

leading order decay. We also treat the q-independent and
q-dependent parts separately.
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q-independent part

An expansion in powers of u gives

(
1 + u4 − 2u2 cos

(2πx
L

))−1
8

=
∞∑

n=0

(−1
8

n

)(
u4 − 2u2 cos

(2πx
L

))n

=
∞∑

n=0

(−1
8

n

) n∑

m=0

(
n
m

)
(−2)mu4n−2m cos

(2πx
L

)m

We can now sum over x term by term using:

1
L

L−1∑

x=0

cos
(2πx

L

)m
= 2−2r



(

2r
r

)
+ 2

⌊2r
L

⌋
∑

n=1

(
2r

r + nL
2

)

 δm,2r
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This gives:

C(t ,px = 0,L,0) ∝
∞∑

n=0

(−1
8

n

) n∑

r=0

(
n
2r

)
u4(n−r)



(

2r
r

)
+ 2

⌊2r
L

⌋
∑

m=1

(
2r

r + mL
2

)



=
∞∑

n=0

u4n
n∑

r=0

( −1
8

n + r

)(
n + r

2r

)


(

2r
r

)
+ 2

⌊2r
L

⌋
∑

m=1

(
2r

r + mL
2

)



=
∞∑

n=0

u4n




Γ
(1

8 + n
)2

(n!)2Γ
(1

8

)2 +

⌊2n
L

⌋
∑

m=1

Γ
(

7
8 − n + mL

2

)−1
Γ
(

1 + n + mL
2

)−1

Γ
(

7
8 − n − mL

2

)
Γ
(

1 + n − mL
2

)




︸ ︷︷ ︸
cn
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q-dependent part

For the q-dependent part we have to expand three roots before we
can sum over x . After expanding we find that we need to calculate the
following sums:

1
L

L−1∑

x=0

cos
(2πx

L

)r
cos

(
πx
L

)2p

= 2−r−2p
r∑

n=0

(
r
n

)


(

2p
p + r − 2n

)
+ 2

⌊ r+p
L

⌋
∑

q=1

(
2p

p + r − 2n + qL

)
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Using this we find the coefficient

cq
n =

n∑

m=0

m∑

r=max(2m−n,0)

n+r−2m∑

p=0

(−1)r
( 1

2
n + r + p − 2m

)(
n + r + p − 2m

2p

)

×
(−1

8
m

)(
m
r

)



r∑

k=0

(
r
k

)


(

2p
p + r − 2k

)
+ 2

⌊ r+p
L

⌋
∑

q=1

(
2p

p + r − 2k + qL

)
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The bosonic corrections

We need to calculate

B(x) = 〈0|Te−ie(V(x)+A(x)γ5)e−ie(V(0)+A(0)γ5)|0〉.

Perform Wick contractions with:
∫
d2x eipx〈0|TV(x)V(0)|0〉 =

1
m2

0p2
∫
d2x eipx〈0|TA(x)A(0)|0〉 =

1
(p2)2 + m2p2 =

1
m2

(
1

p2 + m2 −
1
p2

)
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One finds

B(x) =
C0(x)

C(x)καβ
, καβ =

{
1, α 6= β

−1, α = β

where

C0(x) = exp

[
e2

m2
0

(D(x ,0)− D(0,0)))

]

C(x) = exp
[

e2

m2 ((D(x ,m)− D(0,m))− (D(x ,0)− D(0,0)))

]

D(x ,m) =

∫
d2p

(2π)2
e−ipx

p2 + m2

which defines the C(x) used in the O propagator.
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The composite correlator

To derive the composite two-point correlator we start by considering
the free fermion four-point correlator:

G(4)
free = 〈0|Tψ∗α2

(x2)ψα1(x1)ψ∗β2
(y2)ψβ1(y1)|0〉.

which after Wick contractions becomes

−Sα1α2
0 (x1 − x2)Sβ1β2

0 (y1 − y2) + Sα1β2
0 (x1 − y2)Sβ1α2

0 (y1 − x2),

where the free fermion two-point function is given by

Sα1α2
0 (x) =

∫
dp2

(2π)2
eipx

p2 + m2 ×





m, α1 6= α2

(p1 − ip2), α1 = α2 = 1
(p1 + ip2) α1 = α2 = 2
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The bosonic contribution is given by
∏

i<j

C0(xi − xj)
ηij C(xi − xj)

ηijκij ,

with the sign factors depending on which two fermionic fields are
contracted via

ηij =

{
+1, ψ and ψ∗

−1, otherwise
, κij =

{
+1, α = β

−1, α 6= β
.

Since O = ψ∗2ψ1 we will be interested in the case α1 = β2 6= α2 = β1
and x1 → x2 ≡ x , y1 → y2 ≡ y . We thus get the full four point function

G(4) =
C0(x1 − x2)C0(y1 − y2)

C(x1 − x2)C(y1 − y2)
C(x − y)4S11

0 (x − y)S22
0 (x − y).
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Using a leading order operator product expansion of two fermionic
fields we find

Tψ∗2(x2)ψ1(x1) ≈ c(x2 − x1)ψ∗2ψ1(x2) ≈ c(x2 − x1)O(x2),

which gives

G(4) = c(x2 − x1)c(y2 − y1)〈0|TO(x)O(y)|0〉.

Comparing to the previous slide we see that we should take
c(x) = C0(x)/C(x) to arrive at

〈0|TO(x)O(0)|0〉 = C(x)4
∣∣∣S11

0 (x)
∣∣∣
2
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