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Conformal invariance...

® Conformal invariance is typically connected with an infrared (IR) fixed
point.

® There the coupling constant stops running and thus becomes scale
invariant.

® A general feature is that all correlation functions are given by power
laws.

® Perturbatively, if you add enough fermions to SU(N) Yang-Mills theory,
it becomes conformal.
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...on the lattice.

® A finite lattice is not well suited to study a conformal theory.

There are two intrinsic scales which you can never truly get rid of, the
lattice spacing a and the lattice extent L.

" Nevertheless, lattice calculations are the method of choice for
nonperturbative investigation of QFT’s.

" ltis important to control the deformations of the conformal theory
induced by a lattice and by external masses.
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A first example: zero momentum Green’s functions

Let some field have an anomalous scaling dimension A. The Green’s
functions in coordinate and Fourier space are related:

(X2)—(d—2)/2—A PN (p2)—1+A
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A first example: zero momentum Green’s functions

® Let some field have an anomalous scaling dimension A. The Green’s
functions in coordinate and Fourier space are related:

(X2)—(d—2)/2—A PN (p2)—1+A

= Now let us add a mass deformation to this, G(p) = (p? + m?)~1+2.
A short calculation suggests that for large separations the zero spatial
momentum temporal correlator is given by:

e—mt

mt>1
XX tA

G(t, = 0) (—) 2t Ky, (mt)

® Turned into analysis method of lattice correlators (/wasaki et al.) but
does not apply on the lattice!
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Can lattice simulations be used to study a
conformal theory?

® Three important questions to answer:
1. How do the two intrinsic scales, a, L, modify the conformal behavior?

2. Can we observe power law decay or power law corrected exponential
decay on the lattice?

3. Can a mass deformation be used to obtain anomalous dimensions?
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Can lattice simulations be used to study a
conformal theory?

® Three important questions to answer:
1. How do the two intrinsic scales, a, L, modify the conformal behavior?

2. Can we observe power law decay or power law corrected exponential
decay on the lattice?

3. Can a mass deformation be used to obtain anomalous dimensions?

® Answers from exactly solvable models in 2d:
1. The critical Ising model (1 and 2).

2. The Sommerfield model (3).
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1. Critical 2d Ising model

In an infinite volume the spin-spin correlation is given by:
=
(0(0,0)0(x, 1)) <x2 + t2>

A = 1 is the scaling dimension of the spin field.

|
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1. Critical 2d Ising model

In an infinite volume the spin-spin correlation is given by:

(0(0,0)a(x,t)) o< <X2 - t2>_

A= % is the scaling dimension of the spin field.
" Onatorus with size Ls x Ly = L x (rL), = f we have:

4
(7(0,0)(x, 1))  [91(2, )| 4 3 |92, 9)]

v=1

Y,(2, q) is the v’th Jacobi theta function with g = exp(—=7) and
z = T(x+it).
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We sum over x to obtain the zero spatial momentum correlator:

C(t,q,L) o cosh (ﬁ ( - %)) + i (quz"cosh ( (4'”4) <t— )))
n=1
+ qJT i (ngn cosh (”(211) (t — %))) +0(g?), g=e""

n=1

The coefficients ¢, and ¢! depends on nand L and can be exactly
calculated.
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is:

We sum over x to obtain the zero spatial momentum correlator:

C(t,q, L) o cosh (I_L ( - %)) + i (qu2” cosh (“(4“4) <t - )))
n=1
+qt i (cﬁq”cosh (’“”’LJT) (t- TL))) +0(P), g=e ™"

n=1

The coefficients ¢, and ¢ depends on n and L and can be exactly
calculated.

® g=0=¢e " corresponds to a cylindrical geometry:

wt o
C(t,0,L) x e 4L (1 +) che ML

)
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Numerical results
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Numerical results

® Perfect matching of correlators after re-scaling the dimensions
< Conformal behavior.
* Effective mass plateau says nothing about conformal behavior
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From exponentials to a power law

" The Euclidean time correlator is related to the spectral density:
Cl1) = / dw p(w)e?".
0

" Each exponential decay, w, = n¢ in C(t) corresponds to a delta
function in p(w).
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From exponentials to a power law

The Euclidean time correlator is related to the spectral density:
Cl1) = / dw p(w)e?".
0

" Each exponential decay, w, = n¢ in C(t) corresponds to a delta
function in p(w).

® Taking L — oo, i.e. the level spacing to zero, leads to an integral over
the delta functions and p(w) = ¢ (‘%) where c(x) is the continuous
version of the coefficients ¢, (cf. M. Stephanov arXiv:0705.3049).

® Since L — oo we will probe the large n asymptotic of cj:

Chx N %= p(w) x w™ @
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An explicit calculation

()

® For the Ising model in a cylinder we find ¢, = - for L — oc.
(n!)2r(§)

—— —— ——
—2 L ]
10 + 4
e [ R Slope —7/4. ]
- S owt ]
10-8 L ] ] ]
100 10t 102 103
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An explicit calculation

1 2
. . . . gtn
® For the Ising model in a cylinder we find ¢, = (8 1) 5 for L — oo.
(nhy2r g)
—2 4+ -
. 10 : + o+ 4 + 444 Slope —7/4. ]
n &) 10—5 : “"‘Wm«m\ .
10—8 [ ] ] ]
100 10! 102 103

n

7
* This implies p(w) < w™ 4 which is what we expect:

1 1 7
(X +2)78 = (0P +w?) 178 ={p=0} =w 4 x p(w)
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Consequences

* We find that there is a mass ;; even though the theory should be
massless.

There is no power law correction to the exponential decay. In-
stead, as L — oo, a continuum of excitations emerge to give a
massless correlator.
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Consequences

* We find that there is a mass ;; even though the theory should be
massless.

There is no power law correction to the exponential decay. In-
- stead, as L — oo, a continuum of excitations emerge to give a
massless correlator.

" A finite temporal extent introduces new corrections, ~ e 4 e &,
which are exponentially suppressed by the aspect ratio.

* These new states may conceal the true ground state mass ;;, even at
L — oo. Large T essential.
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The Sommerfield Lagrangian is given by:

m2
7°A"Au

£ = (i — ey — %F‘”’FW +

® ltis the Schwinger model with a mass term for the vector boson, i.e.
there is no gauge symmetry.

® In the infrared it becomes scale-invariant (cf. Thirring model) and has
anomalous dimensions.
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* Solved by introducing: A, = 0,V +¢,,0" Aand V = eie(V+Av5)¢,_

" Fermion becomes free:

1
g\, m 2
=iV +28V8V+2

A0, aﬂ)ZA——a A@"A P = mR+ &
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= Solved by introducing: A, = 8,V + €,,0" A and W = ge(V+47%)y,

" Fermion becomes free:

= WPV + 203 yory4 L 5A0 8“)2A——8 A&“A m? = m3+ €

® The fermionic 2-point function is given by a product of a free fermionic
Green’s function and a bosonic correction:

x (0T~ e(VI+A(®) g=ie(V(0)+A(0)7°) o)

® The bosonic correction can be calculated in a closed form and is
given by an exponential of massless and massive bosonic Green’s
functions.
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® Define the composite operator O = 155(1 + )y = V514
(cf. meson/pion). This operator will have an anomalous dimension at

low energies.
® Using the Operator Product Expansion of a product of two «’s one

can show (Georgi & Kats) that:
(0]TO(x)0(0)[0) = C(x)* |So(x)I?,

where Sy(x) is a free fermion propagator and C(x) is due to the
bosons.
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® Define the composite operator O = &%(1 + ) = P304
(cf. meson/pion). This operator will have an anomalous dimension at
low energies.

® Using the Operator Product Expansion of a product of two «’s one
can show (Georgi & Kats) that:

(0ITO(x)0(0)[0) = C(x)* |So(x)I?,

where Sy(x) is a free fermion propagator and C(x) is due to the
bosons.
* Using the asymptotic behaviors of C(x) and Sp(x) one finds

x2)~1 xm < 1
( :
(x®)" 170, xm>1

{0]TO(x)0(0)[0) o {




I
ETH DPHYS

Department of Physics

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

On the lattice

* In principle straightforward to calculate the propagator on the lattice.

* We can also add a bare mass, mg, to the fermion to measure the
anomalous mass dimension.

® N =4 (naive lattice fermions) is similar to Ny = 1, except when
mgy — 0 (Schwinger model).
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On the lattice

* In principle straightforward to calculate the propagator on the lattice.

* We can also add a bare mass, mg, to the fermion to measure the
anomalous mass dimension.

® N =4 (naive lattice fermions) is similar to Ny = 1, except when
mgy — 0 (Schwinger model).

Note: if Lmq is small, fermionic spatial boundary conditions start to

play a role:

* Periodic boundary conditions = g, = 0 fermion, power law corrections in
1/L.

®= Anti-periodic boundary conditions = |py| > F.
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Results

We consider both periodic and anti-periodic boundary conditions.
With zero quark mass we obtain (for apbc) the composite mass

2 : ,
mo = %(1 +70), Y0 = —ﬂe—:ﬁ ( anomalous dimension of O)

Note how this is analogous to the Ising case.
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We consider both periodic and anti-periodic boundary conditions.
With zero quark mass we obtain (for apbc) the composite mass

2 : ,
mo = %(1 +70), Y0 = —ﬂe—:ﬁ ( anomalous dimension of O)

Note how this is analogous to the Ising case.
We then calculate mp as a function of the mass deformation mj.

Lattice of size N5 x (16Ns) with 8 < Ns < 96. Also three different
values of Lm € {3,5,10} and 7o € {2, -3, — ¢}
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Numerical exact results N e_mo{_%({)z

C(1)
14.3 . : : ,
:‘;%‘?; + T:Zgl
* XX X T =
2?3* xx * T=12
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Anti-periodic boundary conditions with mass deformation m;,

60 T T
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Single anomalous dimension y,,, exact result: y,, = 1
Ym = 1.100
60 . . . . .
50 f’ .
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é) #
S 20 + 1
10 + 1
O 1 1 1 1 1
0 ) 10 15 20 25 30



I
DPHYS

Department of Physics

Effective y,(Ns)
Ym = 1.046, ¢; = 3.940, co = 3.396
60 . . . T T
50 + PR
1/'
)
2 40 } .
5 /"/
I 30 I~ "/ 1
9) /y*
E 20 + A i
ol ;/ _
0 1 1 1 1 1
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Lm;/(ym-i-Cl/Ns-i-Q/Nf)
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Discretization errors with y,, = 1 fixed to exact value

1 = 62.424, ¢y = —2507.945
60 : : : : :

DO
(e}
T
1

0 ) 10 15 20 25 30



I
ETH DPHYS

Department of Physics

wéorrections to scaling (cf. Cheng et al. arXiv:1401.0195)

Ym = 1.025, co = —0.096,w = 1.737
60 : : : : :

0 ) 10 15 20 25 30
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Comparison apbc and pbc
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This work
ym = 1.00,co = —0.138,w = 1.324
o 14
3 / Vi)
a 12 apbc, 24/72 + (Lmq/”"‘) )
10 \ <39
3= 4
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SU(3) with 12 fundamental flavors:
A. Cheng, A. Hasenfratz, Y. Liu, G. Petropoulos and

D. Schaich, arXiv:1401.0195
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Conclusions and lessons learned:
Points to keep in mind when studying conformality on the lattice

Direct test of scale invariance: compare correlators C(t) in lattice
L3 x Ly with C(\t) in lattice (AL)® x AL;.
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Conclusions and lessons learned:
Points to keep in mind when studying conformality on the lattice

* Direct test of scale invariance: compare correlators C(t) in lattice
L3 x Ly with C(\t) in lattice (AL)® x AL;.

® Anti-periodic boundary conditions allows zero external mass but there
is still a mass plateau. Also, small external masses may be
over-shadowed by the constant term.

® Periodic boundary conditions allows zero meson mass but may come
with high computational costs.
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Conclusions and lessons learned:
Points to keep in mind when studying conformality on the lattice

Direct test of scale invariance: compare correlators C(t) in lattice
L3 x Ly with C(\t) in lattice (AL)® x AL;.

Anti-periodic boundary conditions allows zero external mass but there
is still a mass plateau. Also, small external masses may be
over-shadowed by the constant term.

Periodic boundary conditions allows zero meson mass but may come
with high computational costs.

It is mandatory to use a large aspect ratio N;/Ns because of excited
states.
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Conclusions and lessons learned:
Points to keep in mind when studying conformality on the lattice

Direct test of scale invariance: compare correlators C(t) in lattice
L3 x Ly with C(\t) in lattice (AL)® x AL;.

Anti-periodic boundary conditions allows zero external mass but there
is still a mass plateau. Also, small external masses may be
over-shadowed by the constant term.

Periodic boundary conditions allows zero meson mass but may come
with high computational costs.

It is mandatory to use a large aspect ratio N;/Ns because of excited
states.

It is necessary to consider corrections to scaling and discretization
errors to obtain correct anomalous dimensions.
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Thank you for your attention!
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Ising model < Free fermions

® The 2d Ising model can be reformulated in terms of free staggered
fermions with pbc and apbc in space and time (4 combinations).

® At criticality all bc’s are equally important and are averaged over (cf.
the four Jacobi theta functions).

® The apbc contributions are related to the 1/L mass.
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The coefficients ¢, and ¢’

Recall the Ising propagator on a torus of size L x (7L):
S,
C(t,x,L,7) = (c(0,0)o(x, 1)) x |P(z,q)| 4 Z |19,,(3, q)}
v=1

wt
Defining u = e L, to lowest order in g, the magnitude of the theta
functions are given by:

. 1
1
V1 <X+ ’t,q> = qgéu’ (1 + u* — 202 cos (& x )

L

L

X+ it

]
p <X+It,q> = q%u‘1 (1 +ut + 207 cos(zm‘))2
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Inserting this yields

ool —

] _
C(t,x,L,q)=q /%uz (1 + u* — 202 cos (2’”‘))
11 ]

x|[2+q4u 2 <1+ — 24! cos(%)) +

)

11
We discard the overall g~ 8 u4 and expand the expressions containing

N

N[ —

(1 + u? +2u' cos (%))

1 s
the cosines in order to sum over x. Note that u4 = e 4L! is the
leading order decay. We also treat the g-independent and
g-dependent parts separately.
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g-independent part

An expansion in powers of u gives
o0 1
_ —8 2rx
—Z(n)< — 212 cos (&% ))
_ 8 ny\ . ,ym,4n—2m 27x\M
Z( )Z<m)( 2)my4n-2m cos (254)

m=0

n

oo —

<1 + u* — 2u? cos (2”))7

We can now sum over x term by term using:

2r
L 1T
1 - _ 2r 2r
O (L ] I
X= n=




ccccccccccccccccccccccccccccccccccccccc
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g-dependent part

For the g-dependent part we have to expand three roots before we
can sum over x. After expanding we find that we need to calculate the
following sums:

r L
_ o—r-=2p r 2p 2p
=2 z_:<n) <p+r—2n>+2 Z <p+r—2n+qL
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m=0 r=max(2m—n,0) p=0

OG- )2 S (o)
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The bosonic corrections

We need to calculate

B(x):<o,Tefie(V(X)+A(x)w) —ie(V(0)+.A(0)y |0)

Perform Wick contractions with:

ﬁ2x eipx<0|TV(X)V(O)|0> = m;p?
0

/ﬁx eP* (0| TA(x).A(0)[0) = M - # ( 1

Department of Physics

P2+ m

1

P2

)
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One finds
Bx) = cc(:?(()x)ﬂ 0 {1—1 a#g
where
Co(x) = exp e'% (D(x,0) D(0,0)))]
C(x) = exp [Z ((D(x, m) — D(0, m)) — (D(x,0) — D(0,0)))

d2,0 efipx
D(x,m) = / @2 P

which defines the C(x) used in the O propagator.
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The composite correlator

To derive the composite two-point correlator we start by considering
the free fermion four-point correlator:

G, = (01T, (%) (X1)0%, (¥2) 53, (11)]0)-
which after Wick contractions becomes

—S51°2(x1 — %2) Sy 2 (y1 — y2) + S5 (X1 — ¥2)Sy 2 (y1 — xa),
where the free fermion two-point function is given by

" dp? e
S50 = [ e

m, a1 # az
(b1 —ip2), a1 =ap=1
(p1+ip2) ar=az=2
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The bosonlc contribution is given by
[T Colxi = x)Clxi — ),
i<j

with the sign factors depending on which two fermionic fields are
contracted via

{+1, 1 and ¢* {+1, a=p
Nij = Kij =

—1, otherwise’ —1, a#p’

Since O = ¥3v1 we will be interested in the case oy = 2 # ap = 4
and x;y — X2 = X, y1 — ¥o = y. We thus get the full four point function

g _ Colx —x)Co(yr — yo) o

C(x1 —x2)C(y1 — yo) X Y)'S (X =S (x - )
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Using a leading order operator product expansion of two fermionic
fields we find

Topz(X2)1(X1) = c(X2 — X1)¥2¢1(X2) = c(X2 — X1)O(X2),
which gives
G = c(x — x1)c(y2 — y1)(0|TO(x)O(y)|0).

Comparing to the previous slide we see that we should take
c(x) = Cop(x)/C(x) to arrive at
4| o1 2
0ITO(x)0(0)10) = C(x)*| 8" (x)|
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