wiss Federal Institute of Technology Zurich

Walking technicolor: testing infrared conformality

 with exact results in two dimensionsOscar Åkerlund*
Philippe de Forcrand

LATTICE 2014
June 23, 2014

Conformal invariance...

- Conformal invariance is typically connected with an infrared (IR) fixed point.
- There the coupling constant stops running and thus becomes scale invariant.
- A general feature is that all correlation functions are given by power laws.
- Perturbatively, if you add enough fermions to SU(N) Yang-Mills theory, it becomes conformal.

... on the lattice.

- A finite lattice is not well suited to study a conformal theory.
- There are two intrinsic scales which you can never truly get rid of, the lattice spacing a and the lattice extent L.
- Nevertheless, lattice calculations are the method of choice for nonperturbative investigation of QFT's.
- It is important to control the deformations of the conformal theory induced by a lattice and by external masses.

A first example: zero momentum Green's functions

- Let some field have an anomalous scaling dimension Δ. The Green's functions in coordinate and Fourier space are related:

$$
\left(x^{2}\right)^{-(d-2) / 2-\Delta} \Leftrightarrow\left(p^{2}\right)^{-1+\Delta}
$$

A first example: zero momentum Green's functions

- Let some field have an anomalous scaling dimension Δ. The Green's functions in coordinate and Fourier space are related:

$$
\left(x^{2}\right)^{-(d-2) / 2-\Delta} \Leftrightarrow\left(p^{2}\right)^{-1+\Delta}
$$

- Now let us add a mass deformation to this, $\widetilde{G}(p)=\left(p^{2}+m^{2}\right)^{-1+\Delta}$. A short calculation suggests that for large separations the zero spatial momentum temporal correlator is given by:

$$
G(t, \vec{p}=0) \propto\left(\frac{t}{m}\right)^{\frac{1}{2}-\Delta} K_{\frac{1}{2}-\Delta}(m t)^{m t \gg 1} \frac{e^{-m t}}{t^{\Delta}}
$$

- Turned into analysis method of lattice correlators (Iwasaki et al.) but does not apply on the lattice!

Can lattice simulations be used to study a conformal theory?

- Three important questions to answer:

1. How do the two intrinsic scales, a, L, modify the conformal behavior?
2. Can we observe power law decay or power law corrected exponential decay on the lattice?
3. Can a mass deformation be used to obtain anomalous dimensions?

Can lattice simulations be used to study a conformal theory?

- Three important questions to answer:

1. How do the two intrinsic scales, a, L, modify the conformal behavior?
2. Can we observe power law decay or power law corrected exponential decay on the lattice?
3. Can a mass deformation be used to obtain anomalous dimensions?

- Answers from exactly solvable models in 2d:

1. The critical Ising model (1 and 2).
2. The Sommerfield model (3).

1. Critical 2d Ising model

- In an infinite volume the spin-spin correlation is given by:

$$
\langle\sigma(0,0) \sigma(x, t)\rangle \propto\left(x^{2}+t^{2}\right)^{-\Delta}
$$

$\Delta=\frac{1}{8}$ is the scaling dimension of the spin field.

1. Critical 2d Ising model

- In an infinite volume the spin-spin correlation is given by:

$$
\langle\sigma(0,0) \sigma(x, t)\rangle \propto\left(x^{2}+t^{2}\right)^{-\Delta}
$$

$\Delta=\frac{1}{8}$ is the scaling dimension of the spin field.

- On a torus with size $L_{s} \times L_{t} \equiv L \times(\tau L), \quad \tau=\frac{N_{t}}{N_{s}}$ we have:

$$
\langle\sigma(0,0) \sigma(x, t)\rangle \propto\left|\vartheta_{1}(z, q)\right|^{-\frac{1}{4}} \sum_{\nu=1}^{4}\left|\vartheta_{\nu}\left(\frac{z}{2}, q\right)\right|
$$

$\vartheta_{\nu}(z, q)$ is the ν^{\prime} th Jacobi theta function with $q=\exp (-\pi \tau)$ and $z=\frac{\pi}{L}(x+i t)$.

We sum over x to obtain the zero spatial momentum correlator:
$C(t, q, L) \propto \cosh \left(\frac{\pi}{4 L}\left(t-\frac{\tau L}{2}\right)\right)+\sum_{n=1}^{\infty}\left(c_{n} q^{2 n} \cosh \left(\frac{\pi\left(4 n+\frac{1}{4}\right)}{L}\left(t-\frac{\tau L}{2}\right)\right)\right)$

$$
+q^{\frac{1}{4}} \sum_{n=1}^{\infty}\left(c_{n}^{q} q^{n} \cosh \left(\frac{\pi\left(2 n-\frac{1}{4}\right)}{L}\left(t-\frac{\tau L}{2}\right)\right)\right)+\mathcal{O}\left(q^{2}\right), \quad q=e^{-\pi \tau}
$$

The coefficients c_{n} and c_{n}^{q} depends on n and L and can be exactly calculated.

We sum over x to obtain the zero spatial momentum correlator:
$C(t, q, L) \propto \cosh \left(\frac{\pi}{4 L}\left(t-\frac{\tau L}{2}\right)\right)+\sum_{n=1}^{\infty}\left(c_{n} q^{2 n} \cosh \left(\frac{\pi\left(4 n+\frac{1}{4}\right)}{L}\left(t-\frac{\tau L}{2}\right)\right)\right)$

$$
+q^{\frac{1}{4}} \sum_{n=1}^{\infty}\left(c_{n}^{q} q^{n} \cosh \left(\frac{\pi\left(2 n-\frac{1}{4}\right)}{L}\left(t-\frac{\tau L}{2}\right)\right)\right)+\mathcal{O}\left(q^{2}\right), \quad q=e^{-\pi \tau}
$$

The coefficients c_{n} and c_{n}^{q} depends on n and L and can be exactly calculated.
$q=0=e^{-\pi \tau}$ corresponds to a cylindrical geometry:

$$
C(t, 0, L) \propto e^{-\frac{\pi}{4} \frac{t}{L}}\left(1+\sum_{n=1}^{\infty} c_{n} e^{-4 n \pi \frac{t}{L}}\right)
$$

Numerical results

Numerical results

Numerical results

Numerical results

- Perfect matching of correlators after re-scaling the dimensions \Leftrightarrow Conformal behavior.
- Effective mass plateau says nothing about conformal behavior

From exponentials to a power law

- The Euclidean time correlator is related to the spectral density:

$$
C(t) \propto \int_{0}^{\infty} \mathrm{d} \omega \rho(\omega) e^{-\omega t}
$$

- Each exponential decay, $\omega_{n}=n \frac{\delta}{L}$ in $C(t)$ corresponds to a delta function in $\rho(\omega)$.

From exponentials to a power law

- The Euclidean time correlator is related to the spectral density:

$$
C(t) \propto \int_{0}^{\infty} \mathrm{d} \omega \rho(\omega) e^{-\omega t} .
$$

- Each exponential decay, $\omega_{n}=n_{L}^{\delta}$ in $C(t)$ corresponds to a delta function in $\rho(\omega)$.
- Taking $L \rightarrow \infty$, i.e. the level spacing to zero, leads to an integral over the delta functions and $\rho(\omega)=c\left(\frac{\omega L}{\delta}\right)$ where $c(x)$ is the continuous version of the coefficients c_{n}, (cf. M. Stephanov arXiv:0705.3049).
- Since $L \rightarrow \infty$ we will probe the large n asymptotic of c_{n} :

$$
c_{n} \propto n^{-\alpha} \Rightarrow \rho(\omega) \propto \omega^{-\alpha}
$$

An explicit calculation

- For the Ising model in a cylinder we find $c_{n}=\frac{\Gamma\left(\frac{1}{8}+n\right)^{2}}{(n!)^{2} \Gamma\left(\frac{1}{8}\right)^{2}}$ for $L \rightarrow \infty$.

An explicit calculation

- For the Ising model in a cylinder we find $c_{n}=\frac{\Gamma\left(\frac{1}{8}+n\right)^{2}}{(n!)^{2} \Gamma\left(\frac{1}{8}\right)^{2}}$ for $L \rightarrow \infty$.

This implies $\rho(\omega) \propto \omega^{-\frac{7}{4}}$ which is what we expect:

$$
\left(x^{2}+t^{2}\right)^{-\frac{1}{8}} \Rightarrow\left(p^{2}+\omega^{2}\right)^{-1+\frac{1}{8}}=\{p=0\}=\omega^{-\frac{7}{4}} \propto \rho(\omega)
$$

Consequences

- We find that there is a mass $\frac{\pi}{4 L}$ even though the theory should be massless.

There is no power law correction to the exponential decay. Instead, as $L \rightarrow \infty$, a continuum of excitations emerge to give a massless correlator.

Consequences

- We find that there is a mass $\frac{\pi}{4 L}$ even though the theory should be massless.

There is no power law correction to the exponential decay. Instead, as $L \rightarrow \infty$, a continuum of excitations emerge to give a massless correlator.

- A finite temporal extent introduces new corrections, $\sim e^{-\frac{\pi \tau}{4}} e^{-\delta E t}$, which are exponentially suppressed by the aspect ratio.
- These new states may conceal the true ground state mass $\frac{\pi}{4 L}$, even at $L \rightarrow \infty$. Large τ essential.

2. The $2 d$ Sommerfield model

C. M. Sommerfield, Ann. Phys. 26 (1964) 1, H. Georgi and Y. Kats, JHEP 1002 (2010) 065

The Sommerfield Lagrangian is given by:

$$
\mathcal{L}=\bar{\psi}(i \not \partial-e A) \psi-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}+\frac{m_{0}^{2}}{2} A^{\mu} A_{\mu}
$$

- It is the Schwinger model with a mass term for the vector boson, i.e. there is no gauge symmetry.
- In the infrared it becomes scale-invariant (cf. Thirring model) and has anomalous dimensions.
- Solved by introducing: $A_{\mu}=\partial_{\mu} \mathcal{V}+\epsilon_{\mu \nu} \partial^{\nu} \mathcal{A}$ and $\Psi=e^{i e\left(\mathcal{V}+\mathcal{A} \gamma^{5}\right)} \psi$.

Fermion becomes free:

$$
\mathcal{L}=i \bar{\psi} \not \partial \psi+\frac{m_{0}^{2}}{2} \partial_{\mu} \mathcal{V} \partial^{\mu} \mathcal{V}+\frac{1}{2} \mathcal{A}\left(\partial_{\mu} \partial^{\mu}\right)^{2} \mathcal{A}-\frac{m^{2}}{2} \partial_{\mu} \mathcal{A} \partial^{\mu} \mathcal{A}: m^{2}=m_{0}^{2}+\frac{e^{2}}{\pi}
$$

- Solved by introducing: $A_{\mu}=\partial_{\mu} \mathcal{V}+\epsilon_{\mu \nu} \partial^{\nu} \mathcal{A}$ and $\Psi=e^{i e\left(\mathcal{V}+\mathcal{A} \gamma^{5}\right)} \psi$.
- Fermion becomes free:

$$
\mathcal{L}=i \bar{\Psi} \not \partial \Psi+\frac{m_{0}^{2}}{2} \partial_{\mu} \mathcal{V} \partial^{\mu} \mathcal{V}+\frac{1}{2} \mathcal{A}\left(\partial_{\mu} \partial^{\mu}\right)^{2} \mathcal{A}-\frac{m^{2}}{2} \partial_{\mu} \mathcal{A} \partial^{\mu} \mathcal{A}
$$

$$
m^{2}=m_{0}^{2}+\frac{e^{2}}{\pi}
$$

- The fermionic 2-point function is given by a product of a free fermionic Green's function and a bosonic correction:

$$
\begin{aligned}
\langle 0| \mathrm{T} \psi_{\alpha}(x) \psi_{\beta}^{*}(0)|0\rangle= & \langle 0| \mathrm{T} \Psi_{\alpha}(x) \Psi_{\beta}^{*}(0)|0\rangle \\
& \times\langle 0| \mathrm{T} e^{-i e\left(\mathcal{V}(x)+\mathcal{A}(x) \gamma^{5}\right)} e^{-i e\left(\mathcal{V}(0)+\mathcal{A}(0) \gamma^{5}\right)}|0\rangle
\end{aligned}
$$

- The bosonic correction can be calculated in a closed form and is given by an exponential of massless and massive bosonic Green's functions.
- Define the composite operator $\mathcal{O} \equiv \bar{\psi} \frac{1}{2}\left(1+\gamma^{5}\right) \psi=\psi_{2}^{*} \psi_{1}$ (cf. meson/pion). This operator will have an anomalous dimension at low energies.
- Using the Operator Product Expansion of a product of two ψ 's one can show (Georgi \& Kats) that:

$$
\langle 0| \mathrm{TO}(x) \mathcal{O}(0)|0\rangle=C(x)^{4}\left|S_{0}(x)\right|^{2},
$$

where $S_{0}(x)$ is a free fermion propagator and $C(x)$ is due to the bosons.

- Define the composite operator $\mathcal{O} \equiv \bar{\psi} \frac{1}{2}\left(1+\gamma^{5}\right) \psi=\psi_{2}^{*} \psi_{1}$ (cf. meson/pion). This operator will have an anomalous dimension at low energies.
- Using the Operator Product Expansion of a product of two ψ 's one can show (Georgi \& Kats) that:

$$
\langle 0| \mathrm{TO}(x) \mathcal{O}(0)|0\rangle=C(x)^{4}\left|S_{0}(x)\right|^{2}
$$

where $S_{0}(x)$ is a free fermion propagator and $C(x)$ is due to the bosons.

- Using the asymptotic behaviors of $C(x)$ and $S_{0}(x)$ one finds

$$
\langle 0| \mathrm{TO}(x) \mathcal{O}(0)|0\rangle \propto \begin{cases}\left(x^{2}\right)^{-1}, & x m \ll 1 \\ \left(x^{2}\right)^{-1-\gamma_{0}}, & x m \gg 1\end{cases}
$$

where $\gamma_{\mathcal{O}} \equiv-\frac{e^{2}}{\pi m^{2}}=-\frac{1}{1+\frac{m_{0}^{2} \pi}{e^{2}}}$ is the anomalous dimension of \mathcal{O}.

On the lattice

- In principle straightforward to calculate the propagator on the lattice.
- We can also add a bare mass, m_{q}, to the fermion to measure the anomalous mass dimension.
- $N_{f}=4$ (naive lattice fermions) is similar to $N_{f}=1$, except when $m_{0} \rightarrow 0$ (Schwinger model).

On the lattice

- In principle straightforward to calculate the propagator on the lattice.
- We can also add a bare mass, m_{q}, to the fermion to measure the anomalous mass dimension.
- $\quad N_{f}=4$ (naive lattice fermions) is similar to $N_{f}=1$, except when $m_{0} \rightarrow 0$ (Schwinger model).
- Note: if $L m_{q}$ is small, fermionic spatial boundary conditions start to play a role:
- Periodic boundary conditions $\Rightarrow \vec{p}_{x}=\overrightarrow{0}$ fermion, power law corrections in 1/L.
- Anti-periodic boundary conditions $\Rightarrow\left|\vec{p}_{x}\right| \geq \frac{\pi}{L}$.

Results

- We consider both periodic and anti-periodic boundary conditions.
- With zero quark mass we obtain (for apbc) the composite mass

$$
m_{\mathcal{O}}=\frac{2 \pi}{L}\left(1+\gamma_{\mathcal{O}}\right), \quad \gamma_{\mathcal{O}}=-\frac{e^{2}}{\pi m^{2}} \quad(\text { anomalous dimension of } \mathcal{O})
$$

Note how this is analogous to the Ising case.

Results

- We consider both periodic and anti-periodic boundary conditions.
- With zero quark mass we obtain (for apbc) the composite mass

$$
m_{\mathcal{O}}=\frac{2 \pi}{L}\left(1+\gamma_{\mathcal{O}}\right), \quad \gamma_{\mathcal{O}}=-\frac{e^{2}}{\pi m^{2}} \quad(\text { anomalous dimension of } \mathcal{O})
$$

Note how this is analogous to the Ising case.

- We then calculate $m_{\mathcal{O}}$ as a function of the mass deformation m_{q}.
- Lattice of size $N_{s} \times\left(16 N_{s}\right)$ with $8 \leq N_{s} \leq 96$. Also three different values of $L m \in\{3,5,10\}$ and $\gamma_{\mathcal{O}} \in\left\{-\frac{5}{6},-\frac{1}{2},-\frac{1}{6}\right\}$.

Numerical exact results $C(t) \sim e^{-m_{0} \frac{t}{L}-\frac{m_{2}}{\tau}\left(\frac{t}{L}\right)^{2}}$

Anti-periodic boundary conditions with mass deformation m_{q}

Single anomalous dimension y_{m}, exact result: $y_{m}=1$

Effective $y_{m}\left(N_{s}\right)$

$$
y_{m}=1.046, c_{1}=3.940, c_{2}=3.396
$$

Discretization errors with $y_{m}=1$ fixed to exact value

$$
c_{1}=62.424, c_{2}=-2507.945
$$

Corrections to scaling (cf. Cheng et al. arXiv:1401.0195)

$$
y_{m}=1.025, c_{0}=-0.096, \omega=1.737
$$

Comparison apbc and pbc

This work

arXiv:1401.0195

SU(3) with 12 fundamental flavors:
A. Cheng, A. Hasenfratz, Y. Liu, G. Petropoulos and
D. Schaich, arXiv:1401.0195

Conclusions and lessons learned:

Points to keep in mind when studying conformality on the lattice

- Direct test of scale invariance: compare correlators $C(t)$ in lattice $L^{3} \times L_{t}$ with $C(\lambda t)$ in lattice $(\lambda L)^{3} \times \lambda L_{t}$.

Conclusions and lessons learned:

Points to keep in mind when studying conformality on the lattice

- Direct test of scale invariance: compare correlators $C(t)$ in lattice $L^{3} \times L_{t}$ with $C(\lambda t)$ in lattice $(\lambda L)^{3} \times \lambda L_{t}$.
- Anti-periodic boundary conditions allows zero external mass but there is still a mass plateau. Also, small external masses may be over-shadowed by the constant term.
- Periodic boundary conditions allows zero meson mass but may come with high computational costs.

Conclusions and lessons learned:

Points to keep in mind when studying conformality on the lattice

- Direct test of scale invariance: compare correlators $C(t)$ in lattice $L^{3} \times L_{t}$ with $C(\lambda t)$ in lattice $(\lambda L)^{3} \times \lambda L_{t}$.
- Anti-periodic boundary conditions allows zero external mass but there is still a mass plateau. Also, small external masses may be over-shadowed by the constant term.
- Periodic boundary conditions allows zero meson mass but may come with high computational costs.
- It is mandatory to use a large aspect ratio N_{t} / N_{s} because of excited states.

Conclusions and lessons learned:
 Points to keep in mind when studying conformality on the lattice

- Direct test of scale invariance: compare correlators $C(t)$ in lattice $L^{3} \times L_{t}$ with $C(\lambda t)$ in lattice $(\lambda L)^{3} \times \lambda L_{t}$.
- Anti-periodic boundary conditions allows zero external mass but there is still a mass plateau. Also, small external masses may be over-shadowed by the constant term.
- Periodic boundary conditions allows zero meson mass but may come with high computational costs.
- It is mandatory to use a large aspect ratio N_{t} / N_{s} because of excited states.
- It is necessary to consider corrections to scaling and discretization errors to obtain correct anomalous dimensions.

Thank you for your attention!

Ising model \Leftrightarrow Free fermions

- The $2 d$ Ising model can be reformulated in terms of free staggered fermions with pbc and apbc in space and time (4 combinations).
- At criticality all bc's are equally important and are averaged over (cf. the four Jacobi theta functions).
- The apbc contributions are related to the $1 / L$ mass.

The coefficients c_{n} and c_{n}^{q}

Recall the Ising propagator on a torus of size $L \times(\tau L)$:

$$
C(t, x, L, \tau) \equiv\langle\sigma(0,0) \sigma(x, t)\rangle \propto\left|\vartheta_{1}(z, q)\right|^{-\frac{1}{4}} \sum_{\nu=1}^{4}\left|\vartheta_{\nu}\left(\frac{z}{2}, q\right)\right|
$$

Defining $u=e^{-\frac{\pi t}{L}}$, to lowest order in q, the magnitude of the theta functions are given by:

$$
\begin{aligned}
& \left|\vartheta_{1}\left(\frac{x+i t}{\pi L}, q\right)\right|=q^{\frac{1}{4}} u^{-1}\left(1+u^{4}-2 u^{2} \cos \left(\frac{2 \pi x}{L} x\right)\right)^{\frac{1}{2}} \\
& \left|\vartheta_{2}\left(\frac{x+i t}{\pi L}, q\right)\right|=q^{\frac{1}{4}} u^{-1}\left(1+u^{4}+2 u^{2} \cos \left(\frac{2 \pi x}{L}\right)\right)^{\frac{1}{2}} \\
& \left|\vartheta_{3}\left(\frac{x+i t}{\pi L}, q\right)\right|=\left|\vartheta_{4}\left(\frac{x+i t}{\pi L}, q\right)\right|=1
\end{aligned}
$$

Inserting this yields

$$
\begin{aligned}
& C(t, x, L, q)=q^{-1 / 16} u^{\frac{1}{4}}\left(1+u^{4}-2 u^{2} \cos \left(\frac{2 \pi x}{L}\right)\right)^{-\frac{1}{8}} \\
& \times\left(2+q^{\frac{1}{4}} u^{-\frac{1}{2}}\left(\left(\left(1+u^{2}-2 u^{1} \cos \left(\frac{\pi x}{L}\right)\right)^{\frac{1}{2}}+\right.\right.\right. \\
& \\
& \left.\left.\left.\left(1+u^{2}+2 u^{1} \cos \left(\frac{\pi x}{L}\right)\right)^{\frac{1}{2}}\right)\right)\right)
\end{aligned}
$$

We discard the overall $q^{-\frac{1}{8}} u^{\frac{1}{4}}$ and expand the expressions containing the cosines in order to sum over x. Note that $u^{\frac{1}{4}}=e^{-\frac{\pi}{4 L} t}$ is the leading order decay. We also treat the q-independent and q-dependent parts separately.

q-independent part

An expansion in powers of u gives

$$
\begin{aligned}
\left(1+u^{4}-2 u^{2} \cos \left(\frac{2 \pi x}{L}\right)\right)^{-\frac{1}{8}} & =\sum_{n=0}^{\infty}\binom{-\frac{1}{8}}{n}\left(u^{4}-2 u^{2} \cos \left(\frac{2 \pi x}{L}\right)\right)^{n} \\
& =\sum_{n=0}^{\infty}\binom{-\frac{1}{8}}{n} \sum_{m=0}^{n}\binom{n}{m}(-2)^{m} u^{4 n-2 m} \cos \left(\frac{2 \pi x}{L}\right)^{m}
\end{aligned}
$$

We can now sum over x term by term using:

$$
\frac{1}{L} \sum_{x=0}^{L-1} \cos \left(\frac{2 \pi x}{L}\right)^{m}=2^{-2 r}\left(\binom{2 r}{r}+2 \sum_{n=1}^{\left\lfloor\frac{2 r}{L}\right\rfloor}\binom{2 r}{r+\frac{n L}{2}}\right) \delta_{m, 2 r}
$$

This gives:

$$
\begin{aligned}
& C\left(t, p_{x}=0, L, 0\right) \propto \sum_{n=0}^{\infty}\binom{-\frac{1}{8}}{n} \sum_{r=0}^{n}\binom{n}{2 r} u^{4(n-r)}\left(\binom{2 r}{r}+2 \sum_{m=1}^{\left\lfloor\frac{2 r}{L}\right\rfloor}\binom{2 r}{r+\frac{m L}{2}}\right) \\
& \quad=\sum_{n=0}^{\infty} u^{4 n} \sum_{r=0}^{n}\binom{-\frac{1}{8}}{n+r}\binom{n+r}{2 r}\left(\binom{2 r}{r}+2 \sum_{m=1}^{\left\lfloor\frac{2 r}{L}\right\rfloor}\binom{2 r}{r+\frac{m L}{2}}\right) \\
& = \\
& =\sum_{n=0}^{\infty} u^{4 n} \underbrace{\left(\frac{\Gamma\left(\frac{1}{8}+n\right)^{2}}{(n!)^{2} \Gamma\left(\frac{1}{8}\right)^{2}}+\sum_{m=1}^{\left\lfloor\frac{2 n}{L}\right\rfloor} \frac{\Gamma\left(\frac{7}{8}-n+\frac{m L}{2}\right)^{-1} \Gamma\left(1+n+\frac{m L}{2}\right)^{-1}}{\Gamma\left(\frac{7}{8}-n-\frac{m L}{2}\right) \Gamma\left(1+n-\frac{m L}{2}\right)}\right)}_{C_{n}}
\end{aligned}
$$

q-dependent part

For the q-dependent part we have to expand three roots before we can sum over x. After expanding we find that we need to calculate the following sums:

$$
\begin{aligned}
& \frac{1}{L} \sum_{x=0}^{L-1} \cos \left(\frac{2 \pi x}{L}\right)^{r} \cos \left(\frac{\pi x}{L}\right)^{2 p} \\
& =2^{-r-2 p} \sum_{n=0}^{r}\binom{r}{n}\left(\binom{2 p}{p+r-2 n}+2 \sum_{q=1}^{\left\lfloor\frac{r+p}{L}\right\rfloor}\binom{2 p}{p+r-2 n+q L}\right)
\end{aligned}
$$

Using this we find the coefficient

$$
\begin{aligned}
& c_{n}^{q}=\sum_{m=0}^{n} \sum_{r=\max (2 m-n, 0)}^{m} \sum_{p=0}^{n+r-2 m}(-1)^{r}\binom{\frac{1}{2}}{n+r+p-2 m}\binom{n+r+p-2 m}{2 p} \\
& \times\binom{-\frac{1}{8}}{m}\binom{m}{r}\left(\sum_{k=0}^{r}\binom{r}{k}\left(\binom{2 p}{p+r-2 k}+2 \sum_{q=1}^{\left\lfloor\frac{r+p}{L}\right\rfloor}\binom{2 p}{p+r-2 k+q L}\right)\right.
\end{aligned}
$$

The bosonic corrections

We need to calculate

$$
B(x)=\langle 0| \mathrm{T} e^{-i e\left(\mathcal{V}(x)+\mathcal{A}(x) \gamma^{5}\right)} e^{-i e\left(\mathcal{V}(0)+\mathcal{A}(0) \gamma^{5}\right)}|0\rangle
$$

Perform Wick contractions with:

$$
\begin{aligned}
\int \mathrm{d}^{2} x e^{i p x}\langle 0| \mathrm{TV}(x) \mathcal{V}(0)|0\rangle & =\frac{1}{m_{0}^{2} p^{2}} \\
\int \mathrm{~d}^{2} x e^{i p x}\langle 0| \mathrm{T} \mathcal{A}(x) \mathcal{A}(0)|0\rangle & =\frac{1}{\left(p^{2}\right)^{2}+m^{2} p^{2}}=\frac{1}{m^{2}}\left(\frac{1}{p^{2}+m^{2}}-\frac{1}{p^{2}}\right)
\end{aligned}
$$

One finds

$$
B(x)=\frac{C_{0}(x)}{C(x)^{\kappa_{\alpha \beta}}}, \quad \kappa_{\alpha \beta}= \begin{cases}1, & \alpha \neq \beta \\ -1, & \alpha=\beta\end{cases}
$$

where

$$
\begin{aligned}
C_{0}(x) & \left.=\exp \left[\frac{e^{2}}{m_{0}^{2}}(D(x, 0)-D(0,0))\right)\right] \\
C(x) & =\exp \left[\frac{e^{2}}{m^{2}}((D(x, m)-D(0, m))-(D(x, 0)-D(0,0)))\right] \\
D(x, m) & =\int \frac{\mathrm{d}^{2} p}{(2 \pi)^{2}} \frac{e^{-i p x}}{p^{2}+m^{2}}
\end{aligned}
$$

which defines the $C(x)$ used in the \mathcal{O} propagator.

The composite correlator

To derive the composite two-point correlator we start by considering the free fermion four-point correlator:

$$
G_{\mathrm{free}}^{(4)}=\langle 0| \mathrm{T} \psi_{\alpha_{2}}^{*}\left(x_{2}\right) \psi_{\alpha_{1}}\left(x_{1}\right) \psi_{\beta_{2}}^{*}\left(y_{2}\right) \psi_{\beta_{1}}\left(y_{1}\right)|0\rangle
$$

which after Wick contractions becomes

$$
-S_{0}^{\alpha_{1} \alpha_{2}}\left(x_{1}-x_{2}\right) S_{0}^{\beta_{1} \beta_{2}}\left(y_{1}-y_{2}\right)+S_{0}^{\alpha_{1} \beta_{2}}\left(x_{1}-y_{2}\right) S_{0}^{\beta_{1} \alpha_{2}}\left(y_{1}-x_{2}\right)
$$

where the free fermion two-point function is given by

$$
S_{0}^{\alpha_{1} \alpha_{2}}(x)=\int \frac{\mathrm{d} p^{2}}{(2 \pi)^{2}} \frac{e^{i p x}}{p^{2}+m^{2}} \times \begin{cases}m, & \alpha_{1} \neq \alpha_{2} \\ \left(p_{1}-i p_{2}\right), & \alpha_{1}=\alpha_{2}=1 \\ \left(p_{1}+i p_{2}\right) & \alpha_{1}=\alpha_{2}=2\end{cases}
$$

The bosonic contribution is given by

$$
\prod_{i<j} C_{0}\left(x_{i}-x_{j}\right)^{\eta_{j}} C\left(x_{i}-x_{j}\right)^{\eta_{j} \kappa_{i j}},
$$

with the sign factors depending on which two fermionic fields are contracted via

$$
\eta_{i j}=\left\{\begin{array}{ll}
+1, & \psi \text { and } \psi^{*} \\
-1, & \text { otherwise }
\end{array}, \quad \kappa_{i j}=\left\{\begin{array}{ll}
+1, & \alpha=\beta \\
-1, & \alpha \neq \beta
\end{array} .\right.\right.
$$

Since $\mathcal{O}=\psi_{2}^{*} \psi_{1}$ we will be interested in the case $\alpha_{1}=\beta_{2} \neq \alpha_{2}=\beta_{1}$ and $x_{1} \rightarrow x_{2} \equiv x, y_{1} \rightarrow y_{2} \equiv y$. We thus get the full four point function

$$
G^{(4)}=\frac{C_{0}\left(x_{1}-x_{2}\right) C_{0}\left(y_{1}-y_{2}\right)}{C\left(x_{1}-x_{2}\right) C\left(y_{1}-y_{2}\right)} C(x-y)^{4} S_{0}^{11}(x-y) S_{0}^{22}(x-y) .
$$

Using a leading order operator product expansion of two fermionic fields we find

$$
\mathrm{T} \psi_{2}^{*}\left(x_{2}\right) \psi_{1}\left(x_{1}\right) \approx c\left(x_{2}-x_{1}\right) \psi_{2}^{*} \psi_{1}\left(x_{2}\right) \approx c\left(x_{2}-x_{1}\right) \mathcal{O}\left(x_{2}\right)
$$

which gives

$$
G^{(4)}=c\left(x_{2}-x_{1}\right) c\left(y_{2}-y_{1}\right)\langle 0| \mathrm{TO}(x) \mathcal{O}(y)|0\rangle
$$

Comparing to the previous slide we see that we should take $c(x)=C_{0}(x) / C(x)$ to arrive at

$$
\langle 0| \mathrm{TO}(x) \mathcal{O}(0)|0\rangle=C(x)^{4}\left|S_{0}^{11}(x)\right|^{2}
$$

