Lattice 2014

Renormalization of the energy-momentum tensor with the Wilson flow

Agostino Patella (speaker)
CERN \& Plymouth University
Luigi Del Debbio
Edinburgh University
Antonio Rago
Plymouth University

Introduction

- Lattice breaks translational invariance, therefore the energy-momentum tensor requires to be properly defined.
- Two possible strategies that make use of the Wilson flow:
- Local Ward identities for probes defined at positive flow-time.

Del Debbio, AP, Rago, JHEP 1311 (2013) 212

- Small flowtime expansion.

Suzuki PTEP 2013 (2013) 8, 083B03
Asakawa, Hatsuda, Itou, Kitazawa, Suzuki, arXiv:1312.7492
Makino, Suzuki, arXiv:1404.2758
Kitazawa, plenary talk on Friday
Ramos, plenary talk on Friday

- Different strategies...

Robaina, Meyer, arXiv:1310.6075
Giusti, Pepe, arXiv:1403.0360
Giusti, Meyer, JHEP 1111 (2011) 087
Pepe, talk yesterday

Small flowtime expansion

$$
t \rightarrow 0: \quad \phi(t, x)=\langle\phi(t)\rangle+c(t) \phi_{R G I}(x)+O(t)
$$

Small flowtime expansion

$$
\begin{aligned}
& t \rightarrow 0: \quad \phi(t, x)=\langle\phi(t)\rangle+c(t) \phi_{R G I}(x)+O(t) \\
& \left.\downarrow \begin{array}{cc}
\downarrow & \downarrow \\
O\left(t^{-2}\right) & O\left(t^{0}\right)
\end{array} \right\rvert\, \\
& \text { dim-4 RGI op dim-6 ops }
\end{aligned}
$$

Small flowtime expansion

$$
t \rightarrow 0: \quad \phi(t, x)=\langle\phi(t)\rangle+c(t) \phi_{R G I}(x)+O(t)
$$

This relation gives a way to define the operator $\phi_{R G I}(x)$ on the lattice in terms of quantities and operators that have a finite continuum limit

$$
\phi_{R G I}(x)=\frac{\phi(t, x)-\langle\phi(t)\rangle}{c(t)}+O(t)
$$

provided that:

- the coefficient $c(t)$ is known;
- the $O(t)$ corrections are negligible.

Small flowtime expansion

$$
t \rightarrow 0: \quad \phi(t, x)=\langle\phi(t)\rangle+c(t) \phi_{R G I}(x)+O(t)
$$

This relation gives a way to define the operator $\phi_{R G I}(x)$ on the lattice in terms of quantities and operators that have a finite continuum limit

$$
\phi_{R G I}(x)=\frac{\phi(t, x)-\langle\phi(t)\rangle}{c(t)}+O(t)
$$

provided that:

- the coefficient $c(t)$ is known;
- the $O(t)$ corrections are negligible.

Small flowtime expansion

$$
t \rightarrow 0: \quad \phi(t, x)=\langle\phi(t)\rangle+c(t) \phi_{R G I}(x)+O(t)
$$

How can we calculate $c(t)$?

- Perturbative expansion Suzuki PTEP 2013 (2013) 8, 083B03
- Nonperturbative determination

How to determine $c(t)$?

$$
c(t) \phi_{R G I}(x) \quad=\phi(x, t) \quad+O(t)
$$

How to determine $c(t)$?

$$
c(t)\left\langle\phi_{R G I}(x) \phi(s, x)\right\rangle_{c, L}=\langle\phi(x, t) \phi(s, x)\rangle_{c, L}+O(t)
$$

- Calculate the connected expectation value with the insertion of a probe.

How to determine $c(t)$?

$$
c(t)\left\langle\phi_{R G I}(x) \phi(s, x)\right\rangle_{c, L}=\langle\phi(x, t) \phi(s, x)\rangle_{c, L}+O(t)
$$

- Calculate the connected expectation value with the insertion of a probe.
- Remove the dependence on the unkown $\phi_{R G I}(x)$ by taking the logarithmic derivative.

$$
\gamma_{e f f}(t ; s, L)=-2 t \frac{d}{d t} \log \langle\phi(x, t) \phi(s, x)\rangle_{c, L}=-2 t \frac{d}{d t} \log c(t)+O_{s, L}(t)
$$

How to determine $c(t)$?

$$
c(t)\left\langle\phi_{R G I}(x) \phi(s, x)\right\rangle_{c, L}=\langle\phi(x, t) \phi(s, x)\rangle_{c, L}+O(t)
$$

- Calculate the connected expectation value with the insertion of a probe.
- Remove the dependence on the unkown $\phi_{R G I}(x)$ by taking the logarithmic derivative.

$$
\gamma_{e f f}(t ; s, L)=-2 t \frac{d}{d t} \log \langle\phi(x, t) \phi(s, x)\rangle_{c, L}=-2 t \frac{d}{d t} \log c(t)+O_{s, L}(t)
$$

- Find a region of parameters (with $t \ll s, L^{2}, \Lambda^{-2}$) in which $\gamma_{\text {eff }}(t ; s, L)=\gamma(t)$ does not depend on s and L.

How to determine $c(t)$?

$$
c(t)\left\langle\phi_{R G I}(x) \phi(s, x)\right\rangle_{c, L}=\langle\phi(x, t) \phi(s, x)\rangle_{c, L}+O(t)
$$

- Calculate the connected expectation value with the insertion of a probe.
- Remove the dependence on the unkown $\phi_{R G I}(x)$ by taking the logarithmic derivative.

$$
\gamma_{e f f}(t ; s, L)=-2 t \frac{d}{d t} \log \langle\phi(x, t) \phi(s, x)\rangle_{c, L}=-2 t \frac{d}{d t} \log c(t)+O_{s, L}(t)
$$

- Find a region of parameters (with $t \ll s, L^{2}, \Lambda^{-2}$) in which $\gamma_{\text {eff }}(t ; s, L)=\gamma(t)$ does not depend on s and L.
- Integrate the following equation numerically:

$$
\left\{\begin{array}{l}
-2 t \frac{d}{d t} \log c(t)=\gamma(t) \\
t \rightarrow 0: c(t) \simeq c_{1 \operatorname{loop}}(t)
\end{array}\right.
$$

Energy-momentum tensor

- Consider the following spin-0 and spin-2 operators at positive flowtime:

$$
\begin{aligned}
E(t, x) & =\frac{1}{4} G_{\rho \sigma}^{a} G_{\rho \sigma}^{a}(t, x) \\
Y_{\mu \nu}(t, x) & =G_{\mu \sigma}^{a} G_{\nu \sigma}^{a}(t, x)-\frac{\delta_{\mu \nu}}{4} G_{\rho \sigma}^{a} G_{\rho \sigma}^{a}(t, x)
\end{aligned}
$$

Energy-momentum tensor

- Consider the following spin-0 and spin-2 operators at positive flowtime:

$$
\begin{aligned}
E(t, x) & =\frac{1}{4} G_{\rho \sigma}^{a} G_{\rho \sigma}^{a}(t, x) \\
Y_{\mu \nu}(t, x) & =G_{\mu \sigma}^{a} G_{\nu \sigma}^{a}(t, x)-\frac{\delta_{\mu \nu}}{4} G_{\rho \sigma}^{a} G_{\rho \sigma}^{a}(t, x)
\end{aligned}
$$

- Their small flowtime expansion gives rise to the spin-0 and spin-2 parts of the energy-momentum tensor:

$$
\begin{aligned}
E(t, x) & =\langle E(t)\rangle+c_{E}(t) T_{\rho \rho}(x) \\
Y_{\mu \nu}(t, x) & =\quad c_{Y}(t)\left[T_{\mu \nu}(x)-\frac{\delta_{\mu \nu}}{4} T_{\rho \rho}(x)\right]+O(t)
\end{aligned}
$$

Energy-momentum tensor

- Consider the following spin-0 and spin-2 operators at positive flowtime:

$$
Y_{\mu \nu}(t, x)=G_{\mu \sigma}^{a} G_{\nu \sigma}^{a}(t, x)-\frac{\delta_{\mu \nu}}{4} G_{\rho \sigma}^{a} G_{\rho \sigma}^{a}(t, x)
$$

- Their small flowtime expansion gives rise to the spin-0 and spin-2 parts of the energy-momentum tensor:

$$
Y_{\mu \nu}(t, x)=c_{Y}(t)\left[T_{\mu \nu}(x)-\frac{\delta_{\mu \nu}}{4} T_{\rho \rho}(x)\right]+O(t)
$$

- We construct the following effective gammas:

$$
\begin{aligned}
\gamma_{0 k}(t ; s, L) & =-2 t \frac{d}{d t} \log \sum_{k}\left\langle Y_{0 k}(t, 0) Y_{0 k}(s, 0)\right\rangle_{L} \\
\gamma_{j k}(t ; s, L) & =-2 t \frac{d}{d t} \log \sum_{j k}\left\langle\tilde{Y}_{j k}(t, 0) \tilde{Y}_{j k}(s, 0)\right\rangle_{L}
\end{aligned}
$$

where $\tilde{Y}_{j k}$ is the traceless part of $Y_{j k}$

$\gamma(t)$ for spin-2 part of EMT

Probe dependence

Open-SF boundary conditions 3000 measures @ $\mathrm{L}=24$; 4228 measures @ $\mathrm{L}=32$; 1000 measures @ $\mathrm{L}=40$ Wilson action + tree-level improvement boundary terms
Tree-level improved observable

$\gamma(t)$ for spin-2 part of EMT

Continuum limit

Open-SF boundary conditions
3000 measures @ $\mathrm{L}=24$; 4114 measures @ $\mathrm{L}=32$; 778 measures @ $\mathrm{L}=40$
Wilson action + tree-level improvement boundary terms
Tree-level improved observable

Remarks and outlook

- Renormalization-group invariant operators can be represented in terms of positive flowtime operators via the small flowtime expansion.
- We have developed a possible nonperturbative strategy to extract the Wilson coefficient of the small flowtime expansion.
- This procedure can be embedded in a modified step scaling (two-scale problem), which we will study in detail.
- Investigations with the spin-2 part of the EMT suggest that the procedure is expensive but viable.
- Even though we can hardly reach the precision obtained by Giusti and Pepe for the spin-2 part of the EMT, the presented strategy is more general.
- We will use this strategy for the trace of the EMT as well.

$\gamma(t)$ for spin-2 part of EMT
 Infinite volume extrapolation

