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Introduction

I Lattice breaks translational invariance, therefore the energy-momentum
tensor requires to be properly defined.

I Two possible strategies that make use of the Wilson flow:

I Local Ward identities for probes defined at positive flow-time.
Del Debbio, AP, Rago, JHEP 1311 (2013) 212

I Small flowtime expansion.
Suzuki PTEP 2013 (2013) 8, 083B03
Asakawa, Hatsuda, Itou, Kitazawa, Suzuki, arXiv:1312.7492
Makino, Suzuki, arXiv:1404.2758
Kitazawa, plenary talk on Friday
Ramos, plenary talk on Friday

I Different strategies...
Robaina, Meyer, arXiv:1310.6075
Giusti, Pepe, arXiv:1403.0360
Giusti, Meyer, JHEP 1111 (2011) 087

Pepe, talk yesterday



Small flowtime expansion

t → 0 : φ(t, x) = 〈φ(t)〉 + c(t) φRGI (x) + O(t)
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Small flowtime expansion

t → 0 : φ(t, x) = 〈φ(t)〉 + c(t) φRGI (x) + O(t)

This relation gives a way to define the operator φRGI (x) on the lattice in terms
of quantities and operators that have a finite continuum limit

φRGI (x) =
φ(t, x)− 〈φ(t)〉

c(t)
+ O(t)

provided that:

I the coefficient c(t) is known;

I the O(t) corrections are negligible.
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Small flowtime expansion

t → 0 : φ(t, x) = 〈φ(t)〉 + c(t) φRGI (x) + O(t)

How can we calculate c(t)?

I Perturbative expansion
Suzuki PTEP 2013 (2013) 8, 083B03

I Nonperturbative determination

low-order
region

nonperturbative region large O(t)

t



How to determine c(t)?

c(t)

〈

φRGI (x)

φ(s, x)〉c,L

=

〈

φ(x , t)

φ(s, x)〉c,L

+ O(t)

I Calculate the connected expectation value with the insertion of a probe.

I Remove the dependence on the unkown φRGI (x) by taking the logarithmic
derivative.

γeff (t; s, L) = −2t
d

dt
log〈φ(x , t)φ(s, x)〉c,L = −2t

d

dt
log c(t) + Os,L(t)

I Find a region of parameters (with t � s, L2,Λ−2) in which
γeff (t; s, L) = γ(t) does not depend on s and L.

I Integrate the following equation numerically: − 2t
d

dt
log c(t) = γ(t)

t → 0 : c(t) ' c1loop(t)
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Energy-momentum tensor

I Consider the following spin-0 and spin-2 operators at positive flowtime:

E(t, x) =
1

4
G a
ρσG

a
ρσ(t, x)

Yµν(t, x) = G a
µσG

a
νσ(t, x)− δµν

4
G a
ρσG

a
ρσ(t, x)

I Their small flowtime expansion gives rise to the spin-0 and spin-2 parts of
the energy-momentum tensor:

E(t, x) = 〈E(t)〉 + cE (t)Tρρ(x) + O(t)

Yµν(t, x) = cY (t)

[
Tµν(x)− δµν

4
Tρρ(x)

]
+ O(t)

I We construct the following effective gammas:

γ0k (t; s, L) = − 2t
d

dt
log
∑

k

〈Y0k (t, 0)Y0k (s, 0)〉L

γjk (t; s, L) = − 2t
d

dt
log
∑

jk

〈Ỹjk (t, 0)Ỹjk (s, 0)〉L

where Ỹjk is the traceless part of Yjk
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where Ỹjk is the traceless part of Yjk



Energy-momentum tensor

I Consider the following spin-0 and spin-2 operators at positive flowtime:

Yµν(t, x) = G a
µσG

a
νσ(t, x)− δµν

4
G a
ρσG

a
ρσ(t, x)

I Their small flowtime expansion gives rise to the spin-0 and spin-2 parts of
the energy-momentum tensor:

Yµν(t, x) = cY (t)

[
Tµν(x)− δµν

4
Tρρ(x)

]
+ O(t)

I We construct the following effective gammas:

γ0k (t; s, L) = − 2t
d

dt
log
∑

k

〈Y0k (t, 0)Y0k (s, 0)〉L

γjk (t; s, L) = − 2t
d

dt
log
∑

jk
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γ(t) for spin-2 part of EMT
Probe dependence
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γ(t) for spin-2 part of EMT
Continuum limit
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Remarks and outlook

I Renormalization-group invariant operators can be represented in terms of
positive flowtime operators via the small flowtime expansion.

I We have developed a possible nonperturbative strategy to extract the
Wilson coefficient of the small flowtime expansion.

I This procedure can be embedded in a modified step scaling (two-scale
problem), which we will study in detail.

I Investigations with the spin-2 part of the EMT suggest that the procedure
is expensive but viable.

I Even though we can hardly reach the precision obtained by Giusti and Pepe
for the spin-2 part of the EMT, the presented strategy is more general.

I We will use this strategy for the trace of the EMT as well.



γ(t) for spin-2 part of EMT
Infinite volume extrapolation
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