## universitätbonn

$\Delta N \gamma^{*}$ transition form factor on the lattice

Akaki Rusetsky, University of Bonn

In collaboration with:

> A. Agadjanov, V. Bernard and U.-G. Meißner arXiv:1405.3476

LATTICE 2014, New York, 27 June 2014


## Plan

- Introduction: Resonance matrix elements in the continuum
- Kinematics, projecting out the formfactors
- Lüscher-Lellouch relation for the pion photoproduction amplitude
- Analytic continuation to the resonance pole
- Conclusions, outlook


## Resonance matrix elements in the continuum



In the vicinity of the resonance pole...

$$
\begin{gathered}
\Rightarrow \quad i \int d^{4} x e^{i P x}\langle 0| T \Delta(x) \bar{\Delta}(0)|0\rangle \rightarrow \frac{Z_{R}}{s_{R}-P^{2}}+\cdots \\
\Rightarrow \quad i^{2} \int d^{4} x d^{4} y e^{i P x-i Q y}\langle 0| T \Delta(x) J(0) \bar{N}(y)|0\rangle \\
\rightarrow \frac{Z_{R}^{1 / 2}}{s_{R}-P^{2}}\langle\Delta| J(0)|N\rangle \frac{Z_{N}^{1 / 2}}{m_{N}^{2}-Q^{2}}+\cdots
\end{gathered}
$$

## Photoproduction amplitude



In the narrow width approximation...

$$
\left.\left|\operatorname{Im} \mathcal{A}\left(\gamma^{*} N \rightarrow \pi N\right)\right|=\sqrt{\frac{8 \pi}{p_{A} \Gamma}}|\langle\Delta| J(0)| N\right\rangle \mid, \quad \delta\left(p_{A}\right)=90^{\circ}
$$

- The form factor defined on the real axis is process dependent due to the background contribution
- Analytic continuation to the resonance pole is needed!
I.G. Aznaurian et al., arXiv:0810.0997; D. Drechsel et al., NPA 645 (1999) 145;
R.L. Workman et al., PRC 87 (2013) 068201


## Measuring the form factor on the lattice: problems

Assuming $\Delta$ to be a stable particle. ..
C. Alexandrou et al., PRD 79 (2009) 14507; arXiv:1108.4112; PRD 83 (2011) 014501

How the formalism is generalized in case of an unstable $\Delta$ ?

- Which quantities should be measured on the lattice?
- How does one perform the infinite-volume limit in the form factors?
- How does one calculate the photoproduction amplitude?
- How does one perform the analytic continuation to the resonance pole?
- How does one project out different form factors in case of the unstable $\Delta$ ?
$\hookrightarrow$ Use EFT approach in a finite volume


## Kinematics

$$
\Delta(t)=\sum_{\mathbf{x}} \Delta(t, \mathbf{x}) \quad(\mathrm{CM} \text { frame }), \quad N(t)=\sum_{\mathbf{x}} e^{-i \mathbf{Q} \mathbf{x}} N(t, \mathbf{x})
$$

Measuring three-point functions:

$$
R\left(t^{\prime}, t\right)=\langle 0| \Delta\left(t^{\prime}\right) J(0) \bar{N}(0)|0\rangle, \quad S_{\Delta}(t), S_{N}(t): \quad \text { propagators }
$$

$$
F=\lim _{t^{\prime} \rightarrow \infty, t \rightarrow-\infty} \mathcal{N} \frac{R\left(t^{\prime}, t\right)}{S_{\Delta}\left(t^{\prime}-t\right)}\left(\frac{S_{N}\left(t^{\prime}\right) S_{\Delta}(-t) S_{\Delta}\left(t^{\prime}-t\right)}{S_{\Delta}\left(t^{\prime}\right) S_{N}(-t) S_{N}\left(t^{\prime}-t\right)}\right)^{1 / 2}
$$

Scanning the energy of $\Delta$ while keeping Q fixed:

- Choose Q along the third axis, use asymmetric boxes $L \times L \times L^{\prime}$
- ... or, use (partial) twisting in the nucleon



## Projecting out the form factors

$$
\begin{aligned}
G_{2}: \Delta_{3 / 2} & =\frac{1}{2}\left(1+\Sigma_{3}\right) \frac{1}{2}\left(1+\gamma_{4}\right) \frac{1}{\sqrt{2}}\left(\Delta^{1}-i \Sigma_{3} \Delta^{2}\right) \\
G_{1}: \Delta_{1 / 2} & =\frac{1}{2}\left(1-\Sigma_{3}\right) \frac{1}{2}\left(1+\gamma_{4}\right) \frac{1}{\sqrt{2}}\left(\Delta^{1}+i \Sigma_{3} \Delta^{2}\right) \\
G_{1}: \tilde{\Delta}_{1 / 2} & =\frac{1}{2}\left(1+\Sigma_{3}\right) \frac{1}{2}\left(1+\gamma_{4}\right) \Delta^{3} \\
N_{ \pm 1 / 2} & =\frac{1}{2}\left(1 \pm \Sigma_{3}\right) \frac{1}{2}\left(1+\gamma_{4}\right) N \\
J^{ \pm} & =\frac{1}{2}\left(J^{1} \pm i J^{2}\right) \\
\langle\tilde{\Delta}(1 / 2)| J^{3}(0)|N(1 / 2)\rangle & \rightarrow A \frac{E_{R}-Q^{0}}{E_{R}} G_{C}(t) \\
\langle\Delta(1 / 2)| J^{+}(0)|N(-1 / 2)\rangle & \rightarrow A \frac{1}{\sqrt{2}}\left(G_{M}(t)-3 G_{E}(t)\right) \\
\langle\Delta(3 / 2)| J^{+}(0)|N(1 / 2)\rangle & \rightarrow A \sqrt{\frac{3}{2}}\left(G_{M}(t)+G_{E}(t)\right)
\end{aligned}
$$

## EFT: from a finite to the infinite volume

Strong Lagrangian:

$$
\begin{aligned}
\mathcal{L}_{N R} & =N^{\dagger} 2 w_{N}\left(i \partial_{0}-w_{N}\right) N+\pi^{\dagger} 2 w_{\pi}\left(i \partial_{0}-w_{\pi}\right) \pi \\
& +C_{0} N^{\dagger} N \pi^{\dagger} \pi+X_{i}\left(\mathcal{O}_{i}^{\dagger} N \pi+\text { h.c. }\right)+\text { terms with derivatives } \\
w_{N} & =\sqrt{m_{N}^{2}-\triangle}, \quad w_{\pi}=\sqrt{M_{\pi}^{2}-\triangle}
\end{aligned}
$$

- LECs $C_{0}, \ldots$ are of unnatural size due to the presence of the $\Delta$
- Electromagnetic interactions: $\partial_{\mu} \rightarrow \partial_{\mu}-i e A_{\mu}$
$\hookrightarrow$ Calculate matrix element in EFT in a finite and in the infinite volume
$\hookrightarrow$ Establish the relation between these two quantities


## Two-point function

$$
\begin{aligned}
& \mathcal{O}_{i} X_{i} \\
&\langle 0| \mathcal{O}_{i}\left(x_{0}\right) \overline{\mathcal{O}}_{i}\left(y_{0}\right)|0\rangle=\sum_{n} \frac{e^{-E_{n}\left(x_{0}-y_{0}\right)}}{4 w_{1 n} w_{2 n}}\langle 0| \mathcal{O}_{i}(0)|n\rangle\langle n| \overline{\mathcal{O}}_{i}(0)|0\rangle \\
&\langle 0| \mathcal{O}_{i}\left(x_{0}\right) \overline{\mathcal{O}}_{i}\left(y_{0}\right)|0\rangle=\text { sum of bubble diagrams }
\end{aligned}
$$

Using Lüscher equation:
bubble $=\frac{1}{V} \sum_{\mathbf{k}} \frac{1}{4 w_{1}(\mathbf{k}) w_{2}(\mathbf{k})} \frac{1}{w_{1}(\mathbf{k})+w_{2}(\mathbf{k})-E_{n}}=\frac{p_{n} \cot \delta\left(p_{n}\right)}{8 \pi E_{n}}$
$\left.\hookrightarrow\left|\langle 0| \mathcal{O}_{i}(0)\right| n\right\rangle \left\lvert\,=\underbrace{U_{i}}_{\text {free spinor }} X_{i} V^{1 / 2}\left(\frac{\cos ^{2} \delta\left(p_{n}\right)}{\left|\delta^{\prime}\left(p_{n}\right)+L / 2 \pi \phi^{\prime}\left(q_{n}\right)\right|} \frac{p_{n}^{2}}{2 \pi}\right)^{1 / 2}\right.$

## Three-point function

$$
\begin{gathered}
\mathcal{O}_{i} \longrightarrow F_{i} \mathcal{O}_{i} X_{x_{i}} \mathcal{Q}, \mathcal{F _ { i }} \sim \\
\left|F_{i}\left(p_{n},|\mathbf{Q}|\right)\right|=V^{-1 / 2}\left(\frac{\cos ^{2} \delta\left(p_{n}\right)}{\left|\delta^{\prime}\left(p_{n}\right)+L / 2 \pi \phi^{\prime}\left(q_{n}\right)\right|} \frac{p_{n}^{2}}{2 \pi}\right)^{1 / 2}\left|\bar{F}_{i}\left(p_{n},|\mathbf{Q}|\right)\right|
\end{gathered}
$$

- The irreducible amplitude $\bar{F}_{i}\left(p_{n},|\mathbf{Q}|\right)$ contains only exponentially suppressed contributions in a finite volume


The nucleon is stable!

## Extraction of the photoproduction amplitude

Watson's theorem, infinite volume:

$$
\mathcal{A}_{i}(p,|\mathbf{Q}|)=e^{i \delta(p)} \cos \delta(p) \bar{F}_{i}(p,|\mathbf{Q}|)
$$

$\hookrightarrow$ Lüscher-Lellouch formula for the photoproduction amplitude:
$\mathcal{A}_{i}\left(p_{n},|\mathbf{Q}|\right)=e^{i \delta\left(p_{n}\right)} V^{1 / 2}\left(\frac{1}{\left|\delta^{\prime}\left(p_{n}\right)+L / 2 \pi \phi^{\prime}\left(q_{n}\right)\right|} \frac{p_{n}^{2}}{2 \pi}\right)^{-1 / 2}\left|F_{i}\left(p_{n},|\mathbf{Q}|\right)\right|$
Form factor, extracted from the photoproduction amplitude:

$$
\left|\operatorname{lm} \mathcal{A}_{i}\left(p_{A},|\mathbf{Q}|\right)\right|=\sqrt{\frac{8 \pi}{p_{A} \Gamma}}\left|F_{i}^{A}\left(p_{A},|\mathbf{Q}|\right)\right|, \quad \delta\left(p_{A}\right)=90^{\circ}
$$

## Continuation to the resonance pole

Effective-range expansion:

$$
h(p) \doteq p^{3} \cot \delta(p)=-\frac{1}{a}+\frac{1}{2} r p^{2}+\cdots
$$

$\hookrightarrow$ Position of the pole on the second Riemann sheet

$$
-\frac{1}{a}+\frac{1}{2} r p_{R}^{2}+\cdots=-i p_{R}^{3}
$$

Form factor, extracted at the pole:

$$
\begin{gathered}
F_{i}^{R}\left(p_{R},|\mathbf{Q}|\right)=Z_{R}^{1 / 2} \bar{F}_{i}\left(p_{R},|\mathbf{Q}|\right) \\
Z_{R}=\left(\frac{p_{R}}{8 \pi E_{R}}\right)^{2}\left(\frac{16 \pi p_{R}^{3} E_{R}^{3}}{w_{1 R} w_{2 R}\left(2 p_{R} h^{\prime}\left(p_{R}^{2}\right)+3 i p_{R}^{3}\right)}\right)
\end{gathered}
$$

## Analytic continuation to the pole

- Extract irreducible amplitude $\bar{F}_{i}(p,|\mathbf{Q}|)$ from the measured amplitude $F_{i}(p,|\mathbf{Q}|)$, mutliplying by Lüscher-Lellouch factor
- The effective-range expansion reads:

$$
p^{3} \cot \delta(p)\left|\bar{F}_{i}(p,|\mathbf{Q}|)\right|=A_{i}(|\mathbf{Q}|)+p^{2} B_{i}(|\mathbf{Q}|)+\cdots
$$

Fit the real coefficients $A_{i}(|\mathbf{Q}|), B_{i}(|\mathbf{Q}|), \ldots$ from the data

- Find the form factor at the pole by substituting $p \rightarrow p_{R}$ in the effective range expansion

$$
F_{i}^{R}\left(p_{R},|\mathbf{Q}|\right)=i p_{R}^{-3} Z_{R}^{1 / 2}\left(A_{i}(|\mathbf{Q}|)+p_{R}^{2} B_{i}(|\mathbf{Q}|)+\cdots\right)
$$

$F_{i}^{R}\left(p_{R},|\mathbf{Q}|\right)$ and $F_{i}^{A}\left(p_{A},|\mathbf{Q}|\right)$ coinside in narrow width approximation!

## Summary: prescription for the extraction of the form factor

Measure matrix elements $F_{i}(p,|\mathbf{Q}|)$ on the lattice: varying $p$, fixed $\mathbf{Q}$ Photoproduction multipoles are given by Lüscher-Lellouch formula:
$\mathcal{A}_{i}\left(p_{n},|\mathbf{Q}|\right)=e^{i \delta\left(p_{n}\right)} V^{1 / 2}\left(\frac{1}{\left|\delta^{\prime}\left(p_{n}\right)+L / 2 \pi \phi^{\prime}\left(q_{n}\right)\right|} \frac{p_{n}^{2}}{2 \pi}\right)^{-1 / 2}\left|F_{i}\left(p_{n},|\mathbf{Q}|\right)\right|$
Form factor, extracted at real energies:

$$
\left|\operatorname{lm} \mathcal{A}_{i}\left(p_{A},|\mathbf{Q}|\right)\right|=\sqrt{\frac{8 \pi}{p_{A} \Gamma}}\left|F_{i}^{A}\left(p_{A},|\mathbf{Q}|\right)\right|, \quad \delta\left(p_{A}\right)=90^{\circ}
$$

Analytic continuation through the fit to the effective-range formula:
The quantity $p^{3} \cot \delta(p)\left|\bar{F}_{i}(p,|\mathbf{Q}|)\right|$ is a low-energy polynomial in $p^{2}$. Fit the coefficients of this polynomial for real $p^{2}$ from the data, then continue to the pole by substituting $p \rightarrow p_{R}$

## Conclusions, outlook

- Using effective field theory in a finite volume, we define the procedure of extraction of the $\Delta N \gamma^{*}$ form factor on the lattice in case of unstable $\Delta$
- Analog of the Lüscher-Lellouch formula for the photoproduction amplitude is derived $\Rightarrow$ form factor at $\delta\left(p_{A}\right)=90^{\circ}$
Related work: R. Briceno, M. Hansen and A. Walker-loud, arXiv:1406.5965
- The value of the form factor at the resonance pole is determined by using analytic continuation trough the fit to the effective range expansion.
- For the infinitely narrow resonance, both definitions of the form factor coinside

