Dark matter baryon candidates in the sextet gauge model

Zoltan Fodor, Kieran Holland, Julius Kuti, <u>Santanu Mondal</u>, Daniel Nogradi, Chik Him Wong

Lattice Higgs Collaboration (L_{at}HC)

Lattice 2014

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Composite Higgs Model

- Strongly coupled gauge theory.
- Electroweak symmetry breaking is realized by spontaneous chiral symmetry breaking; and three Goldstone bosons are eaten up to give three massive gauge bosons (W[±], Z⁰).
- Higgs is a composite particle of vacuum quantum numbers 0^{++}

Possible dark matter candidates

Electroweak singlet Goldstone boson \rightarrow Possible for the models with more than three PNGBs.

Weak singlet \Rightarrow can be light.

 $N_f = 2$ pseudo-real SU(2) gauge model:

Flavour symmetry group is $SU(2N_f)$

Most attractive channel breaks SU(4) \longrightarrow Sp(4) \Rightarrow 5 Goldstone bosons.

One of these can be a DM candidate (Lewis, Pica, Sannino in PRD 85, 014504 (2012)).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Dark Baryon

Stable, electrically neutral, neutron like state, but has weak hypercharge.

 \Rightarrow Needed to be heavy enough from experimental constraint (\sim 2 TeV, E. Nardi, F. Sannino and A. Strumia, JCAP **0901**, 043 (2009)).

$N_{\rm f}=2$ SU(3) gauge theory with fermions in sextet representation:

Symmetry breaking: $SU(2) \times SU(2) \longrightarrow SU(2)$: 3 PNGBs \rightarrow three massive electroweak gauge bosons.

Why $N_f = 2$, SU(3) Sextet Gauge model?

Minimal realization of composite Higgs mechanism.

- Walking behaviour (Julius Kuti's talk, Monday@16:30).
- Exactly three Goldstone modes \longrightarrow eaten up to give the three massive gauge bosons.

 Expectedly low S parameter (Crude estimate from resonance spectrum shows it is not QCD like, T. Appelquist and F. Sannino, Phys. Rev. D 59, 067702 (1999) [hep-ph/9806409]).

Can give a light composite scalar state with Higgs quantum numbers (0^{++}) (Ricky Wong's talk, Monday@16:50).

Constructing nucleon operator in continuum

Color singlet:

$$6 \times 6 \times 6 = 1 + 2 \times 8 + 10 + \overline{10} + 3 \times 27 + 28 + 2 \times 35 \tag{1}$$

 \rightarrow Only one singlet possible.

$$T_{ABC} \psi_A \psi_B \psi_C \equiv T'_{aa'bb'cc'} \psi_{aa'} \psi_{bb'} \psi_{cc'} = \varepsilon_{abc} \varepsilon_{a'b'c'} \psi_{aa'} \psi_{bb'} \psi_{cc'}$$
(2)

 $\rightarrow \mathsf{Singlet}$

 $\rightarrow T_{ABC}$ symmetric.

Correct $J^{PC} \Rightarrow$ nucleon operator antisymmetric under exchange of spin indices.

 $\Rightarrow \text{ Symmetric in flavour (Spin Statistics Theorem).}$

Flavour SU(2) irrep:

$$2 \times 2 \times 2 = 1_A + 2 \times 2_M + 4_s \tag{3}$$

Thus sextet nucleon belongs to 2_M irrep.

An example: Tritium isotope H^3 with pnn or the Helium isotope He^3 with ppn as baryon ground states.

Color singlet contituents \Rightarrow spin-flavour structure will be similar as of sextet nucleon.

This comes from a Slater determinant combining mixed representations of permutations.

sextet baryon in quark language

In quark language our two fermions have SU(2) flavor symmetry and eight states can be formed:

uuu, uud, udu, udd, duu, dud, ddu, ddd

They are groupped into an isospin quadruplet and two isospin doublets.

The quadruplet belongs to the symmetric rep.

$$\begin{vmatrix} \frac{3}{2}, \frac{3}{2} \\ \frac{3}{2}, \frac{3}{2} \end{vmatrix} = uuu$$
$$\begin{vmatrix} \frac{3}{2}, \frac{1}{2} \\ \frac{3}{2}, -\frac{1}{2} \\ \frac{3}{2}, -\frac{1}{2} \\ \frac{3}{2}, -\frac{3}{2} \\ \frac{3}{2}, -\frac{3}{2} \\ \frac{3}{2}, -\frac{3}{2} \\ \frac{3}{2}, -\frac{3}{2} \\ \end{vmatrix} = ddd$$

We also have two doublets which have mixed symmetries:

$$\left|\frac{1}{2}, \frac{1}{2}\right\rangle = -(2ddu - udd - dud)/sqrt6$$
$$\left|\frac{1}{2}, -\frac{1}{2}\right\rangle = (2uud - udu - duu)/sqrt6$$

where the mixed symmetry means symmetry under $1 \rightarrow 2$ and $2 \rightarrow 1$ and no definite symmetry under $1 \rightarrow 3$. The other doublet:

$$\left|\frac{1}{2}, \frac{1}{2}\right\rangle = (udd - dud)/sqrt2$$
$$\left|\frac{1}{2}, -\frac{1}{2}\right\rangle = (udu - duu)/sqrt2$$

anti-symmetric under $1\rightarrow 2$ and no symmetry under $1\rightarrow 3$. From the combination of the two mixed reps it is possible to construct an anty-symmetric spin-flavor wave function. Nucleon operator in lattice with staggered fermion

$$B^{\alpha i}(x) = T_{ABC} \ u^{\alpha i}_A(x) \ [u^{\beta j}_B(x) \ (C\gamma_5)_{\beta\gamma} \ (C^*\gamma_5^*)_{ij} \ d^{\gamma j}_C(x)]$$

Looking for a operator as local as possible. Staggered fields:

$$u^{\alpha i} = \frac{1}{8} \sum_{\eta} \Gamma_{\eta}^{\alpha i} \chi_{u}(\eta)$$

where $\eta \equiv (\eta_{1}, \eta_{2}, \eta_{3}, \eta_{4}), \ \Gamma(\eta) = \gamma_{1}^{\eta 1} \gamma_{2}^{\eta 2} \gamma_{3}^{\eta 3} \gamma_{4}^{\eta 4}.$
Diquark $\equiv [\dots] = -\frac{1}{8^{2}} \sum_{\eta \eta'} Tr(C\gamma_{5}\Gamma_{\eta}^{\prime}C\gamma_{5}\Gamma_{\eta}^{T})\chi_{u}^{B}(\eta')\chi_{d}^{C}(\eta)$
 $= -\frac{1}{8^{2}} \sum_{\eta \eta'} \delta_{\eta \eta'} S(\eta)\chi_{u}^{B}(\eta')\chi_{d}^{C}(\eta)$
 $= -\frac{1}{8^{2}} \sum_{\eta} S(\eta)\chi_{u}^{B}(\eta)\chi_{d}^{C}(\eta), \quad S(\eta) \text{ is a sign factor}$

Diquark populates 16 corner of the hypercube.

Writing the third quark in staggered basis:

$$B^{\alpha i}(x) = -T_{ABC} \frac{1}{8^3} \sum_{\eta'} \Gamma^{\alpha i}_{\eta'} \chi^A_u(\eta') \sum_{\eta} S(\eta) \chi^B_u(\eta) \chi^C_d(\eta)$$

To make the operator confined in a single time-slice an extra term has to be added to or subtracted from the diquark part.

 \rightarrow Similar to the construction of single time-slice staggered meson operator.

 \rightarrow corresponds to the parity partner.

$$B^{\alpha i}(x) = -T_{ABC} \frac{1}{8^3} \sum_{\eta'} \Gamma^{\alpha i}_{\eta'} \chi^A_u(\eta') \sum_{\eta} S(\eta) \chi^B_u(\eta) \chi^C_d(\eta)$$
$$\eta \equiv (\eta_1, \eta_2, \eta_3), \ \eta' \equiv (\eta'_1, \eta'_2 \eta'_3)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Hence $B^{\alpha i}(x)$ is sum of 64 terms with proper sign.

Local terms vanish individually when contracted with T_{ABC} in color-space \rightarrow Different from normal QCD where the color contraction tensor is ε_{abc} , antisymmetric.

The next simple type of terms is diquark sitting one of the 8 corners and the third quark in any other corner.

We use operators of this type for our pilot calculation.

Operators used

Table: Operator set a

Label	Operators	
<i>IV</i> _{xy}	$\chi_u(1,1,0,0) \ \chi_u(0,0,0,0) \ \chi_d(0,0,0,0)$	
<i>IV</i> _{yz}	$\chi_u(0,1,1,0) \ \chi_u(0,0,0,0) \ \chi_d(0,0,0,0)$	
<i>IV</i> _{zx}	$\chi_u(1,0,1,0) \ \chi_u(0,0,0,0) \ \chi_d(0,0,0,0)$	
VIII	$\chi_u(1,1,1,0) \ \chi_u(0,0,0,0) \ \chi_d(0,0,0,0)$	
	(日)(四)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)	

э

Table: Operator set b

Label	Operators
<i>IV</i> _{xy}	$\chi_u(0,0,0,0) \ \chi_u(1,1,0,0) \ \chi_d(1,1,0,0)$
<i>IV</i> _{yz}	$\chi_u(0,0,0,0) \ \chi_u(0,1,1,0) \ \chi_d(0,1,1,0)$
<i>IV</i> _{zx}	$\chi_u(0,0,0,0) \ \chi_u(1,0,1,0) \ \chi_d(1,0,1,0)$
VIII	$\chi_u(0,0,0,0) \ \chi_u(1,1,1,0) \ \chi_d(1,1,1,0)$

Small ensemble test with different operators

Figure: Comparing nucleon mass obtained by different operators.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Chiral extrapolation

Figure: Chiral extrapolation

Hadron-Spectrum so far

Figure: Hadron masses versus quark mass

æ

Hadron-Spectrum

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Conclusion and outlook

- The value of nucleon mass in sextet gauge model, from our preliminary calculation is 0.33(2) in lattice unit, which is 3193±167 GeV when converted to physical unit.
- We also have ensembles on $40^3 \times 80$ and $48^3 \times 96$, and also at a finer lattice spacing 3.25, thus more systematic studies can be done.

• Construction of operators with no mixing in taste space is needed for more precise calculation.