Dark matter baryon candidates in the sextet gauge model

Zoltan Fodor, Kieran Holland, Julius Kuti, Santanu Mondal, Daniel Nogradi, Chik Him Wong

Lattice Higgs Collaboration ($\mathrm{L}_{\mathrm{at}} \mathrm{HC}$)

Lattice 2014

Composite Higgs Model

- Strongly coupled gauge theory.
- Electroweak symmetry breaking is realized by spontaneous chiral symmetry breaking; and three Goldstone bosons are eaten up to give three massive gauge bosons $\left(W^{ \pm}, Z^{0}\right)$.
- Higgs is a composite particle of vacuum quantum numbers 0^{++}

Possible dark matter candidates

Electroweak singlet Goldstone boson \rightarrow Possible for the models with more than three PNGBs.

Weak singlet \Rightarrow can be light.
$\mathbf{N}_{f}=2$ pseudo-real $\mathbf{S U (2)}$ gauge model:
Flavour symmetry group is $\operatorname{SU}\left(2 N_{f}\right)$
Most attractive channel breaks $\mathrm{SU}(4) \longrightarrow \mathrm{Sp}(4) \Rightarrow 5$ Goldstone bosons.
One of these can be a DM candidate (Lewis,Pica,Sannino in PRD 85, 014504 (2012)).

Dark Baryon

Stable, electrically neutral, neutron like state, but has weak hypercharge.
\Rightarrow Needed to be heavy enough from experimental constraint (~ 2
TeV, E. Nardi, F. Sannino and A. Strumia, JCAP 0901, 043 (2009)).
$\mathrm{N}_{\mathrm{f}}=2 \mathbf{S U}(3)$ gauge theory with fermions in sextet representation:

Symmetry breaking: $\mathrm{SU}(2) \times \mathrm{SU}(2) \longrightarrow \mathrm{SU}(2): 3$ PNGBs \rightarrow three massive electroweak gauge bosons.

Why $\mathrm{N}_{\mathrm{f}}=2$, $\mathrm{SU}(3)$ Sextet Gauge model?

Minimal realization of composite Higgs mechanism.

- Walking behaviour (Julius Kuti's talk, Monday@16:30).
- Exactly three Goldstone modes \longrightarrow eaten up to give the three massive gauge bosons.
- Expectedly low S parameter (Crude estimate from resonance spectrum shows it is not QCD like, T. Appelquist and F. Sannino, Phys. Rev. D 59, 067702 (1999) [hep-ph/9806409]).

Can give a light composite scalar state with Higgs quantum numbers (0^{++}) (Ricky Wong's talk, Monday@16:50).

Constructing nucleon operator in continuum

Color singlet:

$$
\begin{equation*}
6 \times 6 \times 6=1+2 \times 8+10+\overline{10}+3 \times 27+28+2 \times 35 \tag{1}
\end{equation*}
$$

\rightarrow Only one singlet possible.

$$
\begin{align*}
T_{A B C} \psi_{A} \psi_{B} \psi_{C} & \equiv T_{a a^{\prime} b b^{\prime} c c^{\prime}}^{\prime} \psi_{a a^{\prime}} \psi_{b b^{\prime}} \psi_{c c^{\prime}} \\
& =\varepsilon_{a b c} \varepsilon_{a^{\prime} b^{\prime} c^{\prime}} \psi_{a a^{\prime}} \psi_{b b^{\prime}} \psi_{c c^{\prime}} \tag{2}
\end{align*}
$$

\rightarrow Singlet
$\rightarrow T_{A B C}$ symmetric.

Correct $J^{P C} \Rightarrow$ nucleon operator antisymmetric under exchange of spin indices.
\Rightarrow Symmetric in flavour (Spin Statistics Theorem).

Flavour SU(2) irrep:

$$
\begin{equation*}
2 \times 2 \times 2=1_{A}+2 \times 2_{M}+4_{S} \tag{3}
\end{equation*}
$$

Thus sextet nucleon belongs to 2_{M} irrep.
An example: Tritium isotope H^{3} with pnn or the Helium isotope He^{3} with ppn as baryon ground states.

Color singlet contituents \Rightarrow spin-flavour structure will be similar as of sextet nucleon.

This comes from a Slater determinant combining mixed representations of permutations.

sextet baryon in quark language

In quark language our two fermions have $\mathrm{SU}(2)$ flavor symmetry and eight states can be formed:
uuu, uud, udu, udd, duu, dud, ddu, ddd
They are groupped into an isospin quadruplet and two isospin doublets.
The quadruplet belongs to the symmetric rep.

$$
\begin{aligned}
& \left|\frac{3}{2}, \frac{3}{2}\right\rangle=u u u \\
& \left|\frac{3}{2}, \frac{1}{2}\right\rangle=(u u d+u d u+d u u) / \sqrt{3} \\
& \left|\frac{3}{2},-\frac{1}{2}\right\rangle=(d d u+d u d+u d d) / \sqrt{3} \\
& \left|\frac{3}{2},-\frac{3}{2}\right\rangle=d d d
\end{aligned}
$$

We also have two doublets which have mixed symmetries:

$$
\begin{aligned}
& \left|\frac{1}{2}, \frac{1}{2}\right\rangle=-(2 d d u-u d d-d u d) / s q r t 6 \\
& \left|\frac{1}{2},-\frac{1}{2}\right\rangle=(2 u u d-u d u-d u u) / s q r t 6
\end{aligned}
$$

where the mixed symmetry means symmetry under $1 \rightarrow 2$ and $2 \rightarrow 1$ and no definite symmetry under $1 \rightarrow 3$. The other doublet:

$$
\begin{aligned}
& \left|\frac{1}{2}, \frac{1}{2}\right\rangle=(u d d-d u d) / s q r t 2 \\
& \left|\frac{1}{2},-\frac{1}{2}\right\rangle=(u d u-d u u) / s q r t 2
\end{aligned}
$$

anti-symmetric under $1 \rightarrow 2$ and no symmetry under $1 \rightarrow 3$. From the combination of the two mixed reps it is possible to construct an anty-symmetric spin-flavor wave function.

Nucleon operator in lattice with staggered fermion

$$
B^{\alpha i}(x)=T_{A B C} u_{A}^{\alpha i}(x)\left[u_{B}^{\beta j}(x)\left(C \gamma_{5}\right)_{\beta \gamma}\left(C^{*} \gamma_{5}^{*}\right)_{i j} d_{C}^{\gamma j}(x)\right]
$$

Looking for a operator as local as possible.
Staggered fields:

$$
u^{\alpha i}=\frac{1}{8} \sum_{\eta} \Gamma_{\eta}^{\alpha i} \chi_{u}(\eta)
$$

where $\eta \equiv\left(\eta_{1}, \eta_{2}, \eta_{3}, \eta_{4}\right), \Gamma(\eta)=\gamma_{1}^{\eta 1} \gamma_{2}^{\eta 2} \gamma_{3}^{\eta 3} \gamma_{4}^{\eta 4}$.

$$
\begin{aligned}
\text { Diquark } \equiv[\ldots] & =-\frac{1}{8^{2}} \sum_{\eta \eta^{\prime}} \operatorname{Tr}\left(C \gamma_{5} \Gamma_{\eta}^{\prime} C \gamma_{5} \Gamma_{\eta}^{T}\right) \chi_{u}^{B}\left(\eta^{\prime}\right) \chi_{d}^{C}(\eta) \\
& =-\frac{1}{8^{2}} \sum_{\eta \eta^{\prime}} \delta_{\eta \eta^{\prime}} S(\eta) \chi_{u}^{B}\left(\eta^{\prime}\right) \chi_{d}^{C}(\eta) \\
& =-\frac{1}{8^{2}} \sum_{\eta} S(\eta) \chi_{u}^{B}(\eta) \chi_{d}^{C}(\eta), \quad S(\eta) \text { is a sign factor }
\end{aligned}
$$

Diquark populates 16 corner of the hypercube.
Writing the third quark in staggered basis:

$$
B^{\alpha i}(x)=-T_{A B C} \frac{1}{8^{3}} \sum_{\eta^{\prime}} \Gamma_{\eta^{\prime}}^{\alpha i} \chi_{u}^{A}\left(\eta^{\prime}\right) \sum_{\eta} S(\eta) \chi_{u}^{B}(\eta) \chi_{d}^{C}(\eta)
$$

To make the operator confined in a single time-slice an extra term has to be added to or subtracted from the diquark part.
\rightarrow Similar to the construction of single time-slice staggered meson operator.
\rightarrow corresponds to the parity partner.

$$
\begin{aligned}
B^{\alpha i}(x) & =-T_{A B C} \frac{1}{8^{3}} \sum_{\eta^{\prime}} \Gamma_{\eta^{\prime}}^{\alpha i} \chi_{u}^{A}\left(\eta^{\prime}\right) \sum_{\eta} S(\eta) \chi_{u}^{B}(\eta) \chi_{d}^{C}(\eta) \\
\eta & \equiv\left(\eta_{1}, \eta_{2}, \eta_{3}\right), \eta^{\prime} \equiv\left(\eta_{1}^{\prime}, \eta_{2}^{\prime} \eta_{3}^{\prime}\right)
\end{aligned}
$$

Hence $B^{\alpha i}(x)$ is sum of 64 terms with proper sign.

Local terms vanish individually when contracted with $T_{A B C}$ in color-space \rightarrow Different from normal QCD where the color contraction tensor is $\varepsilon_{a b c}$, antisymmetric.

The next simple type of terms is diquark sitting one of the 8 corners and the third quark in any other corner.

We use operators of this type for our pilot calculation.

Operators used

Table: Operator set a

Label	Operators
$I V_{\mathrm{xy}}$	$\chi_{u}(1,1,0,0) \chi_{u}(0,0,0,0) \chi_{d}(0,0,0,0)$
$I V_{\mathrm{yz}}$	$\chi_{u}(0,1,1,0) \chi_{u}(0,0,0,0) \chi_{d}(0,0,0,0)$
$I V_{\mathrm{zX}}$	$\chi_{u}(1,0,1,0) \chi_{u}(0,0,0,0) \chi_{d}(0,0,0,0)$
$V I I I$	$\chi_{u}(1,1,1,0) \chi_{u}(0,0,0,0) \chi_{d}(0,0,0,0)$

Table: Operator set b

Label	Operators
$I V_{\mathrm{xy}}$	$\chi_{u}(0,0,0,0) \chi_{u}(1,1,0,0) \chi_{d}(1,1,0,0)$
$I V_{\mathrm{yz}}$	$\chi_{u}(0,0,0,0) \chi_{u}(0,1,1,0) \chi_{d}(0,1,1,0)$
$I V_{\mathrm{zX}}$	$\chi_{u}(0,0,0,0) \chi_{u}(1,0,1,0) \chi_{d}(1,0,1,0)$
$V I I I$	$\chi_{u}(0,0,0,0) \chi_{u}(1,1,1,0) \chi_{d}(1,1,1,0)$

Small ensemble test with different operators

Figure: Comparing nucleon mass obtained by different operators.

Chiral extrapolation

Figure: Chiral extrapolation

Hadron-Spectrum so far

Figure: Hadron masses versus quark mass

Hadron-Spectrum

Conclusion and outlook

- The value of nucleon mass in sextet gauge model, from our preliminary calculation is 0.33(2) in lattice unit, which is $3193 \pm 167 \mathrm{GeV}$ when converted to physical unit.
- We also have ensembles on $40^{3} \times 80$ and $48^{3} \times 96$, and also at a finer lattice spacing 3.25 , thus more systematic studies can be done.
- Construction of operators with no mixing in taste space is needed for more precise calculation.

