Improved currents for $B \rightarrow D^{(*)}lv$ form factors from Oktay-Kronfeld heavy quarks

Jon A. Bailey SWME Collaboration Yong-Chull Jang, Weonjong Lee, Jaehoon Leem

June 27, 2014

$\left| V_{cb} \right|$ and quark flavor physics

- $|V_{cb}|$ normalizes Unitarity Triangle ~ flavor physics
- Uncertainty in SM BR $(K \to \pi \nu \overline{\nu})$, BR $(B_s^0 \to \mu^+ \mu^-)$ dominated by error in $|V_{cb}|$
- Uncertainty in SM ϵ_{K} dominated by error in $|V_{cb}|$
- > 3σ difference between SM and experimental $|\epsilon_K| \sim |V_{cb}|^4$ [W. Lee *et al.*, Lattice 2014]
 - Exclusive $|V_{cb}|$, from $B \rightarrow D^* lv$ at zero recoil
 - New exclusive $|V_{cb}|$ increases difference [FNAL/MILC, arXiv:1403.0635]
- Correlated with 3.0σ difference btwn exclusive and inclusive $|V_{cb}|$
 - Difference vanishes with inclusive $|V_{cb}|$

Lattice calculations

- FNAL/MILC update supersedes previous ~ first determinations of $|V_{cb}|$ from exclusive decays including vacuum polarization effects of *u*, *d*, *s* quarks
- Next generation intensity-frontier experiments, experimental errors below $\sim 1\%$
- Lattice calculations with different discretizations of heavy quarks ~ cross checks of systematics, improved precision
- ETMC, FNAL/MILC, RBC/UKQCD, HPQCD, SWME working on $B_{(s)} \rightarrow D_{(s)}^{(*)}lv$ form factors for SM, BSM matrix elements [Atoui *et al.*, Lattice 2013; DeTar *et al.*, Lattice 2010; Kawanai *et al.*, Lattice 2013; Christ *et al.*, arXiv:1404.4670; Monahan *et al.*, PRD 2013; Jang *et al.*, Lattice 2013]

$$\frac{d\Gamma}{d\omega}(B \to D\ell\nu) = \frac{G_F^2 |V_{cb}|^2 M_B^5}{48\pi^3} (\omega^2 - 1)^{3/2} r^3 (1+r)^2 F_D^2(\omega)$$
$$\frac{d\Gamma}{d\omega}(B \to D^*\ell\nu) = \frac{G_F^2 |V_{cb}|^2 M_B^5}{4\pi^3} |\eta_{\rm EW}|^2 (1+\pi\alpha) (\omega^2 - 1)^{1/2} r^{*3} (1-r^*)^2 \chi(\omega) F_{D^*}^2(\omega)$$

- Partial decay rates, form factor shapes, from experiment
- $D^{(*)}$ energy in B rest frame ~ velocity transfer ω
- Form factors from theory ~ hadronic matrix elements

Form factors and matrix elements

$$F_{D}(\omega) = h_{+}(\omega) + \left(\frac{1-r}{1+r}\right)h_{-}(\omega)$$

$$12(1-r^{*})^{2}\chi(\omega)F_{D^{*}}^{2}(\omega) = \left[(\omega-r^{*})(\omega+1)h_{A_{1}}(\omega) - (\omega^{2}-1)(r^{*}h_{A_{2}}(\omega) + h_{A_{3}}(\omega))\right]^{2}$$

$$+ 2(1-2\omega r^{*}+r^{*2})\left[(\omega+1)^{2}h_{A_{1}}^{2}(\omega) + (\omega^{2}-1)h_{V}^{2}(\omega)\right]$$

$$\begin{aligned} (v_{B} + v_{D})^{\mu}h_{+}(\omega) + (v_{B} - v_{D})^{\mu}h_{-}(\omega) &= \frac{\langle D(p_{D})|V^{\mu}|B(p_{B})\rangle}{\sqrt{M_{D}M_{B}}} \\ i\left[\epsilon^{*\mu}(1+\omega)h_{A_{1}}(\omega) - (\epsilon^{*} \cdot v_{B})(v_{B}^{\mu}h_{A_{2}}(\omega) + v_{D^{*}}^{\mu}h_{A_{3}}(\omega))\right] &= \frac{\langle D^{*}(p_{D^{*}},\epsilon)|A^{\mu}|B(p_{B})\rangle}{\sqrt{M_{D^{*}}M_{B}}} \\ \varepsilon^{\mu\nu}{}_{\rho\sigma}\epsilon^{*}_{\nu}v_{B}^{\rho}v_{D^{*}}^{\sigma}h_{V}(\omega) &= \frac{\langle D^{*}(p_{D^{*}},\epsilon)|V^{\mu}|B(p_{B})\rangle}{\sqrt{M_{D^{*}}M_{B}}} \end{aligned}$$

- Vector current enters both decays, axial current enters decay to D*
- For B \rightarrow D**lv* at zero recoil, only axial current enters, $F_{D*}(1) = h_{A1}(1)$
- Heavy-quark symmetry implies $h_{A1}(1) \sim 1$

$B \rightarrow D^* l v$ at zero recoil

• FNAL/MILC calculations of form factor $h_{A1}(1)$

Error	PRD 2009	arXiv:1403.0635
Statistics	1.4%	0.4%
Scale (r_1) error	—	0.1%
$\chi \mathrm{PT}$	0.9%	0.5%
$g_{D^*D\pi}$	0.9%	0.3%
Kappa tuning	0.7%	—
Discretization errors	1.5%	1.0%
Current matching	0.3%	0.4%
Tadpole tuning	0.4%	
Isospin breaking	—	0.1%
Total	2.6%	1.4%

- "Discretization errors" are (mostly) heavy-quark discretization effects
- Chiral extrapolation errors ~ fit function and parametric uncertainties
- Parametric uncertainty from $D^*D\pi$ coupling

$B \rightarrow D^* l v$ at zero recoil

• FNAL/MILC calculations of form factor $h_{A1}(1)$

Error	PRD 2009	arXiv:1403.0635
Statistics	1.4%	0.4%
Scale (r_1) error	_	0.1%
$\chi \mathrm{PT}$	0.9%	0.5%
$g_{D^*D\pi}$	0.9%	0.3%
Kappa tuning	0.7%	
Discretization errors	1.5%	
Current matching	0.3%	0.1%
Tadpole tuning	0.4%	_
Isospin breaking	—	0.1%
Total	2.6%	1.4%

- "Discretization errors" are (mostly) heavy-quark discretization effects
- Chiral extrapolation errors ~ fit function and parametric uncertainties
- Parametric uncertainty from $D^*D\pi$ coupling

- Target precision: ~ 0.7 -1.0% for axial form factor at zero recoil
 - May require one-loop improvement of mass-dimension 5 operators in action
- Attack chiral extrapolation errors with physical-mass gauge ensembles
 - 2+1+1 flavor HISQ ensembles (MILC) [A. Bazavov *et al.*, PRD 2010; Lattice 2010-13]
 - Finite-volume effects for physical-mass pions [FNAL/MILC, arXiv:1403.0635]
- Reduce heavy-quark discretization effects (charm) with improved Fermilab action, currents
 - HQET power counting, $\lambda \sim a \Lambda_{\text{QCD}}, \Lambda_{\text{QCD}}/m_{\text{Q}}$
 - Improved action tree-level improved through $O(\lambda^3)$ in HQET [Oktay and Kronfeld, PRD 2008]
 - Axial, vector currents require improvement

Improved action for heavy quarks

[El-Khadra, Kronfeld, Mackenzie, PRD 1997; Oktay and Kronfeld, PRD 2008]

• Include irrelevant operators to approach renormalized trajectory for arbitrary fermion mass ~ preserve HQ symmetry, gauge invariance, cubic invariance, *C*, *P*, *T*

$$S_{\text{fermion}} = S_0 + S_B + S_E + S_6 + S_7$$

- Generalized Wilson action
- Generalized clover terms ~ chromomagnetic and chromoelectric interactions
- Mass-dimension 6 and 7 bilinears
- Tree-level matching to fix coefficients

Generalized Wilson action

[El-Khadra, Kronfeld, Mackenzie, PRD 1997]

$$S_{\text{fermion}} = S_0 + S_B + S_E + S_6 + S_7$$

• Wilson action, generalized ~ lift time-space axis-interchange symmetry

$$S_{0} = a^{4} \sum_{x} \overline{\psi}(x) [m_{0} + \gamma_{4} D_{4} + \zeta \boldsymbol{\gamma} \cdot \boldsymbol{D}] \psi(x)$$
$$- \frac{1}{2} a^{5} \sum_{x} \overline{\psi}(x) [\Delta_{4} + r_{s} \zeta \Delta^{(3)}] \psi(x)$$
$$= (T_{\mu} - T_{-\mu})/(2a), \quad \Delta_{\mu} = (T_{\mu} + T_{-\mu} - 2)/a^{2}, \quad \Delta^{(3)} = \sum_{i=1}^{3} \Delta_{i}$$

• $r_s \ge 1$ solves doubling, fix ζ by matching dispersion relation

 D_{μ}

Generalized clover terms

[El-Khadra, Kronfeld, Mackenzie, PRD 1997; Oktay and Kronfeld, PRD 2008]

$$S_{\text{fermion}} = S_0 + S_B + S_E + S_6 + S_7$$

• Chromomagnetic and chromoelectric interactions

$$S_{B} = -\frac{1}{2}c_{B}\zeta a^{5} \sum_{x} \overline{\psi}(x)i\Sigma \cdot B\psi(x)$$

$$S_{E} = -\frac{1}{2}c_{E}\zeta a^{5} \sum_{x} \overline{\psi}(x)\alpha \cdot E\psi(x)$$

$$B_{i} = \frac{1}{2}\varepsilon_{ijk}F_{jk}, \ E_{i} = F_{4i}, \ F_{\mu\nu} \sim \text{four-leaf clover}$$

• c_B , c_E fixed by matching current ~ lattice quark interacting with continuum background fields

Higher order improvement

[Oktay and Kronfeld, PRD 2008]

 $S_{\text{fermion}} = S_0 + \frac{S_B}{S_B} + \frac{S_E}{S_6} + \frac{S_7}{S_7}$

 Mass-dimension 6 and 7 bilinears, tree-level matching suffice for design precision of ~ 1%

$$S_{6} = a^{6} \sum_{x} \overline{\psi}(x) \left[c_{1} \gamma_{i} D_{i} \triangle_{i} + c_{2} \{ \boldsymbol{\gamma} \cdot \boldsymbol{D}, \triangle^{(3)} \} \right] \psi(x)$$

+ $a^{6} \sum_{x} \overline{\psi}(x) \left[c_{3} \{ \boldsymbol{\gamma} \cdot \boldsymbol{D}, i \boldsymbol{\Sigma} \cdot \boldsymbol{B} \} + c_{EE} \{ \gamma_{4} D_{4}, \boldsymbol{\alpha} \cdot \boldsymbol{E} \} \right] \psi(x)$
$$S_{7} = a^{7} \sum_{x} \overline{\psi}(x) \sum_{i} \left[c_{4} \triangle_{i}^{2} + c_{5} \sum_{j \neq i} \{ i \Sigma_{i} B_{i}, \triangle_{j} \} \right] \psi(x)$$

• Coefficients fixed by matching dispersion relation, current, and Compton scattering amplitude

Current improvement

[El-Khadra, Kronfeld, Mackenzie, PRD 1997; Kronfeld, PRD 2000; Harada et al., PRD 2002]

• Include operators with quantum numbers of desired operator to approach continuum limit, for arbitrary quark masses

$$\mathcal{O} = Z_{\mathcal{O}}(\{m_0a\}, g_0^2) \Big[O_0 + \sum_n C_n(\{m_0a\}, g_0^2) O_n \Big]$$

- Enumerate operators ~ $O(\lambda^3)$ in HQET power counting
 - $O_0 \sim$ same dimension as continuum operator
 - $O_n \sim$ correct deviations from continuum, suppressed or enhanced by powers of lattice spacing
- Match matrix elements to fix coefficients C_n , renormalization factor
 - Expand in coupling, external momenta
 - No expansion in quark masses, $\{m_0a\}$

$O(\lambda)$ tree-level improvement

[El-Khadra, Kronfeld, Mackenzie, PRD 1997]

• Consider continuum matrix elements of $b \rightarrow c$ current with Dirac structure Γ , at tree-level

$$\langle \boldsymbol{c}(\boldsymbol{\xi}',\boldsymbol{p}')|\overline{\boldsymbol{c}}\Gamma b|b(\boldsymbol{\xi},\boldsymbol{p})\rangle \to \sqrt{\frac{m_c}{E_c}}\overline{u}_c(\boldsymbol{\xi}',\boldsymbol{p}')\Gamma\sqrt{\frac{m_b}{E_b}}u_b(\boldsymbol{\xi},\boldsymbol{p}) \\ \langle \boldsymbol{0}|\overline{\boldsymbol{c}}\Gamma b|b(\boldsymbol{\xi},\boldsymbol{p})\overline{\boldsymbol{c}}(\boldsymbol{\xi}',\boldsymbol{p}')\rangle \to \sqrt{\frac{m_c}{E_c}}\overline{v}_c(\boldsymbol{\xi}',\boldsymbol{p}')\Gamma\sqrt{\frac{m_b}{E_b}}u_b(\boldsymbol{\xi},\boldsymbol{p})$$

• Standard relations for relativistic spinors, relativistic mass shell

$$u(\xi, \boldsymbol{p}) = \frac{m + E - i\boldsymbol{\gamma} \cdot \boldsymbol{p}}{\sqrt{2m(m + E)}} u(\xi, \boldsymbol{0}), \quad \boldsymbol{E} = \sqrt{m^2 + \boldsymbol{p}^2}$$

Matrix elements of lattice currents

[El-Khadra, Kronfeld, Mackenzie, PRD 1997]

• Consider matrix elements of $b \to c$ lattice current with Dirac structure Γ , at tree-level $\langle q_c(\xi', \mathbf{p}') | \overline{\psi}_c \Gamma \psi_b | q_b(\xi, \mathbf{p}) \rangle \to \mathcal{N}_c(\mathbf{p}') \overline{u}_c^{\text{lat}}(\xi', \mathbf{p}') \Gamma \mathcal{N}_b(\mathbf{p}) u_b^{\text{lat}}(\xi, \mathbf{p})$

 $\langle 0|\overline{\psi}_{c}\Gamma\psi_{b}|q_{b}(\xi,\boldsymbol{p})\overline{q}_{c}(\xi',\boldsymbol{p}')\rangle \rightarrow \mathcal{N}_{c}(\boldsymbol{p}')\overline{v}_{c}^{\mathrm{lat}}(\xi',\boldsymbol{p}')\Gamma\mathcal{N}_{b}(\boldsymbol{p})u_{b}^{\mathrm{lat}}(\xi,\boldsymbol{p})$

• Standard relations, relativistic mass shell altered by lattice artifacts \rightarrow Lattice spinor relations, lattice mass shell (a = 1)

$$u^{\text{lat}}(\xi, \boldsymbol{p}) = \frac{L + \sinh E - i\boldsymbol{\gamma} \cdot \boldsymbol{K}}{\sqrt{2L(L + \sinh E)}} u(\xi, \boldsymbol{0}), \quad \cosh E = \frac{1 + \mu^2 + \boldsymbol{K}^2}{2\mu}$$
$$\mathcal{N}(\boldsymbol{p}) = \sqrt{\frac{L}{\mu \sinh E}}, \quad L = \mu - \cosh E, \quad K_i = \zeta \sin p_i$$
$$\mu = 1 + m_0 + \frac{1}{2}r_s\zeta \sum_i (2\sin p_i/2)^2$$

Momentum expansions

[El-Khadra, Kronfeld, Mackenzie, PRD 1997]

• Expand normalized continuum, lattice spinors for momentum small compared to 1/a, m_q

$$\begin{split} \sqrt{\frac{m_q}{E}} u(\xi, \boldsymbol{p}) &= \left[1 - \frac{i\boldsymbol{\gamma} \cdot \boldsymbol{p}}{2m_q} \right] u(\xi, \boldsymbol{0}) + \mathcal{O}(\boldsymbol{p}^2) \\ \mathcal{N}(\boldsymbol{p}) u^{\text{lat}}(\xi, \boldsymbol{p}) &= e^{-\boldsymbol{M_1}/2} \left[1 - \frac{i\boldsymbol{\zeta}\boldsymbol{\gamma} \cdot \boldsymbol{p}}{2\sinh\boldsymbol{M_1}} \right] u(\xi, \boldsymbol{0}) + \mathcal{O}(\boldsymbol{p}^2) \end{split}$$

• At **p** = **0**, matrix elements differ only by normalization factor, dependent on tree-level rest mass, the lattice mass-shell energy

$$\cosh E = \frac{1+\mu^2 + \mathbf{K}^2}{2\mu} \implies e^{\mathbf{M}_1} = 1+m_0$$

 $Z_{\Gamma} \equiv e^{(M_{1c} + M_{1b})/2} \implies Z_{\Gamma} \overline{\psi}_{c} \Gamma \psi_{b}$ renormalized at tree-level

Improved quark field

[El-Khadra, Kronfeld, Mackenzie, PRD 1997; Kronfeld, PRD 2000; Harada et al., PRD 2002]

• Mismatch of matrix elements at O(**p**) remedied by improved quark field (*a* = 1)

$$\psi(x) \to \Psi_I(x) \equiv e^{M_1/2} [1 + d_1 \boldsymbol{\gamma} \cdot \boldsymbol{D}] \psi(x)$$
$$\overline{\psi}_c(x) \Gamma \psi_b(x) \to \overline{\Psi}_{Ic}(x) \Gamma \Psi_{Ib}(x)$$

- For tree-level matching of matrix elements of current between quark, anti-quark states, set gauge links to 1
- Note external-line factors for contractions with differentiated fields in lattice current

$$\partial_k \psi(x) \implies u^{\text{lat}}(\xi, \boldsymbol{p}) \to i \sin p_k u^{\text{lat}}(\xi, \boldsymbol{p})$$

• Calculate matrix elements of improved lattice current through $O(\mathbf{p}',\mathbf{p})$, equate continuum and lattice results to fix d_{1c} , d_{1b}

$O(\lambda^3)$ tree-level improvement

- To begin, consider same current matrix elements
- Lattice spinors and mass shell modified by addition of S_6 , S_7 to Fermilab action [Oktay and Kronfeld, PRD 2008]

$$K_i = \zeta \sin p_i \longrightarrow K_i = \sin p_i \left[\zeta - 2c_2 \sum_j (2\sin p_j/2)^2 - c_1 (2\sin p_i/2)^2 \right]$$

- For matching given matrix elements through O(p'³, p³), no other modifications enter, at tree-level
- Expand normalized continuum, lattice spinors
- Examine lattice artifacts ~ deduce field improvement terms

$O(\lambda^3)$ momentum expansions

• Continuum spinors through O(**p**³)

$$\sqrt{\frac{m_q}{E}}u(\xi,\boldsymbol{p}) = \left[1 - \frac{i\boldsymbol{\gamma}\cdot\boldsymbol{p}}{2m_q} - \frac{\boldsymbol{p}^2}{8m_q^2} + \frac{3i(\boldsymbol{\gamma}\cdot\boldsymbol{p})\boldsymbol{p}^2}{16m_q^3}\right]u(\xi,\boldsymbol{0}) + \mathcal{O}(\boldsymbol{p}^4)$$

- Lattice spinors through $O(\mathbf{p}^3)$ $\mathcal{N}(\mathbf{p})u^{\text{lat}}(\xi, \mathbf{p}) = e^{-M_1/2} \left[1 - \frac{i\zeta \boldsymbol{\gamma} \cdot \mathbf{p}}{2\sinh M_1} - \frac{\mathbf{p}^2}{8M_X^2} + \frac{1}{6}iw\gamma_k p_k^3 + \frac{3i(\boldsymbol{\gamma} \cdot \mathbf{p})\mathbf{p}^2}{16M_Y^3} \right] u(\xi, \mathbf{0}) + O(\mathbf{p}^4)$
- M_X, M_Y are defined in terms of couplings m_0, ζ, r_s, c_2
- $M_X, M_Y \sim M_1 \text{ as } a \to 0$
- w is defined in terms of m_0, ζ, c_1
- $w = r_s$ at tree-level

External-line masses, rotation breaking coefficient

- M_X, M_Y are defined in terms of couplings m_0, ζ, r_s, c_2
- $M_X, M_Y \sim M_1 \text{ as } a \to 0$
- w is defined in terms of m_0, ζ, c_1
- $w = r_{\rm s}$ at tree-level

$$\begin{aligned} \frac{1}{M_X{}^2} &\equiv \frac{\zeta^2}{\sinh^2 M_1} + \frac{2r_s\zeta}{e^{M_1}} \quad \text{[El-Khadra et al., PRD 1997]} \\ \frac{1}{M_Y{}^3} &\equiv \frac{8}{3\sinh M_1} \left\{ 2c_2 + \frac{1}{4}e^{-M_1} \left[\zeta^2 r_s (2\coth M_1 + 1) + \frac{\zeta^3}{\sinh M_1} \left(\frac{e^{-M_1}}{2\sinh M_1} - 1 \right) \right] + \frac{\zeta^3}{4\sinh^2 M_1} \right\} \\ &\quad w \equiv \frac{3c_1 + \zeta/2}{\sinh M_1} = c_B = r_s \end{aligned}$$

Improved quark field

- Inspecting momentum expansions, note independent structures of mismatches ~ one for each term at O(p², p³)
- To match matrix elements through O(**p**³), consider ansatz for improved quark field (*a* = 1)

$$\begin{split} \psi(x) &\to \Psi_I(x) \equiv e^{M_1/2} [1 + d_1 \boldsymbol{\gamma} \cdot \boldsymbol{D} + \frac{1}{2} d_2 \triangle^{(3)} \\ &\quad + \frac{1}{6} d_3 \gamma_i D_i \triangle_i + \frac{1}{2} d_4 \{ \boldsymbol{\gamma} \cdot \boldsymbol{D}, \triangle^{(3)} \}] \psi(x) \\ &\quad \overline{\psi}_c(x) \Gamma \psi_b(x) \to \overline{\Psi}_{Ic}(x) \Gamma \Psi_{Ib}(x) \end{split}$$

- $d_2 \text{ term} \sim O(\mathbf{p}^2) \text{ term} (M_X)$
- $d_3 \text{ term} \sim O(\mathbf{p}^3)$ rotation breaking term (w)
- $d_4 \text{ term} \sim O(\mathbf{p}^3)$ external-line mass term (M_Y)

Calculation of matrix elements

- For tree-level matching of matrix elements of current between quark, anti-quark states, set gauge links to 1
- Note external-line factors for contractions with differentiated fields in lattice current

$$\Delta^{(3)}\psi(x) \implies u^{\operatorname{lat}}(\xi, \boldsymbol{p}) \to -\sum_{i} (2\sin p_{i}/2)^{2} u^{\operatorname{lat}}(\xi, \boldsymbol{p})$$

$$\partial_{i}\Delta_{i}\psi(x) \implies u^{\operatorname{lat}}(\xi, \boldsymbol{p}) \to -i\sin p_{i}(2\sin p_{i}/2)^{2} u^{\operatorname{lat}}(\xi, \boldsymbol{p})$$

$$\partial_{i}\Delta^{(3)}\psi(x) \implies u^{\operatorname{lat}}(\xi, \boldsymbol{p}) \to -i\sin p_{i}\sum_{j} (2\sin p_{j}/2)^{2} u^{\operatorname{lat}}(\xi, \boldsymbol{p})$$

- Matching $O(\mathbf{p}^2)$ terms yields d_2
- Matching rotation breaking terms (to zero) yields d_3
- Matching rotation preserving $O(\mathbf{p}^3)$ terms yields d_4

Results

• Field improvement parameters d_1, d_2, d_3, d_4

$$d_{1} = \frac{\zeta}{2\sinh M_{1}} - \frac{1}{2m_{q}}$$

$$d_{2} = d_{1}^{2} - \frac{r_{s}\zeta}{2e^{M_{1}}}$$

$$d_{3} = -d_{1} + w = -d_{1} + c_{B} = -d_{1} + r_{s}$$

$$d_{4} = -\frac{d_{1}}{8M_{X}^{2}} + \frac{d_{2}\zeta}{4\sinh M_{1}} + \frac{3}{16}\left(\frac{1}{M_{Y}^{3}} - \frac{1}{m_{q}^{3}}\right)$$

- d_1 and d_2 agree with literature [El-Khadra *et al.*, PRD 1997]
- Suffice for tree-level improvement of current matrix elements considered
- Perhaps many additional operators required for complete improvement at $O(\lambda^3)$

Operators with *B*, *E* fields

- For any bilinear of mass-dimension 5, 6 in the Oktay-Kronfeld action, there exists a potentially necessary field improvement term (converse untrue $\sim C, P, T$)
- Simple generalization of ansatz: Include operators with B, E

$$\begin{split} \psi(x) &\to \Psi_I(x) \equiv e^{M_1/2} [1 + d_1 \boldsymbol{\gamma} \cdot \boldsymbol{D} + \frac{1}{2} d_2 \triangle^{(3)} \\ &\quad + \frac{1}{2} i d_B \boldsymbol{\Sigma} \cdot \boldsymbol{B} + \frac{1}{2} d_E \boldsymbol{\alpha} \cdot \boldsymbol{E} \\ &\quad + \frac{1}{6} d_3 \gamma_i D_i \triangle_i + \frac{1}{2} d_4 \{ \boldsymbol{\gamma} \cdot \boldsymbol{D}, \triangle^{(3)} \} \\ &\quad + \frac{1}{4} d_5 \{ \boldsymbol{\gamma} \cdot \boldsymbol{D}, i \boldsymbol{\Sigma} \cdot \boldsymbol{B} \} + \frac{1}{4} d_{EE} \{ \gamma_4 D_4, \boldsymbol{\alpha} \cdot \boldsymbol{E} \}] \psi(x) \end{split}$$

- Expect field improvement sufficient for tree-level current
- Complete enumeration of operators for fields, currents will tell

Summary

- Improved current matrix elements through $O(\mathbf{p}^3)$, at tree-level
- Results apply for all Lorentz irreps; axial, vector $\sim |V_{cb}|$ in SM
- Improvement achieved ~ *ad hoc*
 - Enumerate complete sets of operators for field, current
 - Matching conditions to fix improvement parameters
- HQET matching analyses
 - Systematize improvement
 - Assess heavy-quark discretization errors in form factors
- One-loop improvement of action, currents

Back-up slides

$|V_{cb}|$ from $B \rightarrow D^{(*)}lv$

$$\frac{d\Gamma}{d\omega}(B \to D\ell\nu) = \frac{G_F^2 |V_{cb}|^2 M_B^5}{48\pi^3} (\omega^2 - 1)^{3/2} r^3 (1+r)^2 F_D^2(\omega)$$

$$\frac{d\Gamma}{d\omega}(B \to D^*\ell\nu) = \frac{G_F^2 |V_{cb}|^2 M_B^5}{4\pi^3} |\eta_{\rm EW}|^2 (1+\pi\alpha) (\omega^2 - 1)^{1/2} r^{*3} (1-r^*)^2 \chi(\omega) F_{D^*}^2(\omega)$$

- Partial decay rates, form factor shapes (not normalization), from experiment
- $D^{(*)}$ energy in B rest frame $\sim \omega = v_B \cdot v_{D^{(*)}}$
- Well-known quantities, kinematic factors, higher order electroweak corrections
 - Coulomb attraction in charged D^{*} final state (for neutral D^{*}, $\pi \alpha \rightarrow 0$)
 - Electroweak correction $\eta_{\rm EW}$ from NLO box diagrams, γ or Z exchanged with W

$$- r = M_D/M_B, r^* = M_{D^*}/M_B$$
$$- \chi(\omega) = \frac{\omega + 1}{12} \left(5\omega + 1 - \frac{8\omega(\omega - 1)r^*}{(1 - r^*)^2} \right)$$

- Form factors from theory ~ hadronic matrix elements
- CKM matrix element

Systematic errors for zero recoil calculations

- FNAL/MILC PRD 2009
 - Scale r_1 contributes parametric uncertainty *via* (very mild) chiral extrapolation \rightarrow negligible
 - Mismatch between u_0 in valence, sea action
 - Kappa tuning errors from statistics, fitting, discretization errors ~ variation of form factors
- arXiv:1403.0635
 - Kappa tuning errors from statistics, fitting, included in statistical errors of form factor (assume independent on each ensemble)
 - Uncertainty from scale r_1 from f_{π} propagated from uncertainty in kappas ~ dominant scale error

Projected error budgets

Error	Lattice 2013	1-loop OK	tree-level OK
Statistics	0.4%	0.3%	0.3%
$\chi \mathrm{PT}, g_{DD^*\pi}$	0.7%	0.3%	0.3%
Kappa tuning	0.2%	0.2%	0.2%
Discretization errors	1.0%	0.2%	0.7%
Current matching	0.5%	0.5%	0.5%
Isospin breaking	0.1%	0.1%	0.1%
Total	1.4%	0.7%	1.0%

- Projected discretization errors from power-counting estimates of heavy-quark errors
- "1-loop OK" means mass-dimension five operators in the action, corresponding operators in the current, are improved at one-loop
- "tree-level OK" means tree-level improvement for action, current
- Assumptions:
 - 8 source times per ensemble, 1000 gauge configurations on existing HISQ ensembles, additional ensemble with lattice spacing 0.03 fm [MILC, planned for HISQ bottom]
 - Errors from statistics, kappa tuning, ChPT, $g_{DD^*\pi}$ scale with statistics
 - 50% of errors from ChPT, $g_{DD*\pi}$ eliminated by inclusion of physical-point ensembles