Improved currents for $\mathrm{B} \rightarrow \mathrm{D}^{(*)} l v$ form factors from Oktay-Kronfeld heavy quarks

Jon A. Bailey
SWME Collaboration
Yong-Chull Jang, Weonjong Lee, Jaehoon Leem

June 27, 2014

$\left|\mathrm{V}_{\mathrm{cb}}\right|$ and quark flavor physics

- $\left|\mathrm{V}_{\mathrm{cb}}\right|$ normalizes Unitarity Triangle \sim flavor physics
- Uncertainty in $\operatorname{SM} \operatorname{BR}(K \rightarrow \pi \nu \bar{\nu}), \operatorname{BR}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)$dominated by error in $\left|\mathrm{V}_{\mathrm{cb}}\right|$
- Uncertainty in $\mathrm{SM} \varepsilon_{\mathrm{K}}$ dominated by error in $\left|\mathrm{V}_{\mathrm{cb}}\right|$
- $>3 \sigma$ difference between SM and experimental $\left|\varepsilon_{\mathrm{K}}\right| \sim \mid \mathrm{V}_{\mathrm{cb}}{ }^{4}[\mathrm{~W}$. Lee et al., Lattice 2014]
- Exclusive $\mid \mathrm{V}_{\mathrm{cb}}$, from $\mathrm{B} \rightarrow \mathrm{D}^{*} l v$ at zero recoil
- New exclusive $\left|\mathrm{V}_{\mathrm{cb}}\right|$ increases difference [FNAL/MILC, arXiv:1403.0635]
- Correlated with 3.0σ difference btwn exclusive and inclusive $\left|\mathrm{V}_{\mathrm{cb}}\right|$
- Difference vanishes with inclusive $\left|\mathrm{V}_{\mathrm{cb}}\right|$
- $\mathrm{B} \rightarrow \mathrm{D} l v($ FNAL/MILC, Lattice 2013)
- $\mathrm{B} \rightarrow \mathrm{D}^{*} l v$ (FNAL/MILC, arXiv:1403.0635)

- $\mathrm{B} \rightarrow \mathrm{D}^{*} l \nu($ FNAL/MILC, PRD 2009)
- -

$0.0387(9)_{\text {exp }}(10)_{\text {th }}$
© Inclusive (Gambino and Schwanda, PRD 2014)

$$
\longmapsto \wedge \quad 0.0424(9)_{\text {exp-th }}
$$

- Inclusive (Amsler et al., PDG 2008)

Lattice calculations

- FNAL/MILC update supersedes previous \sim first determinations of $\left|\mathrm{V}_{\mathrm{cb}}\right|$ from exclusive decays including vacuum polarization effects of u, d, s quarks
- Next generation intensity-frontier experiments, experimental errors below $\sim 1 \%$
- Lattice calculations with different discretizations of heavy quarks \sim cross checks of systematics, improved precision
- ETMC, FNAL/MILC, RBC/UKQCD, HPQCD, SWME working on $\mathrm{B}_{(\mathrm{s})} \rightarrow \mathrm{D}_{(\mathrm{s})}{ }^{(*)} l v$ form factors for SM, BSM matrix elements [Atoui et al., Lattice 2013; DeTar et al., Lattice 2010; Kawanai et al., Lattice 2013; Christ et al., arXiv:1404.4670; Monahan et al., PRD 2013; Jang et al., Lattice 2013]
- $\mathrm{B} \rightarrow \mathrm{D} l v($ FNAL/MILC, Lattice 2013)
- $\mathrm{B} \rightarrow \mathrm{D}^{*} k(\mathrm{FNAL} / \mathrm{MILC}$, arXiv:1403.0635)

$$
\longmapsto-1
$$

- $\mathrm{B} \rightarrow \mathrm{D}^{*} l v($ FNAL/MILC, PRD 2009) \square
1
$0.0387(9)_{\exp }(10)_{\text {th }}$
^ Inclusive (Gambino and Schwanda, PRD 2014) $\longmapsto 0.0424(9)_{\text {exp-th }}$
- Inclusive (Amsler et al., PDG 2008)

$\left|\mathrm{V}_{\mathrm{cb}}\right|$ from $\left.\mathrm{B} \rightarrow \mathrm{D}^{*}\right) l v$

$$
\begin{aligned}
\frac{d \Gamma}{d \omega}(B \rightarrow D \ell \nu) & =\frac{G_{F}^{2}\left|V_{c b}\right|^{2} M_{B}^{5}}{48 \pi^{3}}\left(\omega^{2}-1\right)^{3 / 2} r^{3}(1+r)^{2} F_{D}{ }^{2}(\omega) \\
\frac{d \Gamma}{d \omega}\left(B \rightarrow D^{*} \ell \nu\right) & =\frac{G_{F}^{2}\left|V_{c b}\right|^{2} M_{B}^{5}}{4 \pi^{3}}\left|\eta_{\mathrm{EW}}\right|^{2}(1+\pi \alpha)\left(\omega^{2}-1\right)^{1 / 2} r^{* 3}\left(1-r^{*}\right)^{2} \chi(\omega) F_{D^{*}}{ }^{2}(\omega)
\end{aligned}
$$

- Partial decay rates, form factor shapes, from experiment
- $\mathrm{D}^{(*)}$ energy in B rest frame \sim velocity transfer ω
- Form factors from theory \sim hadronic matrix elements

Form factors and matrix elements

$$
\begin{aligned}
F_{D}(\omega)= & h_{+}(\omega)+\left(\frac{1-r}{1+r}\right) h_{-}(\omega) \\
12\left(1-r^{*}\right)^{2} \chi(\omega) F_{D^{*}}{ }^{2}(\omega)= & {\left[\left(\omega-r^{*}\right)(\omega+1) h_{A_{1}}(\omega)-\left(\omega^{2}-1\right)\left(r^{*} h_{A_{2}}(\omega)+h_{A_{3}}(\omega)\right)\right]^{2} } \\
& +2\left(1-2 \omega r^{*}+r^{* 2}\right)\left[(\omega+1)^{2} h_{A_{1}}{ }^{2}(\omega)+\left(\omega^{2}-1\right) h_{V}{ }^{2}(\omega)\right] \\
\left(v_{B}+v_{D}\right)^{\mu} h_{+}(\omega)+\left(v_{B}-v_{D}\right)^{\mu} h_{-}(\omega) & =\frac{\left\langle D\left(p_{D}\right)\right| V^{\mu}\left|B\left(p_{B}\right)\right\rangle}{\sqrt{M_{D} M_{B}}} \\
i\left[\epsilon^{* \mu}(1+\omega) h_{A_{1}}(\omega)-\left(\epsilon^{*} \cdot v_{B}\right)\left(v_{B}^{\mu} h_{A_{2}}(\omega)+v_{D^{*}}^{\mu} h_{A_{3}}(\omega)\right)\right] & =\frac{\left\langle D^{*}\left(p_{D^{*}}, \epsilon\right)\right| A^{\mu}\left|B\left(p_{B}\right)\right\rangle}{\sqrt{M_{D^{*}} M_{B}}} \\
\varepsilon^{\mu \nu}{ }_{\rho \sigma} \epsilon_{\nu}^{*} v_{B}^{\rho} v_{D^{*}}^{\sigma} h_{V}(\omega) & =\frac{\left\langle D^{*}\left(p_{D^{*},}, \epsilon\right)\right| V^{\mu}\left|B\left(p_{B}\right)\right\rangle}{\sqrt{M_{D^{*} M_{B}}}}
\end{aligned}
$$

- Vector current enters both decays, axial current enters decay to D*
- For $\mathrm{B} \rightarrow \mathrm{D}^{*} l v$ at zero recoil, only axial current enters, $F_{D^{*}}(1)=h_{A 1}(1)$
- Heavy-quark symmetry implies $h_{A 1}(1) \sim 1$

$\mathrm{B} \rightarrow \mathrm{D}^{*} l v$ at zero recoil

- FNAL/MILC calculations of form factor $h_{A 1}(1)$

Error	PRD 2009	arXiv:1403.0635
Statistics	1.4%	0.4%
Scale $\left(r_{1}\right)$ error	-	0.1%
χ PT	0.9%	0.5%
$g_{D^{*} D \pi}$	0.9%	0.3%
Kappa tuning	0.7%	-
Discretization errors	1.5%	1.0%
Current matching	0.3%	0.4%
Tadpole tuning	0.4%	-
Isospin breaking	-	0.1%
Total	2.6%	1.4%

- "Discretization errors" are (mostly) heavy-quark discretization effects
- Chiral extrapolation errors \sim fit function and parametric uncertainties
- Parametric uncertainty from $D^{*} D \pi$ coupling

$\mathrm{B} \rightarrow \mathrm{D}^{*} l v$ at zero recoil

- FNAL/MILC calculations of form factor $h_{A 1}(1)$

Error	PRD 2009	arXiv:1403.0635
Statistics	1.4%	0.4%
Scale $\left(r_{1}\right)$ error	-	0.1%
$\chi \mathrm{PT}$	0.9%	0.5%
$g_{D^{*} D \pi}$	0.9%	
Kappa tuning	0.7%	
Discretization errors	1.5%	1.0%
Current matching	0.3%	0.4%
Tadpole tuning	0.4%	-
Isospin breaking	-	0.1%
Total	2.6%	1.4%

- "Discretization errors" are (mostly) heavy-quark discretization effects
- Chiral extrapolation errors \sim fit function and parametric uncertainties
- Parametric uncertainty from $D^{*} D \pi$ coupling

Approach

- Target precision: $\sim 0.7-1.0 \%$ for axial form factor at zero recoil
- May require one-loop improvement of mass-dimension 5 operators in action
- Attack chiral extrapolation errors with physical-mass gauge ensembles
- 2+1+1 flavor HISQ ensembles (MILC) [A. Bazavove eall, PRD 2010; Laticic 2010-13]
- Finite-volume effects for physical-mass pions [fnalmilc, arXiv:1403.0635]
- Reduce heavy-quark discretization effects (charm) with improved Fermilab action, currents
- HQET power counting, $\lambda \sim a \Lambda_{\mathrm{QCD}}, \Lambda_{\mathrm{QCD}} / m_{\mathrm{Q}}$
- Improved action tree-level improved through $\mathrm{O}\left(\lambda^{3}\right)$ in HQET [okay and Kronfeld, PRD 2008]
- Axial, vector currents require improvement

Improved action for heavy quarks

[El-Khadra, Kronfeld, Mackenzie, PRD 1997; Oktay and Kronfeld, PRD 2008]

- Include irrelevant operators to approach renormalized trajectory for arbitrary fermion mass \sim preserve HQ symmetry, gauge invariance, cubic invariance, C, P, T

$$
S_{\text {fermion }}=S_{0}+S_{B}+S_{E}+S_{6}+S_{7}
$$

- Generalized Wilson action
- Generalized clover terms \sim chromomagnetic and chromoelectric interactions
- Mass-dimension 6 and 7 bilinears
- Tree-level matching to fix coefficients

Generalized Wilson action

[El-Khadra, Kronfeld, Mackenzie, PRD 1997]

$$
S_{\text {fermion }}=S_{0}+S_{B}+S_{E}+S_{6}+S_{7}
$$

- Wilson action, generalized \sim lift time-space axis-interchange symmetry

$$
\begin{gathered}
S_{0}=a^{4} \sum_{x} \bar{\psi}(x)\left[m_{0}+\gamma_{4} D_{4}+\zeta \boldsymbol{\gamma} \cdot \boldsymbol{D}\right] \psi(x) \\
-\frac{1}{2} a^{5} \sum_{x} \bar{\psi}(x)\left[\triangle_{4}+r_{s} \zeta \triangle^{(3)}\right] \psi(x) \\
D_{\mu}=\left(T_{\mu}-T_{-\mu}\right) /(2 a), \quad \triangle_{\mu}=\left(T_{\mu}+T_{-\mu}-2\right) / a^{2}, \quad \triangle^{(3)}=\sum_{i=1}^{3} \triangle_{i}
\end{gathered}
$$

- $r_{\mathrm{s}} \geq 1$ solves doubling, fix ζ by matching dispersion relation

Generalized clover terms

[El-Khadra, Kronfeld, Mackenzie, PRD 1997; Oktay and Kronfeld, PRD 2008]

$$
S_{\text {fermion }}=S_{0}+S_{B}+S_{E}+S_{6}+S_{7}
$$

- Chromomagnetic and chromoelectric interactions

$$
\begin{aligned}
& S_{B}=-\frac{1}{2} c_{B} \zeta a^{5} \sum_{x} \bar{\psi}(x) i \boldsymbol{\Sigma} \cdot \boldsymbol{B} \psi(x) \\
& S_{E}=-\frac{1}{2} c_{E} \zeta a^{5} \sum_{x} \bar{\psi}(x) \boldsymbol{\alpha} \cdot \boldsymbol{E} \psi(x)
\end{aligned}
$$

$$
B_{i}=\frac{1}{2} \varepsilon_{i j k} F_{j k}, E_{i}=F_{4 i}, F_{\mu \nu} \sim \text { four-leaf clover }
$$

- c_{B}, c_{E} fixed by matching current \sim lattice quark interacting with continuum background fields

Higher order improvement

[Oktay and Kronfeld, PRD 2008]

$$
S_{\text {fermion }}=S_{0}+S_{B}+S_{E}+S_{6}+S_{7}
$$

- Mass-dimension 6 and 7 bilinears, tree-level matching suffice for design precision of $\sim 1 \%$

$$
\begin{aligned}
S_{6} & =a^{6} \sum_{x} \bar{\psi}(x)\left[c_{1} \gamma_{i} D_{i} \triangle_{i}+c_{2}\left\{\boldsymbol{\gamma} \cdot \boldsymbol{D}, \triangle^{(3)}\right\}\right] \psi(x) \\
& +a^{6} \sum_{x} \bar{\psi}(x)\left[c_{3}\{\boldsymbol{\gamma} \cdot \boldsymbol{D}, i \boldsymbol{\Sigma} \cdot \boldsymbol{B}\}+c_{E E}\left\{\gamma_{4} D_{4}, \boldsymbol{\alpha} \cdot \boldsymbol{E}\right\}\right] \psi(x) \\
S_{7} & =a^{7} \sum_{x} \bar{\psi}(x) \sum_{i}\left[c_{4} \triangle_{i}^{2}+c_{5} \sum_{j \neq i}\left\{i \Sigma_{i} B_{i}, \triangle_{j}\right\}\right] \psi(x)
\end{aligned}
$$

- Coefficients fixed by matching dispersion relation, current, and Compton scattering amplitude

Current improvement

[El-Khadra, Kronfeld, Mackenzie, PRD 1997; Kronfeld, PRD 2000; Harada et al., PRD 2002]

- Include operators with quantum numbers of desired operator to approach continuum limit, for arbitrary quark masses

$$
\mathcal{O}=Z_{\mathcal{O}}\left(\left\{m_{0} a\right\}, g_{0}^{2}\right)\left[O_{0}+\sum_{n} C_{n}\left(\left\{m_{0} a\right\}, g_{0}^{2}\right) O_{n}\right]
$$

- Enumerate operators $\sim \mathrm{O}\left(\lambda^{3}\right)$ in HQET power counting
- $O_{0} \sim$ same dimension as continuum operator
$-O_{\mathrm{n}} \sim$ correct deviations from continuum, suppressed or enhanced by powers of lattice spacing
- Match matrix elements to fix coefficients C_{n}, renormalization factor
- Expand in coupling, external momenta
- No expansion in quark masses, $\left\{m_{0} a\right\}$

$O(\lambda)$ tree-level improvement

[El-Khadra, Kronfeld, Mackenzie, PRD 1997]

- Consider continuum matrix elements of $b \rightarrow c$ current with Dirac structure Γ, at tree-level

$$
\begin{aligned}
\left\langle c\left(\xi^{\prime}, \boldsymbol{p}^{\prime}\right)\right| \bar{c} \Gamma b|b(\xi, \boldsymbol{p})\rangle & \rightarrow \sqrt{\frac{m_{c}}{E_{c}}} \bar{u}_{c}\left(\xi^{\prime}, \boldsymbol{p}^{\prime}\right) \Gamma \sqrt{\frac{m_{b}}{E_{b}}} u_{b}(\xi, \boldsymbol{p}) \\
\langle 0| \bar{c} \Gamma b\left|b(\xi, \boldsymbol{p}) \bar{c}\left(\xi^{\prime}, \boldsymbol{p}^{\prime}\right)\right\rangle & \rightarrow \sqrt{\frac{m_{c}}{E_{c}}} \bar{v}_{c}\left(\xi^{\prime}, \boldsymbol{p}^{\prime}\right) \Gamma \sqrt{\frac{m_{b}}{E_{b}}} u_{b}(\xi, \boldsymbol{p})
\end{aligned}
$$

- Standard relations for relativistic spinors, relativistic mass shell

$$
u(\xi, \boldsymbol{p})=\frac{m+E-i \boldsymbol{\gamma} \cdot \boldsymbol{p}}{\sqrt{2 m(m+E)}} u(\xi, \mathbf{0}), \quad E=\sqrt{m^{2}+\boldsymbol{p}^{2}}
$$

Matrix elements of lattice currents

[El-Khadra, Kronfeld, Mackenzie, PRD 1997]

- Consider matrix elements of $b \rightarrow c$ lattice current with Dirac structure Γ, at tree-level

$$
\begin{aligned}
\left\langle q_{c}\left(\xi^{\prime}, \boldsymbol{p}^{\prime}\right)\right| \bar{\psi}_{c} \Gamma \psi_{b}\left|q_{b}(\xi, \boldsymbol{p})\right\rangle & \rightarrow \mathcal{N}_{c}\left(\boldsymbol{p}^{\prime}\right) \bar{u}_{c}^{\text {lat }}\left(\xi^{\prime}, \boldsymbol{p}^{\prime}\right) \Gamma \mathcal{N}_{b}(\boldsymbol{p}) u_{b}^{\text {lat }}(\xi, \boldsymbol{p}) \\
\langle 0| \bar{\psi}_{c} \Gamma \psi_{b}\left|q_{b}(\xi, \boldsymbol{p}) \bar{q}_{c}\left(\xi^{\prime}, \boldsymbol{p}^{\prime}\right)\right\rangle & \rightarrow \mathcal{N}_{c}\left(\boldsymbol{p}^{\prime}\right) \bar{v}_{c}^{\text {lat }}\left(\xi^{\prime}, \boldsymbol{p}^{\prime}\right) \Gamma \mathcal{N}_{b}(\boldsymbol{p}) u_{b}^{\text {lat }}(\xi, \boldsymbol{p})
\end{aligned}
$$

- Standard relations, relativistic mass shell altered by lattice artifacts \rightarrow Lattice spinor relations, lattice mass shell $(a=1)$

$$
\begin{gathered}
u^{\text {lat }}(\xi, \boldsymbol{p})=\frac{L+\sinh E-i \boldsymbol{\gamma} \cdot \boldsymbol{K}}{\sqrt{2 L(L+\sinh E)}} u(\xi, \mathbf{0}), \quad \cosh E=\frac{1+\mu^{2}+\boldsymbol{K}^{2}}{2 \mu} \\
\mathcal{N}(\boldsymbol{p})=\sqrt{\frac{L}{\mu \sinh E}}, \quad L=\mu-\cosh E, \quad K_{i}=\zeta \sin p_{i} \\
\mu=1+m_{0}+\frac{1}{2} r_{s} \zeta \sum_{i}\left(2 \sin p_{i} / 2\right)^{2}
\end{gathered}
$$

Momentum expansions

[El-Khadra, Kronfeld, Mackenzie, PRD 1997]

- Expand normalized continuum, lattice spinors for momentum small compared to $1 / a, m_{q}$

$$
\begin{gathered}
\sqrt{\frac{m_{q}}{E}} u(\xi, \boldsymbol{p})=\left[1-\frac{i \boldsymbol{\gamma} \cdot \boldsymbol{p}}{2 m_{q}}\right] u(\xi, \mathbf{0})+\mathrm{O}\left(\boldsymbol{p}^{2}\right) \\
\mathcal{N}(\boldsymbol{p}) u^{\text {lat }}(\xi, \boldsymbol{p})=e^{-M_{1} / 2}\left[1-\frac{i \zeta \boldsymbol{\gamma} \cdot \boldsymbol{p}}{2 \sinh M_{1}}\right] u(\xi, \mathbf{0})+\mathrm{O}\left(\boldsymbol{p}^{2}\right)
\end{gathered}
$$

- At $\mathbf{p}=\mathbf{0}$, matrix elements differ only by normalization factor, dependent on tree-level rest mass, the lattice mass-shell energy

$$
\begin{gathered}
\cosh E=\frac{1+\mu^{2}+\boldsymbol{K}^{2}}{2 \mu} \Longrightarrow \quad e^{M_{1}}=1+m_{0} \\
Z_{\Gamma} \equiv e^{\left(M_{1 c}+M_{1 b}\right) / 2} \Longrightarrow \quad Z_{\Gamma} \bar{\psi}_{c} \Gamma \psi_{b} \text { renormalized at tree-level }
\end{gathered}
$$

Improved quark field

[El-Khadra, Kronfeld, Mackenzie, PRD 1997; Kronfeld, PRD 2000; Harada et al., PRD 2002]

- Mismatch of matrix elements at $\mathrm{O}(\mathbf{p})$ remedied by improved quark field ($a=1$)

$$
\begin{aligned}
\psi(x) \rightarrow \Psi_{I}(x) & \equiv e^{M_{1} / 2}\left[1+d_{1} \boldsymbol{\gamma} \cdot \boldsymbol{D}\right] \psi(x) \\
\bar{\psi}_{c}(x) \Gamma \psi_{b}(x) & \rightarrow \bar{\Psi}_{I c}(x) \Gamma \Psi_{I b}(x)
\end{aligned}
$$

- For tree-level matching of matrix elements of current between quark, anti-quark states, set gauge links to 1
- Note external-line factors for contractions with differentiated fields in lattice current

$$
\partial_{k} \psi(x) \quad \Longrightarrow \quad u^{\text {lat }}(\xi, \boldsymbol{p}) \rightarrow i \sin p_{k} u^{\text {lat }}(\xi, \boldsymbol{p})
$$

- Calculate matrix elements of improved lattice current through $\mathrm{O}\left(\mathbf{p}^{\prime}, \mathbf{p}\right)$, equate continuum and lattice results to fix $d_{1 c}, d_{1 b}$

$\mathrm{O}\left(\lambda^{3}\right)$ tree-level improvement

- To begin, consider same current matrix elements
- Lattice spinors and mass shell modified by addition of S_{6}, S_{7} to Fermilab action [Oktay and Kronfeld, PRD 2008]

$$
K_{i}=\zeta \sin p_{i} \longrightarrow K_{i}=\sin p_{i}\left[\zeta-2 c_{2} \sum_{j}\left(2 \sin p_{j} / 2\right)^{2}-c_{1}\left(2 \sin p_{i} / 2\right)^{2}\right]
$$

- For matching given matrix elements through $\mathrm{O}\left(\mathbf{p}^{\prime 3}, \mathbf{p}^{3}\right)$, no other modifications enter, at tree-level
- Expand normalized continuum, lattice spinors
- Examine lattice artifacts \sim deduce field improvement terms

$\mathrm{O}\left(\lambda^{3}\right)$ momentum expansions

- Continuum spinors through $\mathrm{O}\left(\mathbf{p}^{3}\right)$

$$
\sqrt{\frac{m_{q}}{E}} u(\xi, \boldsymbol{p})=\left[1-\frac{i \boldsymbol{\gamma} \cdot \boldsymbol{p}}{2 m_{q}}-\frac{\boldsymbol{p}^{2}}{8 m_{q}^{2}}+\frac{3 i(\boldsymbol{\gamma} \cdot \boldsymbol{p}) \boldsymbol{p}^{2}}{16 m_{q}^{3}}\right] u(\xi, \mathbf{0})+\mathrm{O}\left(\boldsymbol{p}^{4}\right)
$$

- Lattice spinors through $\mathrm{O}\left(\mathbf{p}^{3}\right)$

$$
\begin{aligned}
\mathcal{N}(\boldsymbol{p}) u^{\text {lat }}(\xi, \boldsymbol{p})=e^{-M_{1} / 2}[1 & -\frac{i \zeta \boldsymbol{\gamma} \cdot \boldsymbol{p}}{2 \sinh M_{1}}-\frac{\boldsymbol{p}^{2}}{8 M_{X}{ }^{2}}+\frac{1}{6} i w \gamma_{k} p_{k}^{3} \\
& \left.+\frac{3 i(\boldsymbol{\gamma} \cdot \boldsymbol{p}) \boldsymbol{p}^{2}}{16 M_{Y}{ }^{3}}\right] u(\xi, \mathbf{0})+\mathrm{O}\left(\boldsymbol{p}^{4}\right)
\end{aligned}
$$

- M_{X}, M_{Y} are defined in terms of couplings $m_{0}, \zeta, r_{\mathrm{s}}, c_{2}$
- $M_{X}, M_{Y} \sim M_{1}$ as $a \rightarrow 0$
- w is defined in terms of m_{0}, ζ, c_{1}
- $w=r_{\mathrm{s}}$ at tree-level

External-line masses, rotation breaking coefficient

- M_{X}, M_{Y} are defined in terms of couplings $m_{0}, \zeta, r_{\mathrm{s}}, c_{2}$
- $M_{X}, M_{Y} \sim M_{1}$ as $a \rightarrow 0$
- w is defined in terms of m_{0}, ζ, c_{1}
- $w=r_{\mathrm{s}}$ at tree-level

$$
\begin{aligned}
\frac{1}{M_{X}{ }^{2}} & \equiv \frac{\zeta^{2}}{\sinh ^{2} M_{1}}+\frac{2 r_{s} \zeta}{e^{M_{1}}} \quad \text { [El-Khadra etal., PRD 1997] } \\
\frac{1}{M_{Y}{ }^{3}} & \equiv \frac{8}{3 \sinh M_{1}}\left\{2 c_{2}+\frac{1}{4} e^{-M_{1}}\left[\zeta^{2} r_{s}\left(2 \operatorname{coth} M_{1}+1\right)\right.\right. \\
& \left.\left.+\frac{\zeta^{3}}{\sinh M_{1}}\left(\frac{e^{-M_{1}}}{2 \sinh M_{1}}-1\right)\right]+\frac{\zeta^{3}}{4 \sinh ^{2} M_{1}}\right\} \\
w & \equiv \frac{3 c_{1}+\zeta / 2}{\sinh M_{1}}=c_{B}=r_{s}
\end{aligned}
$$

Improved quark field

- Inspecting momentum expansions, note independent structures of mismatches \sim one for each term at $\mathrm{O}\left(\mathbf{p}^{2}, \mathbf{p}^{3}\right)$
- To match matrix elements through $\mathrm{O}\left(\mathbf{p}^{3}\right)$, consider ansatz for improved quark field ($a=1$)

$$
\begin{aligned}
\psi(x) \rightarrow \Psi_{I}(x) & \equiv e^{M_{1} / 2}\left[1+d_{1} \boldsymbol{\gamma} \cdot \boldsymbol{D}+\frac{1}{2} d_{2} \triangle^{(3)}\right. \\
& \left.+\frac{1}{6} d_{3} \gamma_{i} D_{i} \triangle_{i}+\frac{1}{2} d_{4}\left\{\boldsymbol{\gamma} \cdot \boldsymbol{D}, \triangle^{(3)}\right\}\right] \psi(x) \\
\bar{\psi}_{c}(x) \Gamma \psi_{b}(x) & \rightarrow \bar{\Psi}_{I c}(x) \Gamma \Psi_{I b}(x)
\end{aligned}
$$

- d_{2} term $\sim \mathrm{O}\left(\mathbf{p}^{2}\right)$ term $\left(M_{X}\right)$
- d_{3} term $\sim \mathrm{O}\left(\mathbf{p}^{3}\right)$ rotation breaking term (w)
- d_{4} term $\sim \mathrm{O}\left(\mathbf{p}^{3}\right)$ external-line mass term $\left(M_{Y}\right)$

Calculation of matrix elements

- For tree-level matching of matrix elements of current between quark, anti-quark states, set gauge links to 1
- Note external-line factors for contractions with differentiated fields in lattice current
$\triangle^{(3)} \psi(x) \quad \Longrightarrow \quad u^{\text {lat }}(\xi, \boldsymbol{p}) \rightarrow-\sum_{i}\left(2 \sin p_{i} / 2\right)^{2} u^{\text {lat }}(\xi, \boldsymbol{p})$
$\partial_{i} \triangle_{i} \psi(x) \quad \Longrightarrow \quad u^{\text {lat }}(\xi, \boldsymbol{p}) \rightarrow-i \sin p_{i}\left(2 \sin p_{i} / 2\right)^{2} u^{\text {lat }}(\xi, \boldsymbol{p})$
$\partial_{i} \triangle^{(3)} \psi(x) \quad \Longrightarrow \quad u^{\text {lat }}(\xi, \boldsymbol{p}) \rightarrow-i \sin p_{i} \sum_{j}\left(2 \sin p_{j} / 2\right)^{2} u^{\text {lat }}(\xi, \boldsymbol{p})$
- Matching $\mathrm{O}\left(\mathbf{p}^{2}\right)$ terms yields d_{2}
- Matching rotation breaking terms (to zero) yields d_{3}
- Matching rotation preserving $\mathrm{O}\left(\mathbf{p}^{3}\right)$ terms yields d_{4}

Results

- Field improvement parameters $d_{1}, d_{2}, d_{3}, d_{4}$

$$
\begin{aligned}
& d_{1}=\frac{\zeta}{2 \sinh M_{1}}-\frac{1}{2 m_{q}} \\
& d_{2}=d_{1}{ }^{2}-\frac{r_{s} \zeta}{2 e^{M_{1}}} \\
& d_{3}=-d_{1}+w=-d_{1}+c_{B}=-d_{1}+r_{s} \\
& d_{4}=-\frac{d_{1}}{8 M_{X}{ }^{2}}+\frac{d_{2} \zeta}{4 \sinh M_{1}}+\frac{3}{16}\left(\frac{1}{M_{Y}{ }^{3}}-\frac{1}{m_{q}{ }^{3}}\right)
\end{aligned}
$$

- d_{1} and d_{2} agree with literature [El-Khadra et al,, PRD 1997]
- Suffice for tree-level improvement of current matrix elements considered
- Perhaps many additional operators required for complete improvement at $\mathrm{O}\left(\lambda^{3}\right)$

Operators with $\boldsymbol{B}, \boldsymbol{E}$ fields

- For any bilinear of mass-dimension 5, 6 in the Oktay-Kronfeld action, there exists a potentially necessary field improvement term (converse untrue $\sim C, P, T$)
- Simple generalization of ansatz: Include operators with $\boldsymbol{B}, \boldsymbol{E}$

$$
\begin{aligned}
\psi(x) \rightarrow \Psi_{I}(x) & \equiv e^{M_{1} / 2}\left[1+d_{1} \boldsymbol{\gamma} \cdot \boldsymbol{D}+\frac{1}{2} d_{2} \triangle^{(3)}\right. \\
& +\frac{1}{2} i d_{B} \boldsymbol{\Sigma} \cdot \boldsymbol{B}+\frac{1}{2} d_{E} \boldsymbol{\alpha} \cdot \boldsymbol{E} \\
& +\frac{1}{6} d_{3} \gamma_{i} D_{i} \triangle_{i}+\frac{1}{2} d_{4}\left\{\boldsymbol{\gamma} \cdot \boldsymbol{D}, \triangle^{(3)}\right\} \\
& \left.+\frac{1}{4} d_{5}\{\boldsymbol{\gamma} \cdot \boldsymbol{D}, i \boldsymbol{\Sigma} \cdot \boldsymbol{B}\}+\frac{1}{4} d_{E E}\left\{\gamma_{4} D_{4}, \boldsymbol{\alpha} \cdot \boldsymbol{E}\right\}\right] \psi(x)
\end{aligned}
$$

- Expect field improvement sufficient for tree-level current
- Complete enumeration of operators for fields, currents will tell

Summary

- Improved current matrix elements through $\mathrm{O}\left(\mathbf{p}^{3}\right)$, at tree-level
- Results apply for all Lorentz irreps; axial, vector $\sim\left|\mathrm{V}_{\mathrm{cb}}\right|$ in SM
- Improvement achieved ~ad hoc
- Enumerate complete sets of operators for field, current
- Matching conditions to fix improvement parameters
- HQET matching analyses
- Systematize improvement
- Assess heavy-quark discretization errors in form factors
- One-loop improvement of action, currents

Back-up slides

$\left|\mathrm{V}_{\mathrm{cb}}\right|$ from $\mathrm{B} \rightarrow \mathrm{D}^{(*)} l v$

$$
\begin{aligned}
\frac{d \Gamma}{d \omega}(B \rightarrow D \ell \nu) & =\frac{G_{F}^{2}\left|V_{c b}\right|^{2} M_{B}^{5}}{48 \pi^{3}}\left(\omega^{2}-1\right)^{3 / 2} r^{3}(1+r)^{2} F_{D}{ }^{2}(\omega) \\
\frac{d \Gamma}{d \omega}\left(B \rightarrow D^{*} \ell \nu\right) & =\frac{G_{F}^{2}\left|V_{c b}\right|^{2} M_{B}^{5}}{4 \pi^{3}}\left|\eta_{\mathrm{EW}}\right|^{2}(1+\pi \alpha)\left(\omega^{2}-1\right)^{1 / 2} r^{* 3}\left(1-r^{*}\right)^{2} \chi(\omega) F_{D^{*}}{ }^{2}(\omega)
\end{aligned}
$$

- Partial decay rates, form factor shapes (not normalization), from experiment
- $\mathrm{D}^{(*)}$ energy in B rest frame $\sim \omega=v_{B} \cdot v_{D^{(*)}}$
- Well-known quantities, kinematic factors, higher order electroweak corrections
- Coulomb attraction in charged D^{*} final state (for neutral $\mathrm{D}^{*}, \pi \alpha \rightarrow 0$)
- Electroweak correction $\eta_{\text {EW }}$ from NLO box diagrams, γ or Z exchanged with W
$-r=M_{D} / M_{B}, r^{*}=M_{D^{*}} / M_{B}$
$-\chi(\omega)=\frac{\omega+1}{12}\left(5 \omega+1-\frac{8 \omega(\omega-1) r^{*}}{\left(1-r^{*}\right)^{2}}\right)$
- Form factors from theory \sim hadronic matrix elements
- CKM matrix element

Systematic errors for zero recoil calculations

- FNAL/MILC PRD 2009
- Scale r_{1} contributes parametric uncertainty via (very mild) chiral extrapolation \rightarrow negligible
- Mismatch between u_{0} in valence, sea action
- Kappa tuning errors from statistics, fitting, discretization errors \sim variation of form factors
- arXiv:1403.0635
- Kappa tuning errors from statistics, fitting, included in statistical errors of form factor (assume independent on each ensemble)
- Uncertainty from scale r_{1} from f_{π} propagated from uncertainty in kappas \sim dominant scale error

Projected error budgets

Error	Lattice 2013	1-loop OK	tree-level OK
Statistics	0.4%	0.3%	0.3%
$\chi \mathrm{PT}, g_{D D^{*} \pi}$	0.7%	0.3%	0.3%
Kappa tuning	0.2%	0.2%	0.2%
Discretization errors	1.0%	0.2%	0.7%
Current matching	0.5%	0.5%	0.5%
Isospin breaking	0.1%	0.1%	0.1%
Total	1.4%	0.7%	1.0%

- Projected discretization errors from power-counting estimates of heavy-quark errors
- "1-loop OK" means mass-dimension five operators in the action, corresponding operators in the current, are improved at one-loop
- "tree-level OK" means tree-level improvement for action, current
- Assumptions:
- 8 source times per ensemble, 1000 gauge configurations on existing HISQ ensembles, additional ensemble with lattice spacing 0.03 fm [MILC, planned for HISQ bottom]
- Errors from statistics, kappa tuning, ChPT, $\mathrm{g}_{\mathrm{DD} *_{\pi}}$ scale with statistics
- 50% of errors from $\mathrm{ChPT}, \mathrm{g}_{\mathrm{DD} *_{\pi}}$ eliminated by inclusion of physical-point ensembles

