Analysis of the scalar and vector channels in many flavor QCD

Hiroshi Ohki
 KMI, Nagoya University

Y. Aoki, T. Aoyama, E. Bennett, M. Kurachi, T. Maskawa, K. Miura, K.-i. Nagai, E. Rinaldi, A. Shibata,
K. Yamawaki, T. Yamazaki
(LatKMI collaboration)
@Lattice 2014

Outline
-Introduction
-Scalar channel analysis
-(Axial) vector channel analysis
-Summary

Introduction

"Discovery of Higgs boson"

- Higgs like particle (126 GeV) has been found at LHC.
- Consistent with the Standard Model Higgs. But true nature is so far unknown.
- Many candidates for beyond the SM
one interesting possibility
- (walking) technicolor
- "Higgs" = dilaton (pNGB) due to breaking of the approximate scale invariance
$\mathrm{Nf}=8$ QCD could be a candidate of walking gauge theory. We found the flavor singlet scalar (σ) is as light as pion shown in previous talk.
It may be identified a techni-dilaton (Higgs in the SM), which is a pseudo-Nambu Goldstone boson.
(LatKMI, Phys. Rev. D 89, 111502(R), arXiv: 1403.5000[heplat].)

Dilaton decay constant

It is important to investigate the decay constant of the flavor singlet scalar as well as mass, which is useful to study LHC phenomena; the techni-dilaton decay constant governs all the scale of couplings between Higgs and other SM particles.

Dilaton effective theory analysis [S. Matsuzaki, K. Yamawaki, PRD86, 039525(2012)]

Lattice calculation

Two possible decay constants for σ (Fo and Fs)

1. Fo: Dilaton decay constant difficult to calculate

$$
\langle 0| \mathcal{D}^{\mu}(x)|\sigma ; p\rangle=i F_{\sigma} p^{\mu} e^{-i p x}
$$

\mathcal{D}^{μ} : dilatation current can couple to the state of σ.
Partially conserved dilatation current relation (PCDC): $\langle 0| \partial_{\mu} \mathcal{D}^{\mu}(0)|\sigma ; 0\rangle=F_{\sigma} m_{\sigma}^{2}$

2. Fs :scalar decay constant not so difficult

We use scalar density operator $\mathcal{O}(x)=\sum_{i=1}^{N_{F}} \bar{\psi}_{i} \psi_{i}(x)$
which can also couple to the state of σ. We denote this matrix element as scalar decay constant

$$
N_{F}\langle 0| m_{f} \bar{\psi} \psi|\sigma\rangle=F_{S} m_{\sigma}^{2}
$$

(Fs : RG-invariant quantity)
We study Fs.
(We will discuss a relation between Fo and Fs later.)

Decay constant from 2pt flavor singlet scalar correlator

$$
\begin{gathered}
C_{\sigma}(t)=\frac{1}{V} \sum_{x}\left\langle\sum_{i}^{N_{f}} \bar{\psi}_{i} \psi_{i}(x, t) \sum_{j}^{N_{f}} \bar{\psi}_{j} \psi_{j}(0)\right\rangle=\left(-N_{F} C(t)+N_{F}^{2} D(t)\right) \\
\mathcal{O}_{S}(t) \equiv \bar{\psi}_{i} \psi_{i}(t), \quad D(t)=\left\langle\mathcal{O}_{S}(t) \mathcal{O}_{S}(0)\right\rangle-\left\langle\mathcal{O}_{S}(t)\right\rangle\left\langle\mathcal{O}_{S}(0)\right\rangle
\end{gathered}
$$

Insert the complete set ($|\mathrm{n}><\mathrm{n}|$)

$$
\left.C_{\sigma}(t)=\frac{N_{F}^{2}}{V}|\langle 0| \bar{\psi} \psi(0)| \sigma ; 0\right\rangle\left.\right|^{2} \frac{e^{-m_{\sigma} t}}{2 m_{\sigma}}+\cdots
$$

Asymptotic behavior (large t) of the scalar 2pt correlator $\mathrm{Co}(\mathrm{t})$

$$
C_{\sigma}(t) \sim N_{F}^{2} A\left(e^{-m_{\sigma} t}+e^{-m_{\sigma}(T-t)}\right)
$$

$$
F_{S}=N_{F} \frac{m_{f} \sqrt{2 m_{\sigma} V A}}{m_{\sigma}^{2}}
$$

NF: number of flavors V: L^3
A: amplitude

Chiral behavior of Fs

Conformal hypothesis: critical phenomena near the fixed point

hyper-scaling in mass-deformed conformal field theory
Y : mass anomalous dimension at the fixed point

- $M_{H} \propto \mathrm{mf}^{1 /(1+\gamma)}$
- $\mathrm{F} п \propto \mathrm{mf}^{1 /(1+\mathrm{\gamma})}+\ldots$
- $\mathbf{F s} \propto \mathbf{m f}^{1 /(1+\gamma)}+\ldots \quad$ (for small mf)
(For scaling law in decay constants, see e.g. L.D. Debbio and R. Zwicky, PRD(2010))

Chiral symmetry breaking hypothesis: Chiral perturbation theory (ChPT) works.

- $M_{\mathrm{n}}{ }^{2} \propto \mathrm{mf}$ (PCAC relation)
- $F_{n}=F+c M_{n}{ }^{2}+\ldots$
- $\mathrm{m}_{\sigma}{ }^{2} \sim \mathrm{c}+\mathrm{mf}$ (if dilaton like), or $\mathrm{m}_{\sigma} \sim \mathrm{c}+\mathrm{mf}$ (mf as a perturbation)
- Fs $\propto \mathbf{m f}+\ldots$ (if mo remains non-zero in the chiral limit) (Fs/mf \rightarrow const.)

$\mathrm{N}_{\mathrm{f}}=8$ Result

Same data set as arXiv:1403.5000 [hep-lat]
(details in previous talk)

Very Preliminary

Simulation setup

- $\mathbf{S U}(\mathbf{3}), \mathbf{N f}=8$
- HISQ (staggered) fermion and tree level Symanzik gauge action

Volume (= L^3 \mathbf{x} T)

- $L=24, T=32$
- L =30, T=40
- L =36, T=48

Bare coupling constant ($\beta=\frac{6}{g^{2}}$)

- beta=3.8
bare quark mass
- mf= 0.015-0.06,
(5 masses)
- high statistics (more than 5000 configurations)
- We use the same calculation method for disconnected correlator as in Nf=8 QCD explained in previous talk.

Fs for $\mathrm{Nf}=8$, beta=3.8

$$
N_{F}\langle 0| m_{f} \bar{\psi} \psi|\sigma\rangle=F_{S} m_{\sigma}^{2}
$$

statistical error only

Discussion

What is relation between Fs and Fo?

Relation between Fs and Fo through the WT id. (in the continuum theory)

the (integrated) WT-identity for dilatation transformation

$$
\begin{aligned}
& \int d^{4} x \exp (-i q x) \partial_{\mu}\left\langle T\left(\mathcal{D}^{\mu}(x) \mathcal{O}(0)\right)\right\rangle \\
= & \int d^{4} x\left\{\exp (-i q x)\left\langle T\left(\partial_{\mu} \mathcal{D}^{\mu}(x) \mathcal{O}(0)\right)\right\rangle+\delta^{4}(x)\left\langle\delta_{D} \mathcal{O}(0)\right\rangle\right\}
\end{aligned}
$$

Useful relations

$$
\begin{array}{ll}
\partial_{\mu} \mathcal{D}^{\mu}=\theta_{\mu}^{\mu} & \text { (trace anomaly relation) } \\
\delta_{D} \mathcal{O}=\left[i Q_{D}, \mathcal{O}\right]=\Delta_{\mathcal{O}} \mathcal{O} & \text { (scale transformation) }
\end{array}
$$

$\Delta_{\mathcal{O}}$: scale dimension of operator \mathcal{O}
Taking the zero momentum limit ($q \rightarrow 0$), (LHS) is zero. the WT-identity gives

$$
\int d^{4} x\left\langle T\left(\theta_{\mu}^{\mu}(x) \mathcal{O}(0)\right)\right\rangle=-\Delta_{\mathcal{O}}\langle\mathcal{O}\rangle
$$

Insert the complete set $\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{|\sigma(p)\rangle\langle\sigma(p)|}{2 E_{p}}+\cdots$
into $\quad \int d^{4} x\left\langle T\left(\theta_{\mu}^{\mu}(x) \mathcal{O}(0)\right)\right\rangle=-\Delta_{\mathcal{O}}\langle\mathcal{O}\rangle$
and use a scalar density operator $\mathcal{O}=m_{f} \sum_{i}^{N_{F}} \bar{\psi} \psi$
We obtain

$$
F_{S} F_{\sigma} m_{\sigma}^{2}=-\Delta_{\bar{\psi} \psi} N_{F} m_{f}\langle\bar{\psi} \psi\rangle
$$

(in the dilaton pole dominance approximation)
[Ref: Technidilaton (Bando, Matumoto, Yamawaki, PLB 178, 308-312)]

$$
\begin{gathered}
F_{\sigma}=-\frac{\Delta_{\bar{\psi} \psi} N_{F} m_{f}\langle\bar{\psi} \psi\rangle}{\sqrt{2 V A m_{\sigma}}} \\
\text { Recall } \begin{array}{c}
F_{S}=N_{F} \frac{m_{f} \sqrt{2 m_{\sigma} V A}}{m_{\sigma}^{2}} \\
\Delta_{\bar{\psi} \psi}=3-\gamma_{m}
\end{array}
\end{gathered}
$$

$$
\left[\begin{array}{c}
F_{\sigma}=-\frac{\Delta_{\bar{\psi} \psi} N_{F} m_{f}\langle\bar{\psi} \psi\rangle}{\sqrt{2 V A m_{\sigma}}} \\
F_{S} F_{\sigma} m_{\sigma}^{2}=-\Delta_{\bar{\psi} \psi} N_{F} m_{f}\langle\bar{\psi} \psi\rangle
\end{array} \Delta_{\bar{\psi} \psi=3-\gamma_{m}}\right.
$$

(in the dilaton pole dominance approximation)

c.f. PCAC relation

The (integrated) chiral WT-identity tells us that

$$
\begin{aligned}
& \int d^{4} x\left\langle 2 m P^{a}(x)^{\dagger} P^{a}(0)\right\rangle=-2\langle\bar{\psi} \psi\rangle \\
& P^{a}(x)=\bar{\psi} \gamma_{5} \tau^{a} \psi(x)
\end{aligned}
$$

using PCAC relation, this leads to

$$
m_{\pi}^{2} F_{\pi}^{2}=-4 m_{f}\langle\bar{\psi} \psi\rangle \text { (GMOR relation) }
$$

(in the pion pole dominance approximation)

$$
\left(\begin{array}{c}
F_{\sigma}=-\frac{\Delta_{\bar{\psi} \psi} N_{F} m_{f}\langle\bar{\psi} \psi\rangle}{\sqrt{2 V A m_{\sigma}}} \\
F_{S} F_{\sigma} m_{\sigma}^{2}=-\Delta_{\bar{\psi} \psi} N_{F} m_{f}\langle\bar{\psi} \psi\rangle
\end{array} \Delta_{\bar{\psi} \psi}=3-\gamma_{m}\right.
$$

(in the dilator pole dominance approximation)

Chiral behavior of $\quad F_{\sigma}=-\frac{\Delta_{\bar{\psi} \psi} N_{F} m_{f}\langle\bar{\psi} \psi\rangle}{\sqrt{2 V A m_{\sigma}}}$

conformal phase

chiral broken phase
$\langle\bar{\psi} \psi\rangle \propto m_{f}^{\frac{3-\gamma}{1+\gamma}}, \quad m_{\sigma} \propto m_{f}^{\frac{1}{1+\gamma}} \quad\langle\bar{\psi} \psi\rangle \rightarrow$ const. $\quad F_{S} \propto m_{f}$
$F_{\sigma} \propto m_{f}^{\frac{1}{1+\gamma}}$
$F_{\sigma} \rightarrow$ const.

Note on Fo

$<\psi \psi>$ has divergent parts which should be subtracted.

$$
-\langle\bar{\psi} \psi\rangle=-\langle\bar{\psi} \psi\rangle_{0}+c_{1} m_{f}+c_{2} m_{f}^{2}
$$

In this analysis, instead of that, We use the chiral extrapolated value.

fit range	$<\Psi \Psi>0$	χ 2/dof	dof
[0.012-0.03] (quadratic)	$0.00018(5)$	0.89	1
[0.012-0.04] (quadratic)	$0.00024(2)$	1.61	2
[0.015-0.02] (linear)	$0.00043(2)$	0.35	1

$-\langle\bar{\psi} \psi\rangle_{0}=0.00018(5)\left({ }_{0}^{25}\right)$
(For details see Kei-ichi Nagai's talk)

Fo for $\mathbf{N f}=8$, beta=3.8

Phenomenological implication in $\mathrm{Nf}=8$

-Fo has non-zero value in the chiral limit if $\mathrm{Nf}=8$ is in the broken phase. For phenomenological study, the ratio for the Fo and Fn is important, because technicolor model means

$$
v_{E W} \sim F_{\pi}
$$

In our study, the ratio of Fo and $\mathrm{F} \pi$ in $\mathrm{Nf}=8$ is estimated as

$$
\begin{aligned}
& \frac{F_{\sigma}}{F_{\pi}} \sim 1.5 \Delta_{\bar{\psi} \psi} \sim 3 \quad \text { in the chiral limit } \\
& \quad \text { with assumption of } \gamma \sim 1, \quad\left(\Delta_{\bar{\psi} \psi}=3-\gamma \sim 2\right)
\end{aligned}
$$

This result is roughly consistent with an estimate via the scalar mass analysis in the dilaton ChPT (DChPT). (Details in previous Kei-ichi Nagai's talk)

DChPT: $m_{\sigma}^{2} \sim d_{0}+d_{1} m_{\pi}^{2}$

$$
\begin{array}{ll}
d_{1}=\frac{(1+\gamma) \Delta_{\bar{\psi} \psi} \psi}{4} \frac{N_{F} F_{\pi}^{2}}{F_{\sigma}^{2}} \sim 1 & \text { from the scalar mass analysis (in previous talk) } \\
\frac{F_{\sigma}}{F_{\pi}} \sim \sqrt{N_{F}}=2 \sqrt{2} & \text { with assumption of } \gamma \sim 1, \quad\left(\Delta_{\bar{\psi} \psi}=3-\gamma \sim 2\right)
\end{array}
$$

Vector channel and
 S parameter

Vector and axial-vector current on the lattice

- A non-perturbative renormalization of (axial) vector current (Zv, ZA) is calculated.

$$
\begin{aligned}
\mathcal{A}_{\mu} & =Z_{A} A_{\mu} \\
\mathcal{V}_{\mu} & =Z_{V} V_{\mu} \\
Z_{A} & =\frac{\left\langle\mathcal{A}_{4}(t) P(0)\right\rangle}{\left\langle A_{4}(t) P(0)\right\rangle}
\end{aligned}
$$

-> (axial) vector meson decay constant

- Vacuum polarization function(VPF) with flavored vector and axial vector currents ->the Peskin-Takeuchi S-parameter via $\Pi^{\vee}\left(q^{2}\right)-\Pi^{A}\left(q^{2}\right)$

VPFs have a power divergent part in both $\Pi^{V}\left(q^{2}\right)$ and $\Pi^{A}\left(q^{2}\right)$. Exact chiral symmetry on the lattice is important to subtract power divergences in $\Pi^{V}\left(q^{2}\right)-\Pi^{A}\left(q^{2}\right)$.

Previous studies of S-parameter

- technicolor-motivated studies: SU(3) gauge
- JLQCD with 2 flavor overlap fermions
- RBC/UKQCD with $2+1$ flavor domain-wall fermions
- LSD: $\mathrm{Nf}=2,6,8,10$ domain-wall fermions
- T. DeGrand: 2 flavors of sextet fermions
- All calculations are done either with overlap or domain wall fermions
- We discuss the possibility to use staggered valence fermions
- natural choice, as we use staggered sea quarks
- full unitary calculation

Chiral symmetry on the staggered fermion

One staggered fermion has exact vector $U(1) v$ and chiral $U(1)$ A symmetries.

$$
(\mathbf{1} \otimes \mathbf{1}) \quad\left(\gamma_{5} \otimes \xi_{5}\right)
$$

-> Symmetry can be enhanced in the multi species staggered fermions (in classical level).

$$
S U\left(N_{S}\right)_{V} \times S U\left(N_{S}\right)_{A},\left(\times U(1)_{V} \times U(1)_{A}\right)
$$

Ns : \# of species (Ns=2 for 8 flavors, Ns=3 for 12 flavors) act on the species space.

$$
\text { symmetry : } \quad(\mathbf{1} \otimes \mathbf{1}) \tau^{i}
$$

(axial) vector current: $\bar{\psi}\left(\gamma_{\mu} \otimes \mathbf{1}\right) \tau^{i} \psi \quad \bar{\psi}\left(\gamma_{\mu} \gamma_{5} \otimes \xi_{5}\right) \tau^{i} \psi$
Using these currents, the power divergent parts can be exactly subtracted in $\Pi^{\vee}\left(q^{2}\right)-\Pi^{A}\left(q^{2}\right)$.

Our study

- $\operatorname{SU}(3), \mathrm{Nf}=8$
- HISQ (staggered) fermion and tree level Symanzik gauge action

Volume ($=\mathrm{L} \wedge 3 \times \mathrm{T}$)

- $\mathrm{L}=18, \mathrm{~T}=24, \mathrm{mf}=0.04,0.06,0.08,0.10$
- $\mathrm{L}=30, \mathrm{~T}=40, \mathrm{mf}=0.03$
- $\mathrm{L}=36, \mathrm{~T}=48, \mathrm{mf}=0.015,0.020$

Bare coupling constant ($\beta=\frac{6}{g^{2}}$)

- beta=3.8
-Current-current correlation functions for VPFs in MILC v7 src: one-link sink: conserved:
Ward-Takahashi id. works, Renormalization needed
- Some feasibility studies had been done. Measurement of ZA, check of WTI for (axial) vector currents in the multi species staggered fermions. (details in Yasumichi Aoki's talk in Lattice 2013)

S-parameter in Nf=8

Very Preliminary

Comparison with LSD result

We will calculate it in larger volumes (to see finite volume effects) and in lighter fermion mass regions (chiral behavior).

Summary

Scalar channel

- Using the flavor singlet scalar correlator, we calculated decay constant as well as mass.
- Signal of Fs is as good as mo.
- Fo is related Fs through the WT id.
- Accuracy of the data is not enough to take the chiral limit in $\mathrm{Nf}=8$. \bullet Very rough estimate suggests Fo/Fn $\sim 1.5 \Delta$, in rough agreement with other measurement (LatKMI, Phys. Rev. D 89, 111502(R) (2014), arXiv:1403.5000)

Vector channel

- S-parameter can be calculated in $\mathrm{Nf}=4 \mathrm{n}(\mathrm{n}>1)$ staggered fermions.
\bullet Our results are reasonably consistent with LSD collaboration.
- Finite size effects and chiral behavior studies are underway.

Thank you

